diff options
Diffstat (limited to 'indra/llmath/m3math.cpp')
-rw-r--r-- | indra/llmath/m3math.cpp | 720 |
1 files changed, 360 insertions, 360 deletions
diff --git a/indra/llmath/m3math.cpp b/indra/llmath/m3math.cpp index c7777164c0..472d340af5 100644 --- a/indra/llmath/m3math.cpp +++ b/indra/llmath/m3math.cpp @@ -1,25 +1,25 @@ -/** +/** * @file m3math.cpp * @brief LLMatrix3 class implementation. * * $LicenseInfo:firstyear=2000&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. - * + * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. - * + * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. - * + * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - * + * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ @@ -36,7 +36,7 @@ // LLMatrix3 -// ji +// ji // LLMatrix3 = |00 01 02 | // |10 11 12 | // |20 21 22 | @@ -51,266 +51,266 @@ LLMatrix3::LLMatrix3(const LLQuaternion &q) { - setRot(q); + setRot(q); } LLMatrix3::LLMatrix3(const F32 angle, const LLVector3 &vec) { - LLQuaternion quat(angle, vec); - setRot(quat); + LLQuaternion quat(angle, vec); + setRot(quat); } LLMatrix3::LLMatrix3(const F32 angle, const LLVector3d &vec) { - LLVector3 vec_f; - vec_f.setVec(vec); - LLQuaternion quat(angle, vec_f); - setRot(quat); + LLVector3 vec_f; + vec_f.setVec(vec); + LLQuaternion quat(angle, vec_f); + setRot(quat); } LLMatrix3::LLMatrix3(const F32 angle, const LLVector4 &vec) { - LLQuaternion quat(angle, vec); - setRot(quat); + LLQuaternion quat(angle, vec); + setRot(quat); } LLMatrix3::LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw) { - setRot(roll,pitch,yaw); + setRot(roll,pitch,yaw); } // From Matrix and Quaternion FAQ void LLMatrix3::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const { - F64 angle_x, angle_y, angle_z; - F64 cx, cy, cz; // cosine of angle_x, angle_y, angle_z - F64 sx, sz; // sine of angle_x, angle_y, angle_z + F64 angle_x, angle_y, angle_z; + F64 cx, cy, cz; // cosine of angle_x, angle_y, angle_z + F64 sx, sz; // sine of angle_x, angle_y, angle_z - angle_y = asin(llclamp(mMatrix[2][0], -1.f, 1.f)); - cy = cos(angle_y); + angle_y = asin(llclamp(mMatrix[2][0], -1.f, 1.f)); + cy = cos(angle_y); - if (fabs(cy) > 0.005) // non-zero - { - // no gimbal lock - cx = mMatrix[2][2] / cy; - sx = - mMatrix[2][1] / cy; + if (fabs(cy) > 0.005) // non-zero + { + // no gimbal lock + cx = mMatrix[2][2] / cy; + sx = - mMatrix[2][1] / cy; - angle_x = (F32) atan2(sx, cx); + angle_x = (F32) atan2(sx, cx); - cz = mMatrix[0][0] / cy; - sz = - mMatrix[1][0] / cy; + cz = mMatrix[0][0] / cy; + sz = - mMatrix[1][0] / cy; - angle_z = (F32) atan2(sz, cz); - } - else - { - // yup, gimbal lock - angle_x = 0; + angle_z = (F32) atan2(sz, cz); + } + else + { + // yup, gimbal lock + angle_x = 0; - // some tricky math thereby avoided, see article + // some tricky math thereby avoided, see article - cz = mMatrix[1][1]; - sz = mMatrix[0][1]; + cz = mMatrix[1][1]; + sz = mMatrix[0][1]; - angle_z = atan2(sz, cz); - } + angle_z = atan2(sz, cz); + } - *roll = (F32)angle_x; - *pitch = (F32)angle_y; - *yaw = (F32)angle_z; + *roll = (F32)angle_x; + *pitch = (F32)angle_y; + *yaw = (F32)angle_z; } - + // Clear and Assignment Functions -const LLMatrix3& LLMatrix3::setIdentity() +const LLMatrix3& LLMatrix3::setIdentity() { - mMatrix[0][0] = 1.f; - mMatrix[0][1] = 0.f; - mMatrix[0][2] = 0.f; + mMatrix[0][0] = 1.f; + mMatrix[0][1] = 0.f; + mMatrix[0][2] = 0.f; - mMatrix[1][0] = 0.f; - mMatrix[1][1] = 1.f; - mMatrix[1][2] = 0.f; + mMatrix[1][0] = 0.f; + mMatrix[1][1] = 1.f; + mMatrix[1][2] = 0.f; - mMatrix[2][0] = 0.f; - mMatrix[2][1] = 0.f; - mMatrix[2][2] = 1.f; - return (*this); + mMatrix[2][0] = 0.f; + mMatrix[2][1] = 0.f; + mMatrix[2][2] = 1.f; + return (*this); } -const LLMatrix3& LLMatrix3::clear() +const LLMatrix3& LLMatrix3::clear() { - mMatrix[0][0] = 0.f; - mMatrix[0][1] = 0.f; - mMatrix[0][2] = 0.f; + mMatrix[0][0] = 0.f; + mMatrix[0][1] = 0.f; + mMatrix[0][2] = 0.f; - mMatrix[1][0] = 0.f; - mMatrix[1][1] = 0.f; - mMatrix[1][2] = 0.f; + mMatrix[1][0] = 0.f; + mMatrix[1][1] = 0.f; + mMatrix[1][2] = 0.f; - mMatrix[2][0] = 0.f; - mMatrix[2][1] = 0.f; - mMatrix[2][2] = 0.f; - return (*this); + mMatrix[2][0] = 0.f; + mMatrix[2][1] = 0.f; + mMatrix[2][2] = 0.f; + return (*this); } -const LLMatrix3& LLMatrix3::setZero() +const LLMatrix3& LLMatrix3::setZero() { - mMatrix[0][0] = 0.f; - mMatrix[0][1] = 0.f; - mMatrix[0][2] = 0.f; + mMatrix[0][0] = 0.f; + mMatrix[0][1] = 0.f; + mMatrix[0][2] = 0.f; - mMatrix[1][0] = 0.f; - mMatrix[1][1] = 0.f; - mMatrix[1][2] = 0.f; + mMatrix[1][0] = 0.f; + mMatrix[1][1] = 0.f; + mMatrix[1][2] = 0.f; - mMatrix[2][0] = 0.f; - mMatrix[2][1] = 0.f; - mMatrix[2][2] = 0.f; - return (*this); + mMatrix[2][0] = 0.f; + mMatrix[2][1] = 0.f; + mMatrix[2][2] = 0.f; + return (*this); } // various useful mMatrix functions -const LLMatrix3& LLMatrix3::transpose() +const LLMatrix3& LLMatrix3::transpose() { - // transpose the matrix - F32 temp; - temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp; - temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp; - temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp; - return *this; + // transpose the matrix + F32 temp; + temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp; + temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp; + temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp; + return *this; } -F32 LLMatrix3::determinant() const +F32 LLMatrix3::determinant() const { - // Is this a useful method when we assume the matrices are valid rotation - // matrices throughout this implementation? - return mMatrix[0][0] * (mMatrix[1][1] * mMatrix[2][2] - mMatrix[1][2] * mMatrix[2][1]) + - mMatrix[0][1] * (mMatrix[1][2] * mMatrix[2][0] - mMatrix[1][0] * mMatrix[2][2]) + - mMatrix[0][2] * (mMatrix[1][0] * mMatrix[2][1] - mMatrix[1][1] * mMatrix[2][0]); + // Is this a useful method when we assume the matrices are valid rotation + // matrices throughout this implementation? + return mMatrix[0][0] * (mMatrix[1][1] * mMatrix[2][2] - mMatrix[1][2] * mMatrix[2][1]) + + mMatrix[0][1] * (mMatrix[1][2] * mMatrix[2][0] - mMatrix[1][0] * mMatrix[2][2]) + + mMatrix[0][2] * (mMatrix[1][0] * mMatrix[2][1] - mMatrix[1][1] * mMatrix[2][0]); } // inverts this matrix void LLMatrix3::invert() { - // fails silently if determinant is zero too small - F32 det = determinant(); - const F32 VERY_SMALL_DETERMINANT = 0.000001f; - if (fabs(det) > VERY_SMALL_DETERMINANT) - { - // invertiable - LLMatrix3 t(*this); - mMatrix[VX][VX] = ( t.mMatrix[VY][VY] * t.mMatrix[VZ][VZ] - t.mMatrix[VY][VZ] * t.mMatrix[VZ][VY] ) / det; - mMatrix[VY][VX] = ( t.mMatrix[VY][VZ] * t.mMatrix[VZ][VX] - t.mMatrix[VY][VX] * t.mMatrix[VZ][VZ] ) / det; - mMatrix[VZ][VX] = ( t.mMatrix[VY][VX] * t.mMatrix[VZ][VY] - t.mMatrix[VY][VY] * t.mMatrix[VZ][VX] ) / det; - mMatrix[VX][VY] = ( t.mMatrix[VZ][VY] * t.mMatrix[VX][VZ] - t.mMatrix[VZ][VZ] * t.mMatrix[VX][VY] ) / det; - mMatrix[VY][VY] = ( t.mMatrix[VZ][VZ] * t.mMatrix[VX][VX] - t.mMatrix[VZ][VX] * t.mMatrix[VX][VZ] ) / det; - mMatrix[VZ][VY] = ( t.mMatrix[VZ][VX] * t.mMatrix[VX][VY] - t.mMatrix[VZ][VY] * t.mMatrix[VX][VX] ) / det; - mMatrix[VX][VZ] = ( t.mMatrix[VX][VY] * t.mMatrix[VY][VZ] - t.mMatrix[VX][VZ] * t.mMatrix[VY][VY] ) / det; - mMatrix[VY][VZ] = ( t.mMatrix[VX][VZ] * t.mMatrix[VY][VX] - t.mMatrix[VX][VX] * t.mMatrix[VY][VZ] ) / det; - mMatrix[VZ][VZ] = ( t.mMatrix[VX][VX] * t.mMatrix[VY][VY] - t.mMatrix[VX][VY] * t.mMatrix[VY][VX] ) / det; - } + // fails silently if determinant is zero too small + F32 det = determinant(); + const F32 VERY_SMALL_DETERMINANT = 0.000001f; + if (fabs(det) > VERY_SMALL_DETERMINANT) + { + // invertiable + LLMatrix3 t(*this); + mMatrix[VX][VX] = ( t.mMatrix[VY][VY] * t.mMatrix[VZ][VZ] - t.mMatrix[VY][VZ] * t.mMatrix[VZ][VY] ) / det; + mMatrix[VY][VX] = ( t.mMatrix[VY][VZ] * t.mMatrix[VZ][VX] - t.mMatrix[VY][VX] * t.mMatrix[VZ][VZ] ) / det; + mMatrix[VZ][VX] = ( t.mMatrix[VY][VX] * t.mMatrix[VZ][VY] - t.mMatrix[VY][VY] * t.mMatrix[VZ][VX] ) / det; + mMatrix[VX][VY] = ( t.mMatrix[VZ][VY] * t.mMatrix[VX][VZ] - t.mMatrix[VZ][VZ] * t.mMatrix[VX][VY] ) / det; + mMatrix[VY][VY] = ( t.mMatrix[VZ][VZ] * t.mMatrix[VX][VX] - t.mMatrix[VZ][VX] * t.mMatrix[VX][VZ] ) / det; + mMatrix[VZ][VY] = ( t.mMatrix[VZ][VX] * t.mMatrix[VX][VY] - t.mMatrix[VZ][VY] * t.mMatrix[VX][VX] ) / det; + mMatrix[VX][VZ] = ( t.mMatrix[VX][VY] * t.mMatrix[VY][VZ] - t.mMatrix[VX][VZ] * t.mMatrix[VY][VY] ) / det; + mMatrix[VY][VZ] = ( t.mMatrix[VX][VZ] * t.mMatrix[VY][VX] - t.mMatrix[VX][VX] * t.mMatrix[VY][VZ] ) / det; + mMatrix[VZ][VZ] = ( t.mMatrix[VX][VX] * t.mMatrix[VY][VY] - t.mMatrix[VX][VY] * t.mMatrix[VY][VX] ) / det; + } } // does not assume a rotation matrix, and does not divide by determinant, assuming results will be renormalized -const LLMatrix3& LLMatrix3::adjointTranspose() +const LLMatrix3& LLMatrix3::adjointTranspose() { - LLMatrix3 adjoint_transpose; - adjoint_transpose.mMatrix[VX][VX] = mMatrix[VY][VY] * mMatrix[VZ][VZ] - mMatrix[VY][VZ] * mMatrix[VZ][VY] ; - adjoint_transpose.mMatrix[VY][VX] = mMatrix[VY][VZ] * mMatrix[VZ][VX] - mMatrix[VY][VX] * mMatrix[VZ][VZ] ; - adjoint_transpose.mMatrix[VZ][VX] = mMatrix[VY][VX] * mMatrix[VZ][VY] - mMatrix[VY][VY] * mMatrix[VZ][VX] ; - adjoint_transpose.mMatrix[VX][VY] = mMatrix[VZ][VY] * mMatrix[VX][VZ] - mMatrix[VZ][VZ] * mMatrix[VX][VY] ; - adjoint_transpose.mMatrix[VY][VY] = mMatrix[VZ][VZ] * mMatrix[VX][VX] - mMatrix[VZ][VX] * mMatrix[VX][VZ] ; - adjoint_transpose.mMatrix[VZ][VY] = mMatrix[VZ][VX] * mMatrix[VX][VY] - mMatrix[VZ][VY] * mMatrix[VX][VX] ; - adjoint_transpose.mMatrix[VX][VZ] = mMatrix[VX][VY] * mMatrix[VY][VZ] - mMatrix[VX][VZ] * mMatrix[VY][VY] ; - adjoint_transpose.mMatrix[VY][VZ] = mMatrix[VX][VZ] * mMatrix[VY][VX] - mMatrix[VX][VX] * mMatrix[VY][VZ] ; - adjoint_transpose.mMatrix[VZ][VZ] = mMatrix[VX][VX] * mMatrix[VY][VY] - mMatrix[VX][VY] * mMatrix[VY][VX] ; + LLMatrix3 adjoint_transpose; + adjoint_transpose.mMatrix[VX][VX] = mMatrix[VY][VY] * mMatrix[VZ][VZ] - mMatrix[VY][VZ] * mMatrix[VZ][VY] ; + adjoint_transpose.mMatrix[VY][VX] = mMatrix[VY][VZ] * mMatrix[VZ][VX] - mMatrix[VY][VX] * mMatrix[VZ][VZ] ; + adjoint_transpose.mMatrix[VZ][VX] = mMatrix[VY][VX] * mMatrix[VZ][VY] - mMatrix[VY][VY] * mMatrix[VZ][VX] ; + adjoint_transpose.mMatrix[VX][VY] = mMatrix[VZ][VY] * mMatrix[VX][VZ] - mMatrix[VZ][VZ] * mMatrix[VX][VY] ; + adjoint_transpose.mMatrix[VY][VY] = mMatrix[VZ][VZ] * mMatrix[VX][VX] - mMatrix[VZ][VX] * mMatrix[VX][VZ] ; + adjoint_transpose.mMatrix[VZ][VY] = mMatrix[VZ][VX] * mMatrix[VX][VY] - mMatrix[VZ][VY] * mMatrix[VX][VX] ; + adjoint_transpose.mMatrix[VX][VZ] = mMatrix[VX][VY] * mMatrix[VY][VZ] - mMatrix[VX][VZ] * mMatrix[VY][VY] ; + adjoint_transpose.mMatrix[VY][VZ] = mMatrix[VX][VZ] * mMatrix[VY][VX] - mMatrix[VX][VX] * mMatrix[VY][VZ] ; + adjoint_transpose.mMatrix[VZ][VZ] = mMatrix[VX][VX] * mMatrix[VY][VY] - mMatrix[VX][VY] * mMatrix[VY][VX] ; - *this = adjoint_transpose; - return *this; + *this = adjoint_transpose; + return *this; } // SJB: This code is correct for a logicly stored (non-transposed) matrix; -// Our matrices are stored transposed, OpenGL style, so this generates the -// INVERSE quaternion (-x, -y, -z, w)! -// Because we use similar logic in LLQuaternion::getMatrix3, -// we are internally consistant so everything works OK :) -LLQuaternion LLMatrix3::quaternion() const -{ - LLQuaternion quat; - F32 tr, s, q[4]; - U32 i, j, k; - U32 nxt[3] = {1, 2, 0}; - - tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2]; - - // check the diagonal - if (tr > 0.f) - { - s = (F32)sqrt (tr + 1.f); - quat.mQ[VS] = s / 2.f; - s = 0.5f / s; - quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s; - quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s; - quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s; - } - else - { - // diagonal is negative - i = 0; - if (mMatrix[1][1] > mMatrix[0][0]) - i = 1; - if (mMatrix[2][2] > mMatrix[i][i]) - i = 2; - - j = nxt[i]; - k = nxt[j]; - - - s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f); - - q[i] = s * 0.5f; - - if (s != 0.f) - s = 0.5f / s; - - q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s; - q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s; - q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s; - - quat.setQuat(q); - } - return quat; -} - -const LLMatrix3& LLMatrix3::setRot(const F32 angle, const LLVector3 &vec) -{ - setRot(LLQuaternion(angle, vec)); - return *this; -} - -const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 yaw) -{ - // Rotates RH about x-axis by 'roll' then - // rotates RH about the old y-axis by 'pitch' then - // rotates RH about the original z-axis by 'yaw'. - // . - // /|\ yaw axis - // | __. - // ._ ___| /| pitch axis - // _||\ \\ |-. / - // \|| \_______\_|__\_/_______ - // | _ _ o o o_o_o_o o /_\_ ________\ roll axis - // // /_______/ /__________> / - // /_,-' // / - // /__,-' - - F32 cx, sx, cy, sy, cz, sz; - F32 cxsy, sxsy; +// Our matrices are stored transposed, OpenGL style, so this generates the +// INVERSE quaternion (-x, -y, -z, w)! +// Because we use similar logic in LLQuaternion::getMatrix3, +// we are internally consistant so everything works OK :) +LLQuaternion LLMatrix3::quaternion() const +{ + LLQuaternion quat; + F32 tr, s, q[4]; + U32 i, j, k; + U32 nxt[3] = {1, 2, 0}; + + tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2]; + + // check the diagonal + if (tr > 0.f) + { + s = (F32)sqrt (tr + 1.f); + quat.mQ[VS] = s / 2.f; + s = 0.5f / s; + quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s; + quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s; + quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s; + } + else + { + // diagonal is negative + i = 0; + if (mMatrix[1][1] > mMatrix[0][0]) + i = 1; + if (mMatrix[2][2] > mMatrix[i][i]) + i = 2; + + j = nxt[i]; + k = nxt[j]; + + + s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f); + + q[i] = s * 0.5f; + + if (s != 0.f) + s = 0.5f / s; + + q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s; + q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s; + q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s; + + quat.setQuat(q); + } + return quat; +} + +const LLMatrix3& LLMatrix3::setRot(const F32 angle, const LLVector3 &vec) +{ + setRot(LLQuaternion(angle, vec)); + return *this; +} + +const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 yaw) +{ + // Rotates RH about x-axis by 'roll' then + // rotates RH about the old y-axis by 'pitch' then + // rotates RH about the original z-axis by 'yaw'. + // . + // /|\ yaw axis + // | __. + // ._ ___| /| pitch axis + // _||\ \\ |-. / + // \|| \_______\_|__\_/_______ + // | _ _ o o o_o_o_o o /_\_ ________\ roll axis + // // /_______/ /__________> / + // /_,-' // / + // /__,-' + + F32 cx, sx, cy, sy, cz, sz; + F32 cxsy, sxsy; cx = (F32)cos(roll); //A sx = (F32)sin(roll); //B @@ -320,7 +320,7 @@ const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 ya sz = (F32)sin(yaw); //F cxsy = cx * sy; //AD - sxsy = sx * sy; //BD + sxsy = sx * sy; //BD mMatrix[0][0] = cy * cz; mMatrix[1][0] = -cy * sz; @@ -331,118 +331,118 @@ const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 ya mMatrix[0][2] = -cxsy * cz + sx * sz; mMatrix[1][2] = cxsy * sz + sx * cz; mMatrix[2][2] = cx * cy; - return *this; + return *this; } -const LLMatrix3& LLMatrix3::setRot(const LLQuaternion &q) +const LLMatrix3& LLMatrix3::setRot(const LLQuaternion &q) { - *this = q.getMatrix3(); - return *this; + *this = q.getMatrix3(); + return *this; } -const LLMatrix3& LLMatrix3::setRows(const LLVector3 &fwd, const LLVector3 &left, const LLVector3 &up) +const LLMatrix3& LLMatrix3::setRows(const LLVector3 &fwd, const LLVector3 &left, const LLVector3 &up) { - mMatrix[0][0] = fwd.mV[0]; - mMatrix[0][1] = fwd.mV[1]; - mMatrix[0][2] = fwd.mV[2]; + mMatrix[0][0] = fwd.mV[0]; + mMatrix[0][1] = fwd.mV[1]; + mMatrix[0][2] = fwd.mV[2]; - mMatrix[1][0] = left.mV[0]; - mMatrix[1][1] = left.mV[1]; - mMatrix[1][2] = left.mV[2]; + mMatrix[1][0] = left.mV[0]; + mMatrix[1][1] = left.mV[1]; + mMatrix[1][2] = left.mV[2]; - mMatrix[2][0] = up.mV[0]; - mMatrix[2][1] = up.mV[1]; - mMatrix[2][2] = up.mV[2]; + mMatrix[2][0] = up.mV[0]; + mMatrix[2][1] = up.mV[1]; + mMatrix[2][2] = up.mV[2]; - return *this; + return *this; } const LLMatrix3& LLMatrix3::setRow( U32 rowIndex, const LLVector3& row ) { - llassert( rowIndex >= 0 && rowIndex < NUM_VALUES_IN_MAT3 ); + llassert( rowIndex >= 0 && rowIndex < NUM_VALUES_IN_MAT3 ); - mMatrix[rowIndex][0] = row[0]; - mMatrix[rowIndex][1] = row[1]; - mMatrix[rowIndex][2] = row[2]; + mMatrix[rowIndex][0] = row[0]; + mMatrix[rowIndex][1] = row[1]; + mMatrix[rowIndex][2] = row[2]; - return *this; + return *this; } const LLMatrix3& LLMatrix3::setCol( U32 colIndex, const LLVector3& col ) { - llassert( colIndex >= 0 && colIndex < NUM_VALUES_IN_MAT3 ); + llassert( colIndex >= 0 && colIndex < NUM_VALUES_IN_MAT3 ); - mMatrix[0][colIndex] = col[0]; - mMatrix[1][colIndex] = col[1]; - mMatrix[2][colIndex] = col[2]; + mMatrix[0][colIndex] = col[0]; + mMatrix[1][colIndex] = col[1]; + mMatrix[2][colIndex] = col[2]; - return *this; + return *this; } -const LLMatrix3& LLMatrix3::rotate(const F32 angle, const LLVector3 &vec) +const LLMatrix3& LLMatrix3::rotate(const F32 angle, const LLVector3 &vec) { - LLMatrix3 mat(angle, vec); - *this *= mat; - return *this; + LLMatrix3 mat(angle, vec); + *this *= mat; + return *this; } -const LLMatrix3& LLMatrix3::rotate(const F32 roll, const F32 pitch, const F32 yaw) +const LLMatrix3& LLMatrix3::rotate(const F32 roll, const F32 pitch, const F32 yaw) { - LLMatrix3 mat(roll, pitch, yaw); - *this *= mat; - return *this; + LLMatrix3 mat(roll, pitch, yaw); + *this *= mat; + return *this; } -const LLMatrix3& LLMatrix3::rotate(const LLQuaternion &q) +const LLMatrix3& LLMatrix3::rotate(const LLQuaternion &q) { - LLMatrix3 mat(q); - *this *= mat; - return *this; + LLMatrix3 mat(q); + *this *= mat; + return *this; } void LLMatrix3::add(const LLMatrix3& other_matrix) { - for (S32 i = 0; i < 3; ++i) - { - for (S32 j = 0; j < 3; ++j) - { - mMatrix[i][j] += other_matrix.mMatrix[i][j]; - } - } + for (S32 i = 0; i < 3; ++i) + { + for (S32 j = 0; j < 3; ++j) + { + mMatrix[i][j] += other_matrix.mMatrix[i][j]; + } + } } -LLVector3 LLMatrix3::getFwdRow() const +LLVector3 LLMatrix3::getFwdRow() const { - return LLVector3(mMatrix[VX]); + return LLVector3(mMatrix[VX]); } -LLVector3 LLMatrix3::getLeftRow() const +LLVector3 LLMatrix3::getLeftRow() const { - return LLVector3(mMatrix[VY]); + return LLVector3(mMatrix[VY]); } -LLVector3 LLMatrix3::getUpRow() const +LLVector3 LLMatrix3::getUpRow() const { - return LLVector3(mMatrix[VZ]); + return LLVector3(mMatrix[VZ]); } -const LLMatrix3& LLMatrix3::orthogonalize() +const LLMatrix3& LLMatrix3::orthogonalize() { - LLVector3 x_axis(mMatrix[VX]); - LLVector3 y_axis(mMatrix[VY]); - LLVector3 z_axis(mMatrix[VZ]); + LLVector3 x_axis(mMatrix[VX]); + LLVector3 y_axis(mMatrix[VY]); + LLVector3 z_axis(mMatrix[VZ]); - x_axis.normVec(); - y_axis -= x_axis * (x_axis * y_axis); - y_axis.normVec(); - z_axis = x_axis % y_axis; - setRows(x_axis, y_axis, z_axis); - return (*this); + x_axis.normVec(); + y_axis -= x_axis * (x_axis * y_axis); + y_axis.normVec(); + z_axis = x_axis % y_axis; + setRows(x_axis, y_axis, z_axis); + return (*this); } @@ -450,141 +450,141 @@ const LLMatrix3& LLMatrix3::orthogonalize() LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b) { - U32 i, j; - LLMatrix3 mat; - for (i = 0; i < NUM_VALUES_IN_MAT3; i++) - { - for (j = 0; j < NUM_VALUES_IN_MAT3; j++) - { - mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + - a.mMatrix[j][1] * b.mMatrix[1][i] + - a.mMatrix[j][2] * b.mMatrix[2][i]; - } - } - return mat; -} - -/* Not implemented to help enforce code consistency with the syntax of + U32 i, j; + LLMatrix3 mat; + for (i = 0; i < NUM_VALUES_IN_MAT3; i++) + { + for (j = 0; j < NUM_VALUES_IN_MAT3; j++) + { + mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + + a.mMatrix[j][1] * b.mMatrix[1][i] + + a.mMatrix[j][2] * b.mMatrix[2][i]; + } + } + return mat; +} + +/* Not implemented to help enforce code consistency with the syntax of row-major notation. This is a Good Thing. LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b) { - LLVector3 vec; - // matrix operates "from the left" on column vector - vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] + - a.mMatrix[VX][VY] * b.mV[VY] + - a.mMatrix[VX][VZ] * b.mV[VZ]; - - vec.mV[VY] = a.mMatrix[VY][VX] * b.mV[VX] + - a.mMatrix[VY][VY] * b.mV[VY] + - a.mMatrix[VY][VZ] * b.mV[VZ]; - - vec.mV[VZ] = a.mMatrix[VZ][VX] * b.mV[VX] + - a.mMatrix[VZ][VY] * b.mV[VY] + - a.mMatrix[VZ][VZ] * b.mV[VZ]; - return vec; + LLVector3 vec; + // matrix operates "from the left" on column vector + vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] + + a.mMatrix[VX][VY] * b.mV[VY] + + a.mMatrix[VX][VZ] * b.mV[VZ]; + + vec.mV[VY] = a.mMatrix[VY][VX] * b.mV[VX] + + a.mMatrix[VY][VY] * b.mV[VY] + + a.mMatrix[VY][VZ] * b.mV[VZ]; + + vec.mV[VZ] = a.mMatrix[VZ][VX] * b.mV[VX] + + a.mMatrix[VZ][VY] * b.mV[VY] + + a.mMatrix[VZ][VZ] * b.mV[VZ]; + return vec; } */ LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b) { - // matrix operates "from the right" on row vector - return LLVector3( - a.mV[VX] * b.mMatrix[VX][VX] + - a.mV[VY] * b.mMatrix[VY][VX] + - a.mV[VZ] * b.mMatrix[VZ][VX], - - a.mV[VX] * b.mMatrix[VX][VY] + - a.mV[VY] * b.mMatrix[VY][VY] + - a.mV[VZ] * b.mMatrix[VZ][VY], - - a.mV[VX] * b.mMatrix[VX][VZ] + - a.mV[VY] * b.mMatrix[VY][VZ] + - a.mV[VZ] * b.mMatrix[VZ][VZ] ); + // matrix operates "from the right" on row vector + return LLVector3( + a.mV[VX] * b.mMatrix[VX][VX] + + a.mV[VY] * b.mMatrix[VY][VX] + + a.mV[VZ] * b.mMatrix[VZ][VX], + + a.mV[VX] * b.mMatrix[VX][VY] + + a.mV[VY] * b.mMatrix[VY][VY] + + a.mV[VZ] * b.mMatrix[VZ][VY], + + a.mV[VX] * b.mMatrix[VX][VZ] + + a.mV[VY] * b.mMatrix[VY][VZ] + + a.mV[VZ] * b.mMatrix[VZ][VZ] ); } LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b) { - // matrix operates "from the right" on row vector - return LLVector3d( - a.mdV[VX] * b.mMatrix[VX][VX] + - a.mdV[VY] * b.mMatrix[VY][VX] + - a.mdV[VZ] * b.mMatrix[VZ][VX], - - a.mdV[VX] * b.mMatrix[VX][VY] + - a.mdV[VY] * b.mMatrix[VY][VY] + - a.mdV[VZ] * b.mMatrix[VZ][VY], - - a.mdV[VX] * b.mMatrix[VX][VZ] + - a.mdV[VY] * b.mMatrix[VY][VZ] + - a.mdV[VZ] * b.mMatrix[VZ][VZ] ); + // matrix operates "from the right" on row vector + return LLVector3d( + a.mdV[VX] * b.mMatrix[VX][VX] + + a.mdV[VY] * b.mMatrix[VY][VX] + + a.mdV[VZ] * b.mMatrix[VZ][VX], + + a.mdV[VX] * b.mMatrix[VX][VY] + + a.mdV[VY] * b.mMatrix[VY][VY] + + a.mdV[VZ] * b.mMatrix[VZ][VY], + + a.mdV[VX] * b.mMatrix[VX][VZ] + + a.mdV[VY] * b.mMatrix[VY][VZ] + + a.mdV[VZ] * b.mMatrix[VZ][VZ] ); } bool operator==(const LLMatrix3 &a, const LLMatrix3 &b) { - U32 i, j; - for (i = 0; i < NUM_VALUES_IN_MAT3; i++) - { - for (j = 0; j < NUM_VALUES_IN_MAT3; j++) - { - if (a.mMatrix[j][i] != b.mMatrix[j][i]) - return false; - } - } - return true; + U32 i, j; + for (i = 0; i < NUM_VALUES_IN_MAT3; i++) + { + for (j = 0; j < NUM_VALUES_IN_MAT3; j++) + { + if (a.mMatrix[j][i] != b.mMatrix[j][i]) + return false; + } + } + return true; } bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b) { - U32 i, j; - for (i = 0; i < NUM_VALUES_IN_MAT3; i++) - { - for (j = 0; j < NUM_VALUES_IN_MAT3; j++) - { - if (a.mMatrix[j][i] != b.mMatrix[j][i]) - return true; - } - } - return false; + U32 i, j; + for (i = 0; i < NUM_VALUES_IN_MAT3; i++) + { + for (j = 0; j < NUM_VALUES_IN_MAT3; j++) + { + if (a.mMatrix[j][i] != b.mMatrix[j][i]) + return true; + } + } + return false; } const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b) { - U32 i, j; - LLMatrix3 mat; - for (i = 0; i < NUM_VALUES_IN_MAT3; i++) - { - for (j = 0; j < NUM_VALUES_IN_MAT3; j++) - { - mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + - a.mMatrix[j][1] * b.mMatrix[1][i] + - a.mMatrix[j][2] * b.mMatrix[2][i]; - } - } - a = mat; - return a; + U32 i, j; + LLMatrix3 mat; + for (i = 0; i < NUM_VALUES_IN_MAT3; i++) + { + for (j = 0; j < NUM_VALUES_IN_MAT3; j++) + { + mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + + a.mMatrix[j][1] * b.mMatrix[1][i] + + a.mMatrix[j][2] * b.mMatrix[2][i]; + } + } + a = mat; + return a; } const LLMatrix3& operator*=(LLMatrix3 &a, F32 scalar ) { - for( U32 i = 0; i < NUM_VALUES_IN_MAT3; ++i ) - { - for( U32 j = 0; j < NUM_VALUES_IN_MAT3; ++j ) - { - a.mMatrix[i][j] *= scalar; - } - } + for( U32 i = 0; i < NUM_VALUES_IN_MAT3; ++i ) + { + for( U32 j = 0; j < NUM_VALUES_IN_MAT3; ++j ) + { + a.mMatrix[i][j] *= scalar; + } + } - return a; + return a; } -std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a) +std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a) { - s << "{ " - << a.mMatrix[VX][VX] << ", " << a.mMatrix[VX][VY] << ", " << a.mMatrix[VX][VZ] << "; " - << a.mMatrix[VY][VX] << ", " << a.mMatrix[VY][VY] << ", " << a.mMatrix[VY][VZ] << "; " - << a.mMatrix[VZ][VX] << ", " << a.mMatrix[VZ][VY] << ", " << a.mMatrix[VZ][VZ] - << " }"; - return s; + s << "{ " + << a.mMatrix[VX][VX] << ", " << a.mMatrix[VX][VY] << ", " << a.mMatrix[VX][VZ] << "; " + << a.mMatrix[VY][VX] << ", " << a.mMatrix[VY][VY] << ", " << a.mMatrix[VY][VZ] << "; " + << a.mMatrix[VZ][VX] << ", " << a.mMatrix[VZ][VY] << ", " << a.mMatrix[VZ][VZ] + << " }"; + return s; } |