summaryrefslogtreecommitdiff
path: root/indra/llmath/m3math.h
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llmath/m3math.h')
-rw-r--r--indra/llmath/m3math.h198
1 files changed, 198 insertions, 0 deletions
diff --git a/indra/llmath/m3math.h b/indra/llmath/m3math.h
new file mode 100644
index 0000000000..ac93ed86fb
--- /dev/null
+++ b/indra/llmath/m3math.h
@@ -0,0 +1,198 @@
+/**
+ * @file m3math.h
+ * @brief LLMatrix3 class header file.
+ *
+ * Copyright (c) 2000-$CurrentYear$, Linden Research, Inc.
+ * $License$
+ */
+
+#ifndef LL_M3MATH_H
+#define LL_M3MATH_H
+
+#include "llerror.h"
+
+class LLVector4;
+class LLVector3;
+class LLVector3d;
+class LLQuaternion;
+
+// NOTA BENE: Currently assuming a right-handed, z-up universe
+
+// ji
+// LLMatrix3 = | 00 01 02 |
+// | 10 11 12 |
+// | 20 21 22 |
+
+// LLMatrix3 = | fx fy fz | forward-axis
+// | lx ly lz | left-axis
+// | ux uy uz | up-axis
+
+// NOTE: The world of computer graphics uses column-vectors and matricies that
+// "operate to the left".
+
+
+static const U32 NUM_VALUES_IN_MAT3 = 3;
+#if LL_WINDOWS
+__declspec( align(16) )
+#endif
+class LLMatrix3
+{
+ public:
+ F32 mMatrix[NUM_VALUES_IN_MAT3][NUM_VALUES_IN_MAT3];
+
+ LLMatrix3(void); // Initializes Matrix to identity matrix
+ explicit LLMatrix3(const F32 *mat); // Initializes Matrix to values in mat
+ explicit LLMatrix3(const LLQuaternion &q); // Initializes Matrix with rotation q
+
+ LLMatrix3(const F32 angle, const F32 x, const F32 y, const F32 z); // Initializes Matrix with axis angle
+ LLMatrix3(const F32 angle, const LLVector3 &vec); // Initializes Matrix with axis angle
+ LLMatrix3(const F32 angle, const LLVector3d &vec); // Initializes Matrix with axis angle
+ LLMatrix3(const F32 angle, const LLVector4 &vec); // Initializes Matrix with axis angle
+ LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw); // Initializes Matrix with Euler angles
+
+ //////////////////////////////
+ //
+ // Matrix initializers - these replace any existing values in the matrix
+ //
+
+ // various useful matrix functions
+ const LLMatrix3& identity(); // Load identity matrix
+ const LLMatrix3& zero(); // Clears Matrix to zero
+
+ ///////////////////////////
+ //
+ // Matrix setters - set some properties without modifying others
+ //
+
+ // These functions take Rotation arguments
+ const LLMatrix3& setRot(const F32 angle, const F32 x, const F32 y, const F32 z); // Calculate rotation matrix for rotating angle radians about (x, y, z)
+ const LLMatrix3& setRot(const F32 angle, const LLVector3 &vec); // Calculate rotation matrix for rotating angle radians about vec
+ const LLMatrix3& setRot(const F32 roll, const F32 pitch, const F32 yaw); // Calculate rotation matrix from Euler angles
+ const LLMatrix3& setRot(const LLQuaternion &q); // Transform matrix by Euler angles and translating by pos
+
+ const LLMatrix3& setRows(const LLVector3 &x_axis, const LLVector3 &y_axis, const LLVector3 &z_axis);
+
+ ///////////////////////////
+ //
+ // Get properties of a matrix
+ //
+ LLQuaternion quaternion() const; // Returns quaternion from mat
+ void getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const; // Returns Euler angles, in radians
+
+ // Axis extraction routines
+ LLVector3 getFwdRow() const;
+ LLVector3 getLeftRow() const;
+ LLVector3 getUpRow() const;
+ F32 determinant() const; // Return determinant
+
+
+ ///////////////////////////
+ //
+ // Operations on an existing matrix
+ //
+ const LLMatrix3& transpose(); // Transpose MAT4
+ const LLMatrix3& invert(); // Invert MAT4
+ const LLMatrix3& orthogonalize(); // Orthogonalizes X, then Y, then Z
+ const LLMatrix3& adjointTranspose(); // returns transpose of matrix adjoint, for multiplying normals
+
+
+ // Rotate existing matrix
+ // Note: the two lines below are equivalent:
+ // foo.rotate(bar)
+ // foo = foo * bar
+ // That is, foo.rotMat3(bar) multiplies foo by bar FROM THE RIGHT
+ const LLMatrix3& rotate(const F32 angle, const F32 x, const F32 y, const F32 z); // Rotate matrix by rotating angle radians about (x, y, z)
+ const LLMatrix3& rotate(const F32 angle, const LLVector3 &vec); // Rotate matrix by rotating angle radians about vec
+ const LLMatrix3& rotate(const F32 roll, const F32 pitch, const F32 yaw); // Rotate matrix by roll (about x), pitch (about y), and yaw (about z)
+ const LLMatrix3& rotate(const LLQuaternion &q); // Transform matrix by Euler angles and translating by pos
+
+// This operator is misleading as to operation direction
+// friend LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b); // Apply rotation a to vector b
+
+ friend LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b); // Apply rotation b to vector a
+ friend LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b); // Apply rotation b to vector a
+ friend LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b); // Return a * b
+
+ friend bool operator==(const LLMatrix3 &a, const LLMatrix3 &b); // Return a == b
+ friend bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b); // Return a != b
+
+ friend const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b); // Return a * b
+
+ friend std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a); // Stream a
+}
+#if LL_DARWIN
+__attribute__ ((aligned (16)))
+#endif
+;
+
+inline LLMatrix3::LLMatrix3(void)
+{
+ mMatrix[0][0] = 1.f;
+ mMatrix[0][1] = 0.f;
+ mMatrix[0][2] = 0.f;
+
+ mMatrix[1][0] = 0.f;
+ mMatrix[1][1] = 1.f;
+ mMatrix[1][2] = 0.f;
+
+ mMatrix[2][0] = 0.f;
+ mMatrix[2][1] = 0.f;
+ mMatrix[2][2] = 1.f;
+}
+
+inline LLMatrix3::LLMatrix3(const F32 *mat)
+{
+ mMatrix[0][0] = mat[0];
+ mMatrix[0][1] = mat[1];
+ mMatrix[0][2] = mat[2];
+
+ mMatrix[1][0] = mat[3];
+ mMatrix[1][1] = mat[4];
+ mMatrix[1][2] = mat[5];
+
+ mMatrix[2][0] = mat[6];
+ mMatrix[2][1] = mat[7];
+ mMatrix[2][2] = mat[8];
+}
+
+
+#endif
+
+
+// Rotation matrix hints...
+
+// Inverse of Rotation Matrices
+// ----------------------------
+// If R is a rotation matrix that rotate vectors from Frame-A to Frame-B,
+// then the transpose of R will rotate vectors from Frame-B to Frame-A.
+
+
+// Creating Rotation Matricies From Object Axes
+// --------------------------------------------
+// Suppose you know the three axes of some object in some "absolute-frame".
+// If you take those three vectors and throw them into the rows of
+// a rotation matrix what do you get?
+//
+// R = | X0 X1 X2 |
+// | Y0 Y1 Y2 |
+// | Z0 Z1 Z2 |
+//
+// Yeah, but what does it mean?
+//
+// Transpose the matrix and have it operate on a vector...
+//
+// V * R_transpose = [ V0 V1 V2 ] * | X0 Y0 Z0 |
+// | X1 Y1 Z1 |
+// | X2 Y2 Z2 |
+//
+// = [ V*X V*Y V*Z ]
+//
+// = components of V that are parallel to the three object axes
+//
+// = transformation of V into object frame
+//
+// Since the transformation of a rotation matrix is its inverse, then
+// R must rotate vectors from the object-frame into the absolute-frame.
+
+
+