diff options
Diffstat (limited to 'indra/llmath/m3math.cpp')
-rw-r--r-- | indra/llmath/m3math.cpp | 1180 |
1 files changed, 590 insertions, 590 deletions
diff --git a/indra/llmath/m3math.cpp b/indra/llmath/m3math.cpp index c7777164c0..e48c47d1ef 100644 --- a/indra/llmath/m3math.cpp +++ b/indra/llmath/m3math.cpp @@ -1,590 +1,590 @@ -/** - * @file m3math.cpp - * @brief LLMatrix3 class implementation. - * - * $LicenseInfo:firstyear=2000&license=viewerlgpl$ - * Second Life Viewer Source Code - * Copyright (C) 2010, Linden Research, Inc. - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; - * version 2.1 of the License only. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - * - * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA - * $/LicenseInfo$ - */ - -#include "linden_common.h" - -//#include "vmath.h" -#include "v3math.h" -#include "v3dmath.h" -#include "v4math.h" -#include "m4math.h" -#include "m3math.h" -#include "llquaternion.h" - -// LLMatrix3 - -// ji -// LLMatrix3 = |00 01 02 | -// |10 11 12 | -// |20 21 22 | - -// LLMatrix3 = |fx fy fz | forward-axis -// |lx ly lz | left-axis -// |ux uy uz | up-axis - - -// Constructors - - -LLMatrix3::LLMatrix3(const LLQuaternion &q) -{ - setRot(q); -} - - -LLMatrix3::LLMatrix3(const F32 angle, const LLVector3 &vec) -{ - LLQuaternion quat(angle, vec); - setRot(quat); -} - -LLMatrix3::LLMatrix3(const F32 angle, const LLVector3d &vec) -{ - LLVector3 vec_f; - vec_f.setVec(vec); - LLQuaternion quat(angle, vec_f); - setRot(quat); -} - -LLMatrix3::LLMatrix3(const F32 angle, const LLVector4 &vec) -{ - LLQuaternion quat(angle, vec); - setRot(quat); -} - -LLMatrix3::LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw) -{ - setRot(roll,pitch,yaw); -} - -// From Matrix and Quaternion FAQ -void LLMatrix3::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const -{ - F64 angle_x, angle_y, angle_z; - F64 cx, cy, cz; // cosine of angle_x, angle_y, angle_z - F64 sx, sz; // sine of angle_x, angle_y, angle_z - - angle_y = asin(llclamp(mMatrix[2][0], -1.f, 1.f)); - cy = cos(angle_y); - - if (fabs(cy) > 0.005) // non-zero - { - // no gimbal lock - cx = mMatrix[2][2] / cy; - sx = - mMatrix[2][1] / cy; - - angle_x = (F32) atan2(sx, cx); - - cz = mMatrix[0][0] / cy; - sz = - mMatrix[1][0] / cy; - - angle_z = (F32) atan2(sz, cz); - } - else - { - // yup, gimbal lock - angle_x = 0; - - // some tricky math thereby avoided, see article - - cz = mMatrix[1][1]; - sz = mMatrix[0][1]; - - angle_z = atan2(sz, cz); - } - - *roll = (F32)angle_x; - *pitch = (F32)angle_y; - *yaw = (F32)angle_z; -} - - -// Clear and Assignment Functions - -const LLMatrix3& LLMatrix3::setIdentity() -{ - mMatrix[0][0] = 1.f; - mMatrix[0][1] = 0.f; - mMatrix[0][2] = 0.f; - - mMatrix[1][0] = 0.f; - mMatrix[1][1] = 1.f; - mMatrix[1][2] = 0.f; - - mMatrix[2][0] = 0.f; - mMatrix[2][1] = 0.f; - mMatrix[2][2] = 1.f; - return (*this); -} - -const LLMatrix3& LLMatrix3::clear() -{ - mMatrix[0][0] = 0.f; - mMatrix[0][1] = 0.f; - mMatrix[0][2] = 0.f; - - mMatrix[1][0] = 0.f; - mMatrix[1][1] = 0.f; - mMatrix[1][2] = 0.f; - - mMatrix[2][0] = 0.f; - mMatrix[2][1] = 0.f; - mMatrix[2][2] = 0.f; - return (*this); -} - -const LLMatrix3& LLMatrix3::setZero() -{ - mMatrix[0][0] = 0.f; - mMatrix[0][1] = 0.f; - mMatrix[0][2] = 0.f; - - mMatrix[1][0] = 0.f; - mMatrix[1][1] = 0.f; - mMatrix[1][2] = 0.f; - - mMatrix[2][0] = 0.f; - mMatrix[2][1] = 0.f; - mMatrix[2][2] = 0.f; - return (*this); -} - -// various useful mMatrix functions - -const LLMatrix3& LLMatrix3::transpose() -{ - // transpose the matrix - F32 temp; - temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp; - temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp; - temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp; - return *this; -} - - -F32 LLMatrix3::determinant() const -{ - // Is this a useful method when we assume the matrices are valid rotation - // matrices throughout this implementation? - return mMatrix[0][0] * (mMatrix[1][1] * mMatrix[2][2] - mMatrix[1][2] * mMatrix[2][1]) + - mMatrix[0][1] * (mMatrix[1][2] * mMatrix[2][0] - mMatrix[1][0] * mMatrix[2][2]) + - mMatrix[0][2] * (mMatrix[1][0] * mMatrix[2][1] - mMatrix[1][1] * mMatrix[2][0]); -} - -// inverts this matrix -void LLMatrix3::invert() -{ - // fails silently if determinant is zero too small - F32 det = determinant(); - const F32 VERY_SMALL_DETERMINANT = 0.000001f; - if (fabs(det) > VERY_SMALL_DETERMINANT) - { - // invertiable - LLMatrix3 t(*this); - mMatrix[VX][VX] = ( t.mMatrix[VY][VY] * t.mMatrix[VZ][VZ] - t.mMatrix[VY][VZ] * t.mMatrix[VZ][VY] ) / det; - mMatrix[VY][VX] = ( t.mMatrix[VY][VZ] * t.mMatrix[VZ][VX] - t.mMatrix[VY][VX] * t.mMatrix[VZ][VZ] ) / det; - mMatrix[VZ][VX] = ( t.mMatrix[VY][VX] * t.mMatrix[VZ][VY] - t.mMatrix[VY][VY] * t.mMatrix[VZ][VX] ) / det; - mMatrix[VX][VY] = ( t.mMatrix[VZ][VY] * t.mMatrix[VX][VZ] - t.mMatrix[VZ][VZ] * t.mMatrix[VX][VY] ) / det; - mMatrix[VY][VY] = ( t.mMatrix[VZ][VZ] * t.mMatrix[VX][VX] - t.mMatrix[VZ][VX] * t.mMatrix[VX][VZ] ) / det; - mMatrix[VZ][VY] = ( t.mMatrix[VZ][VX] * t.mMatrix[VX][VY] - t.mMatrix[VZ][VY] * t.mMatrix[VX][VX] ) / det; - mMatrix[VX][VZ] = ( t.mMatrix[VX][VY] * t.mMatrix[VY][VZ] - t.mMatrix[VX][VZ] * t.mMatrix[VY][VY] ) / det; - mMatrix[VY][VZ] = ( t.mMatrix[VX][VZ] * t.mMatrix[VY][VX] - t.mMatrix[VX][VX] * t.mMatrix[VY][VZ] ) / det; - mMatrix[VZ][VZ] = ( t.mMatrix[VX][VX] * t.mMatrix[VY][VY] - t.mMatrix[VX][VY] * t.mMatrix[VY][VX] ) / det; - } -} - -// does not assume a rotation matrix, and does not divide by determinant, assuming results will be renormalized -const LLMatrix3& LLMatrix3::adjointTranspose() -{ - LLMatrix3 adjoint_transpose; - adjoint_transpose.mMatrix[VX][VX] = mMatrix[VY][VY] * mMatrix[VZ][VZ] - mMatrix[VY][VZ] * mMatrix[VZ][VY] ; - adjoint_transpose.mMatrix[VY][VX] = mMatrix[VY][VZ] * mMatrix[VZ][VX] - mMatrix[VY][VX] * mMatrix[VZ][VZ] ; - adjoint_transpose.mMatrix[VZ][VX] = mMatrix[VY][VX] * mMatrix[VZ][VY] - mMatrix[VY][VY] * mMatrix[VZ][VX] ; - adjoint_transpose.mMatrix[VX][VY] = mMatrix[VZ][VY] * mMatrix[VX][VZ] - mMatrix[VZ][VZ] * mMatrix[VX][VY] ; - adjoint_transpose.mMatrix[VY][VY] = mMatrix[VZ][VZ] * mMatrix[VX][VX] - mMatrix[VZ][VX] * mMatrix[VX][VZ] ; - adjoint_transpose.mMatrix[VZ][VY] = mMatrix[VZ][VX] * mMatrix[VX][VY] - mMatrix[VZ][VY] * mMatrix[VX][VX] ; - adjoint_transpose.mMatrix[VX][VZ] = mMatrix[VX][VY] * mMatrix[VY][VZ] - mMatrix[VX][VZ] * mMatrix[VY][VY] ; - adjoint_transpose.mMatrix[VY][VZ] = mMatrix[VX][VZ] * mMatrix[VY][VX] - mMatrix[VX][VX] * mMatrix[VY][VZ] ; - adjoint_transpose.mMatrix[VZ][VZ] = mMatrix[VX][VX] * mMatrix[VY][VY] - mMatrix[VX][VY] * mMatrix[VY][VX] ; - - *this = adjoint_transpose; - return *this; -} - -// SJB: This code is correct for a logicly stored (non-transposed) matrix; -// Our matrices are stored transposed, OpenGL style, so this generates the -// INVERSE quaternion (-x, -y, -z, w)! -// Because we use similar logic in LLQuaternion::getMatrix3, -// we are internally consistant so everything works OK :) -LLQuaternion LLMatrix3::quaternion() const -{ - LLQuaternion quat; - F32 tr, s, q[4]; - U32 i, j, k; - U32 nxt[3] = {1, 2, 0}; - - tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2]; - - // check the diagonal - if (tr > 0.f) - { - s = (F32)sqrt (tr + 1.f); - quat.mQ[VS] = s / 2.f; - s = 0.5f / s; - quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s; - quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s; - quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s; - } - else - { - // diagonal is negative - i = 0; - if (mMatrix[1][1] > mMatrix[0][0]) - i = 1; - if (mMatrix[2][2] > mMatrix[i][i]) - i = 2; - - j = nxt[i]; - k = nxt[j]; - - - s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f); - - q[i] = s * 0.5f; - - if (s != 0.f) - s = 0.5f / s; - - q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s; - q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s; - q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s; - - quat.setQuat(q); - } - return quat; -} - -const LLMatrix3& LLMatrix3::setRot(const F32 angle, const LLVector3 &vec) -{ - setRot(LLQuaternion(angle, vec)); - return *this; -} - -const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 yaw) -{ - // Rotates RH about x-axis by 'roll' then - // rotates RH about the old y-axis by 'pitch' then - // rotates RH about the original z-axis by 'yaw'. - // . - // /|\ yaw axis - // | __. - // ._ ___| /| pitch axis - // _||\ \\ |-. / - // \|| \_______\_|__\_/_______ - // | _ _ o o o_o_o_o o /_\_ ________\ roll axis - // // /_______/ /__________> / - // /_,-' // / - // /__,-' - - F32 cx, sx, cy, sy, cz, sz; - F32 cxsy, sxsy; - - cx = (F32)cos(roll); //A - sx = (F32)sin(roll); //B - cy = (F32)cos(pitch); //C - sy = (F32)sin(pitch); //D - cz = (F32)cos(yaw); //E - sz = (F32)sin(yaw); //F - - cxsy = cx * sy; //AD - sxsy = sx * sy; //BD - - mMatrix[0][0] = cy * cz; - mMatrix[1][0] = -cy * sz; - mMatrix[2][0] = sy; - mMatrix[0][1] = sxsy * cz + cx * sz; - mMatrix[1][1] = -sxsy * sz + cx * cz; - mMatrix[2][1] = -sx * cy; - mMatrix[0][2] = -cxsy * cz + sx * sz; - mMatrix[1][2] = cxsy * sz + sx * cz; - mMatrix[2][2] = cx * cy; - return *this; -} - - -const LLMatrix3& LLMatrix3::setRot(const LLQuaternion &q) -{ - *this = q.getMatrix3(); - return *this; -} - -const LLMatrix3& LLMatrix3::setRows(const LLVector3 &fwd, const LLVector3 &left, const LLVector3 &up) -{ - mMatrix[0][0] = fwd.mV[0]; - mMatrix[0][1] = fwd.mV[1]; - mMatrix[0][2] = fwd.mV[2]; - - mMatrix[1][0] = left.mV[0]; - mMatrix[1][1] = left.mV[1]; - mMatrix[1][2] = left.mV[2]; - - mMatrix[2][0] = up.mV[0]; - mMatrix[2][1] = up.mV[1]; - mMatrix[2][2] = up.mV[2]; - - return *this; -} - -const LLMatrix3& LLMatrix3::setRow( U32 rowIndex, const LLVector3& row ) -{ - llassert( rowIndex >= 0 && rowIndex < NUM_VALUES_IN_MAT3 ); - - mMatrix[rowIndex][0] = row[0]; - mMatrix[rowIndex][1] = row[1]; - mMatrix[rowIndex][2] = row[2]; - - return *this; -} - -const LLMatrix3& LLMatrix3::setCol( U32 colIndex, const LLVector3& col ) -{ - llassert( colIndex >= 0 && colIndex < NUM_VALUES_IN_MAT3 ); - - mMatrix[0][colIndex] = col[0]; - mMatrix[1][colIndex] = col[1]; - mMatrix[2][colIndex] = col[2]; - - return *this; -} - -const LLMatrix3& LLMatrix3::rotate(const F32 angle, const LLVector3 &vec) -{ - LLMatrix3 mat(angle, vec); - *this *= mat; - return *this; -} - - -const LLMatrix3& LLMatrix3::rotate(const F32 roll, const F32 pitch, const F32 yaw) -{ - LLMatrix3 mat(roll, pitch, yaw); - *this *= mat; - return *this; -} - - -const LLMatrix3& LLMatrix3::rotate(const LLQuaternion &q) -{ - LLMatrix3 mat(q); - *this *= mat; - return *this; -} - -void LLMatrix3::add(const LLMatrix3& other_matrix) -{ - for (S32 i = 0; i < 3; ++i) - { - for (S32 j = 0; j < 3; ++j) - { - mMatrix[i][j] += other_matrix.mMatrix[i][j]; - } - } -} - -LLVector3 LLMatrix3::getFwdRow() const -{ - return LLVector3(mMatrix[VX]); -} - -LLVector3 LLMatrix3::getLeftRow() const -{ - return LLVector3(mMatrix[VY]); -} - -LLVector3 LLMatrix3::getUpRow() const -{ - return LLVector3(mMatrix[VZ]); -} - - - -const LLMatrix3& LLMatrix3::orthogonalize() -{ - LLVector3 x_axis(mMatrix[VX]); - LLVector3 y_axis(mMatrix[VY]); - LLVector3 z_axis(mMatrix[VZ]); - - x_axis.normVec(); - y_axis -= x_axis * (x_axis * y_axis); - y_axis.normVec(); - z_axis = x_axis % y_axis; - setRows(x_axis, y_axis, z_axis); - return (*this); -} - - -// LLMatrix3 Operators - -LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b) -{ - U32 i, j; - LLMatrix3 mat; - for (i = 0; i < NUM_VALUES_IN_MAT3; i++) - { - for (j = 0; j < NUM_VALUES_IN_MAT3; j++) - { - mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + - a.mMatrix[j][1] * b.mMatrix[1][i] + - a.mMatrix[j][2] * b.mMatrix[2][i]; - } - } - return mat; -} - -/* Not implemented to help enforce code consistency with the syntax of - row-major notation. This is a Good Thing. -LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b) -{ - LLVector3 vec; - // matrix operates "from the left" on column vector - vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] + - a.mMatrix[VX][VY] * b.mV[VY] + - a.mMatrix[VX][VZ] * b.mV[VZ]; - - vec.mV[VY] = a.mMatrix[VY][VX] * b.mV[VX] + - a.mMatrix[VY][VY] * b.mV[VY] + - a.mMatrix[VY][VZ] * b.mV[VZ]; - - vec.mV[VZ] = a.mMatrix[VZ][VX] * b.mV[VX] + - a.mMatrix[VZ][VY] * b.mV[VY] + - a.mMatrix[VZ][VZ] * b.mV[VZ]; - return vec; -} -*/ - - -LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b) -{ - // matrix operates "from the right" on row vector - return LLVector3( - a.mV[VX] * b.mMatrix[VX][VX] + - a.mV[VY] * b.mMatrix[VY][VX] + - a.mV[VZ] * b.mMatrix[VZ][VX], - - a.mV[VX] * b.mMatrix[VX][VY] + - a.mV[VY] * b.mMatrix[VY][VY] + - a.mV[VZ] * b.mMatrix[VZ][VY], - - a.mV[VX] * b.mMatrix[VX][VZ] + - a.mV[VY] * b.mMatrix[VY][VZ] + - a.mV[VZ] * b.mMatrix[VZ][VZ] ); -} - -LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b) -{ - // matrix operates "from the right" on row vector - return LLVector3d( - a.mdV[VX] * b.mMatrix[VX][VX] + - a.mdV[VY] * b.mMatrix[VY][VX] + - a.mdV[VZ] * b.mMatrix[VZ][VX], - - a.mdV[VX] * b.mMatrix[VX][VY] + - a.mdV[VY] * b.mMatrix[VY][VY] + - a.mdV[VZ] * b.mMatrix[VZ][VY], - - a.mdV[VX] * b.mMatrix[VX][VZ] + - a.mdV[VY] * b.mMatrix[VY][VZ] + - a.mdV[VZ] * b.mMatrix[VZ][VZ] ); -} - -bool operator==(const LLMatrix3 &a, const LLMatrix3 &b) -{ - U32 i, j; - for (i = 0; i < NUM_VALUES_IN_MAT3; i++) - { - for (j = 0; j < NUM_VALUES_IN_MAT3; j++) - { - if (a.mMatrix[j][i] != b.mMatrix[j][i]) - return false; - } - } - return true; -} - -bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b) -{ - U32 i, j; - for (i = 0; i < NUM_VALUES_IN_MAT3; i++) - { - for (j = 0; j < NUM_VALUES_IN_MAT3; j++) - { - if (a.mMatrix[j][i] != b.mMatrix[j][i]) - return true; - } - } - return false; -} - -const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b) -{ - U32 i, j; - LLMatrix3 mat; - for (i = 0; i < NUM_VALUES_IN_MAT3; i++) - { - for (j = 0; j < NUM_VALUES_IN_MAT3; j++) - { - mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + - a.mMatrix[j][1] * b.mMatrix[1][i] + - a.mMatrix[j][2] * b.mMatrix[2][i]; - } - } - a = mat; - return a; -} - -const LLMatrix3& operator*=(LLMatrix3 &a, F32 scalar ) -{ - for( U32 i = 0; i < NUM_VALUES_IN_MAT3; ++i ) - { - for( U32 j = 0; j < NUM_VALUES_IN_MAT3; ++j ) - { - a.mMatrix[i][j] *= scalar; - } - } - - return a; -} - -std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a) -{ - s << "{ " - << a.mMatrix[VX][VX] << ", " << a.mMatrix[VX][VY] << ", " << a.mMatrix[VX][VZ] << "; " - << a.mMatrix[VY][VX] << ", " << a.mMatrix[VY][VY] << ", " << a.mMatrix[VY][VZ] << "; " - << a.mMatrix[VZ][VX] << ", " << a.mMatrix[VZ][VY] << ", " << a.mMatrix[VZ][VZ] - << " }"; - return s; -} - +/**
+ * @file m3math.cpp
+ * @brief LLMatrix3 class implementation.
+ *
+ * $LicenseInfo:firstyear=2000&license=viewerlgpl$
+ * Second Life Viewer Source Code
+ * Copyright (C) 2010, Linden Research, Inc.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation;
+ * version 2.1 of the License only.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
+ * $/LicenseInfo$
+ */
+
+#include "linden_common.h"
+
+//#include "vmath.h"
+#include "v3math.h"
+#include "v3dmath.h"
+#include "v4math.h"
+#include "m4math.h"
+#include "m3math.h"
+#include "llquaternion.h"
+
+// LLMatrix3
+
+// ji
+// LLMatrix3 = |00 01 02 |
+// |10 11 12 |
+// |20 21 22 |
+
+// LLMatrix3 = |fx fy fz | forward-axis
+// |lx ly lz | left-axis
+// |ux uy uz | up-axis
+
+
+// Constructors
+
+
+LLMatrix3::LLMatrix3(const LLQuaternion &q)
+{
+ setRot(q);
+}
+
+
+LLMatrix3::LLMatrix3(const F32 angle, const LLVector3 &vec)
+{
+ LLQuaternion quat(angle, vec);
+ setRot(quat);
+}
+
+LLMatrix3::LLMatrix3(const F32 angle, const LLVector3d &vec)
+{
+ LLVector3 vec_f;
+ vec_f.setVec(vec);
+ LLQuaternion quat(angle, vec_f);
+ setRot(quat);
+}
+
+LLMatrix3::LLMatrix3(const F32 angle, const LLVector4 &vec)
+{
+ LLQuaternion quat(angle, vec);
+ setRot(quat);
+}
+
+LLMatrix3::LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw)
+{
+ setRot(roll,pitch,yaw);
+}
+
+// From Matrix and Quaternion FAQ
+void LLMatrix3::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const
+{
+ F64 angle_x, angle_y, angle_z;
+ F64 cx, cy, cz; // cosine of angle_x, angle_y, angle_z
+ F64 sx, sz; // sine of angle_x, angle_y, angle_z
+
+ angle_y = asin(llclamp(mMatrix[2][0], -1.f, 1.f));
+ cy = cos(angle_y);
+
+ if (fabs(cy) > 0.005) // non-zero
+ {
+ // no gimbal lock
+ cx = mMatrix[2][2] / cy;
+ sx = - mMatrix[2][1] / cy;
+
+ angle_x = (F32) atan2(sx, cx);
+
+ cz = mMatrix[0][0] / cy;
+ sz = - mMatrix[1][0] / cy;
+
+ angle_z = (F32) atan2(sz, cz);
+ }
+ else
+ {
+ // yup, gimbal lock
+ angle_x = 0;
+
+ // some tricky math thereby avoided, see article
+
+ cz = mMatrix[1][1];
+ sz = mMatrix[0][1];
+
+ angle_z = atan2(sz, cz);
+ }
+
+ *roll = (F32)angle_x;
+ *pitch = (F32)angle_y;
+ *yaw = (F32)angle_z;
+}
+
+
+// Clear and Assignment Functions
+
+const LLMatrix3& LLMatrix3::setIdentity()
+{
+ mMatrix[0][0] = 1.f;
+ mMatrix[0][1] = 0.f;
+ mMatrix[0][2] = 0.f;
+
+ mMatrix[1][0] = 0.f;
+ mMatrix[1][1] = 1.f;
+ mMatrix[1][2] = 0.f;
+
+ mMatrix[2][0] = 0.f;
+ mMatrix[2][1] = 0.f;
+ mMatrix[2][2] = 1.f;
+ return (*this);
+}
+
+const LLMatrix3& LLMatrix3::clear()
+{
+ mMatrix[0][0] = 0.f;
+ mMatrix[0][1] = 0.f;
+ mMatrix[0][2] = 0.f;
+
+ mMatrix[1][0] = 0.f;
+ mMatrix[1][1] = 0.f;
+ mMatrix[1][2] = 0.f;
+
+ mMatrix[2][0] = 0.f;
+ mMatrix[2][1] = 0.f;
+ mMatrix[2][2] = 0.f;
+ return (*this);
+}
+
+const LLMatrix3& LLMatrix3::setZero()
+{
+ mMatrix[0][0] = 0.f;
+ mMatrix[0][1] = 0.f;
+ mMatrix[0][2] = 0.f;
+
+ mMatrix[1][0] = 0.f;
+ mMatrix[1][1] = 0.f;
+ mMatrix[1][2] = 0.f;
+
+ mMatrix[2][0] = 0.f;
+ mMatrix[2][1] = 0.f;
+ mMatrix[2][2] = 0.f;
+ return (*this);
+}
+
+// various useful mMatrix functions
+
+const LLMatrix3& LLMatrix3::transpose()
+{
+ // transpose the matrix
+ F32 temp;
+ temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp;
+ temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp;
+ temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp;
+ return *this;
+}
+
+
+F32 LLMatrix3::determinant() const
+{
+ // Is this a useful method when we assume the matrices are valid rotation
+ // matrices throughout this implementation?
+ return mMatrix[0][0] * (mMatrix[1][1] * mMatrix[2][2] - mMatrix[1][2] * mMatrix[2][1]) +
+ mMatrix[0][1] * (mMatrix[1][2] * mMatrix[2][0] - mMatrix[1][0] * mMatrix[2][2]) +
+ mMatrix[0][2] * (mMatrix[1][0] * mMatrix[2][1] - mMatrix[1][1] * mMatrix[2][0]);
+}
+
+// inverts this matrix
+void LLMatrix3::invert()
+{
+ // fails silently if determinant is zero too small
+ F32 det = determinant();
+ const F32 VERY_SMALL_DETERMINANT = 0.000001f;
+ if (fabs(det) > VERY_SMALL_DETERMINANT)
+ {
+ // invertiable
+ LLMatrix3 t(*this);
+ mMatrix[VX][VX] = ( t.mMatrix[VY][VY] * t.mMatrix[VZ][VZ] - t.mMatrix[VY][VZ] * t.mMatrix[VZ][VY] ) / det;
+ mMatrix[VY][VX] = ( t.mMatrix[VY][VZ] * t.mMatrix[VZ][VX] - t.mMatrix[VY][VX] * t.mMatrix[VZ][VZ] ) / det;
+ mMatrix[VZ][VX] = ( t.mMatrix[VY][VX] * t.mMatrix[VZ][VY] - t.mMatrix[VY][VY] * t.mMatrix[VZ][VX] ) / det;
+ mMatrix[VX][VY] = ( t.mMatrix[VZ][VY] * t.mMatrix[VX][VZ] - t.mMatrix[VZ][VZ] * t.mMatrix[VX][VY] ) / det;
+ mMatrix[VY][VY] = ( t.mMatrix[VZ][VZ] * t.mMatrix[VX][VX] - t.mMatrix[VZ][VX] * t.mMatrix[VX][VZ] ) / det;
+ mMatrix[VZ][VY] = ( t.mMatrix[VZ][VX] * t.mMatrix[VX][VY] - t.mMatrix[VZ][VY] * t.mMatrix[VX][VX] ) / det;
+ mMatrix[VX][VZ] = ( t.mMatrix[VX][VY] * t.mMatrix[VY][VZ] - t.mMatrix[VX][VZ] * t.mMatrix[VY][VY] ) / det;
+ mMatrix[VY][VZ] = ( t.mMatrix[VX][VZ] * t.mMatrix[VY][VX] - t.mMatrix[VX][VX] * t.mMatrix[VY][VZ] ) / det;
+ mMatrix[VZ][VZ] = ( t.mMatrix[VX][VX] * t.mMatrix[VY][VY] - t.mMatrix[VX][VY] * t.mMatrix[VY][VX] ) / det;
+ }
+}
+
+// does not assume a rotation matrix, and does not divide by determinant, assuming results will be renormalized
+const LLMatrix3& LLMatrix3::adjointTranspose()
+{
+ LLMatrix3 adjoint_transpose;
+ adjoint_transpose.mMatrix[VX][VX] = mMatrix[VY][VY] * mMatrix[VZ][VZ] - mMatrix[VY][VZ] * mMatrix[VZ][VY] ;
+ adjoint_transpose.mMatrix[VY][VX] = mMatrix[VY][VZ] * mMatrix[VZ][VX] - mMatrix[VY][VX] * mMatrix[VZ][VZ] ;
+ adjoint_transpose.mMatrix[VZ][VX] = mMatrix[VY][VX] * mMatrix[VZ][VY] - mMatrix[VY][VY] * mMatrix[VZ][VX] ;
+ adjoint_transpose.mMatrix[VX][VY] = mMatrix[VZ][VY] * mMatrix[VX][VZ] - mMatrix[VZ][VZ] * mMatrix[VX][VY] ;
+ adjoint_transpose.mMatrix[VY][VY] = mMatrix[VZ][VZ] * mMatrix[VX][VX] - mMatrix[VZ][VX] * mMatrix[VX][VZ] ;
+ adjoint_transpose.mMatrix[VZ][VY] = mMatrix[VZ][VX] * mMatrix[VX][VY] - mMatrix[VZ][VY] * mMatrix[VX][VX] ;
+ adjoint_transpose.mMatrix[VX][VZ] = mMatrix[VX][VY] * mMatrix[VY][VZ] - mMatrix[VX][VZ] * mMatrix[VY][VY] ;
+ adjoint_transpose.mMatrix[VY][VZ] = mMatrix[VX][VZ] * mMatrix[VY][VX] - mMatrix[VX][VX] * mMatrix[VY][VZ] ;
+ adjoint_transpose.mMatrix[VZ][VZ] = mMatrix[VX][VX] * mMatrix[VY][VY] - mMatrix[VX][VY] * mMatrix[VY][VX] ;
+
+ *this = adjoint_transpose;
+ return *this;
+}
+
+// SJB: This code is correct for a logicly stored (non-transposed) matrix;
+// Our matrices are stored transposed, OpenGL style, so this generates the
+// INVERSE quaternion (-x, -y, -z, w)!
+// Because we use similar logic in LLQuaternion::getMatrix3,
+// we are internally consistant so everything works OK :)
+LLQuaternion LLMatrix3::quaternion() const
+{
+ LLQuaternion quat;
+ F32 tr, s, q[4];
+ U32 i, j, k;
+ U32 nxt[3] = {1, 2, 0};
+
+ tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2];
+
+ // check the diagonal
+ if (tr > 0.f)
+ {
+ s = (F32)sqrt (tr + 1.f);
+ quat.mQ[VS] = s / 2.f;
+ s = 0.5f / s;
+ quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s;
+ quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s;
+ quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s;
+ }
+ else
+ {
+ // diagonal is negative
+ i = 0;
+ if (mMatrix[1][1] > mMatrix[0][0])
+ i = 1;
+ if (mMatrix[2][2] > mMatrix[i][i])
+ i = 2;
+
+ j = nxt[i];
+ k = nxt[j];
+
+
+ s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f);
+
+ q[i] = s * 0.5f;
+
+ if (s != 0.f)
+ s = 0.5f / s;
+
+ q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s;
+ q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s;
+ q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s;
+
+ quat.setQuat(q);
+ }
+ return quat;
+}
+
+const LLMatrix3& LLMatrix3::setRot(const F32 angle, const LLVector3 &vec)
+{
+ setRot(LLQuaternion(angle, vec));
+ return *this;
+}
+
+const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 yaw)
+{
+ // Rotates RH about x-axis by 'roll' then
+ // rotates RH about the old y-axis by 'pitch' then
+ // rotates RH about the original z-axis by 'yaw'.
+ // .
+ // /|\ yaw axis
+ // | __.
+ // ._ ___| /| pitch axis
+ // _||\ \\ |-. /
+ // \|| \_______\_|__\_/_______
+ // | _ _ o o o_o_o_o o /_\_ ________\ roll axis
+ // // /_______/ /__________> /
+ // /_,-' // /
+ // /__,-'
+
+ F32 cx, sx, cy, sy, cz, sz;
+ F32 cxsy, sxsy;
+
+ cx = (F32)cos(roll); //A
+ sx = (F32)sin(roll); //B
+ cy = (F32)cos(pitch); //C
+ sy = (F32)sin(pitch); //D
+ cz = (F32)cos(yaw); //E
+ sz = (F32)sin(yaw); //F
+
+ cxsy = cx * sy; //AD
+ sxsy = sx * sy; //BD
+
+ mMatrix[0][0] = cy * cz;
+ mMatrix[1][0] = -cy * sz;
+ mMatrix[2][0] = sy;
+ mMatrix[0][1] = sxsy * cz + cx * sz;
+ mMatrix[1][1] = -sxsy * sz + cx * cz;
+ mMatrix[2][1] = -sx * cy;
+ mMatrix[0][2] = -cxsy * cz + sx * sz;
+ mMatrix[1][2] = cxsy * sz + sx * cz;
+ mMatrix[2][2] = cx * cy;
+ return *this;
+}
+
+
+const LLMatrix3& LLMatrix3::setRot(const LLQuaternion &q)
+{
+ *this = q.getMatrix3();
+ return *this;
+}
+
+const LLMatrix3& LLMatrix3::setRows(const LLVector3 &fwd, const LLVector3 &left, const LLVector3 &up)
+{
+ mMatrix[0][0] = fwd.mV[0];
+ mMatrix[0][1] = fwd.mV[1];
+ mMatrix[0][2] = fwd.mV[2];
+
+ mMatrix[1][0] = left.mV[0];
+ mMatrix[1][1] = left.mV[1];
+ mMatrix[1][2] = left.mV[2];
+
+ mMatrix[2][0] = up.mV[0];
+ mMatrix[2][1] = up.mV[1];
+ mMatrix[2][2] = up.mV[2];
+
+ return *this;
+}
+
+const LLMatrix3& LLMatrix3::setRow( U32 rowIndex, const LLVector3& row )
+{
+ llassert( rowIndex >= 0 && rowIndex < NUM_VALUES_IN_MAT3 );
+
+ mMatrix[rowIndex][0] = row[0];
+ mMatrix[rowIndex][1] = row[1];
+ mMatrix[rowIndex][2] = row[2];
+
+ return *this;
+}
+
+const LLMatrix3& LLMatrix3::setCol( U32 colIndex, const LLVector3& col )
+{
+ llassert( colIndex >= 0 && colIndex < NUM_VALUES_IN_MAT3 );
+
+ mMatrix[0][colIndex] = col[0];
+ mMatrix[1][colIndex] = col[1];
+ mMatrix[2][colIndex] = col[2];
+
+ return *this;
+}
+
+const LLMatrix3& LLMatrix3::rotate(const F32 angle, const LLVector3 &vec)
+{
+ LLMatrix3 mat(angle, vec);
+ *this *= mat;
+ return *this;
+}
+
+
+const LLMatrix3& LLMatrix3::rotate(const F32 roll, const F32 pitch, const F32 yaw)
+{
+ LLMatrix3 mat(roll, pitch, yaw);
+ *this *= mat;
+ return *this;
+}
+
+
+const LLMatrix3& LLMatrix3::rotate(const LLQuaternion &q)
+{
+ LLMatrix3 mat(q);
+ *this *= mat;
+ return *this;
+}
+
+void LLMatrix3::add(const LLMatrix3& other_matrix)
+{
+ for (S32 i = 0; i < 3; ++i)
+ {
+ for (S32 j = 0; j < 3; ++j)
+ {
+ mMatrix[i][j] += other_matrix.mMatrix[i][j];
+ }
+ }
+}
+
+LLVector3 LLMatrix3::getFwdRow() const
+{
+ return LLVector3(mMatrix[VX]);
+}
+
+LLVector3 LLMatrix3::getLeftRow() const
+{
+ return LLVector3(mMatrix[VY]);
+}
+
+LLVector3 LLMatrix3::getUpRow() const
+{
+ return LLVector3(mMatrix[VZ]);
+}
+
+
+
+const LLMatrix3& LLMatrix3::orthogonalize()
+{
+ LLVector3 x_axis(mMatrix[VX]);
+ LLVector3 y_axis(mMatrix[VY]);
+ LLVector3 z_axis(mMatrix[VZ]);
+
+ x_axis.normVec();
+ y_axis -= x_axis * (x_axis * y_axis);
+ y_axis.normVec();
+ z_axis = x_axis % y_axis;
+ setRows(x_axis, y_axis, z_axis);
+ return (*this);
+}
+
+
+// LLMatrix3 Operators
+
+LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b)
+{
+ U32 i, j;
+ LLMatrix3 mat;
+ for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
+ {
+ for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
+ {
+ mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] +
+ a.mMatrix[j][1] * b.mMatrix[1][i] +
+ a.mMatrix[j][2] * b.mMatrix[2][i];
+ }
+ }
+ return mat;
+}
+
+/* Not implemented to help enforce code consistency with the syntax of
+ row-major notation. This is a Good Thing.
+LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b)
+{
+ LLVector3 vec;
+ // matrix operates "from the left" on column vector
+ vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] +
+ a.mMatrix[VX][VY] * b.mV[VY] +
+ a.mMatrix[VX][VZ] * b.mV[VZ];
+
+ vec.mV[VY] = a.mMatrix[VY][VX] * b.mV[VX] +
+ a.mMatrix[VY][VY] * b.mV[VY] +
+ a.mMatrix[VY][VZ] * b.mV[VZ];
+
+ vec.mV[VZ] = a.mMatrix[VZ][VX] * b.mV[VX] +
+ a.mMatrix[VZ][VY] * b.mV[VY] +
+ a.mMatrix[VZ][VZ] * b.mV[VZ];
+ return vec;
+}
+*/
+
+
+LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b)
+{
+ // matrix operates "from the right" on row vector
+ return LLVector3(
+ a.mV[VX] * b.mMatrix[VX][VX] +
+ a.mV[VY] * b.mMatrix[VY][VX] +
+ a.mV[VZ] * b.mMatrix[VZ][VX],
+
+ a.mV[VX] * b.mMatrix[VX][VY] +
+ a.mV[VY] * b.mMatrix[VY][VY] +
+ a.mV[VZ] * b.mMatrix[VZ][VY],
+
+ a.mV[VX] * b.mMatrix[VX][VZ] +
+ a.mV[VY] * b.mMatrix[VY][VZ] +
+ a.mV[VZ] * b.mMatrix[VZ][VZ] );
+}
+
+LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b)
+{
+ // matrix operates "from the right" on row vector
+ return LLVector3d(
+ a.mdV[VX] * b.mMatrix[VX][VX] +
+ a.mdV[VY] * b.mMatrix[VY][VX] +
+ a.mdV[VZ] * b.mMatrix[VZ][VX],
+
+ a.mdV[VX] * b.mMatrix[VX][VY] +
+ a.mdV[VY] * b.mMatrix[VY][VY] +
+ a.mdV[VZ] * b.mMatrix[VZ][VY],
+
+ a.mdV[VX] * b.mMatrix[VX][VZ] +
+ a.mdV[VY] * b.mMatrix[VY][VZ] +
+ a.mdV[VZ] * b.mMatrix[VZ][VZ] );
+}
+
+bool operator==(const LLMatrix3 &a, const LLMatrix3 &b)
+{
+ U32 i, j;
+ for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
+ {
+ for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
+ {
+ if (a.mMatrix[j][i] != b.mMatrix[j][i])
+ return false;
+ }
+ }
+ return true;
+}
+
+bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b)
+{
+ U32 i, j;
+ for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
+ {
+ for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
+ {
+ if (a.mMatrix[j][i] != b.mMatrix[j][i])
+ return true;
+ }
+ }
+ return false;
+}
+
+const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b)
+{
+ U32 i, j;
+ LLMatrix3 mat;
+ for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
+ {
+ for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
+ {
+ mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] +
+ a.mMatrix[j][1] * b.mMatrix[1][i] +
+ a.mMatrix[j][2] * b.mMatrix[2][i];
+ }
+ }
+ a = mat;
+ return a;
+}
+
+const LLMatrix3& operator*=(LLMatrix3 &a, F32 scalar )
+{
+ for( U32 i = 0; i < NUM_VALUES_IN_MAT3; ++i )
+ {
+ for( U32 j = 0; j < NUM_VALUES_IN_MAT3; ++j )
+ {
+ a.mMatrix[i][j] *= scalar;
+ }
+ }
+
+ return a;
+}
+
+std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a)
+{
+ s << "{ "
+ << a.mMatrix[VX][VX] << ", " << a.mMatrix[VX][VY] << ", " << a.mMatrix[VX][VZ] << "; "
+ << a.mMatrix[VY][VX] << ", " << a.mMatrix[VY][VY] << ", " << a.mMatrix[VY][VZ] << "; "
+ << a.mMatrix[VZ][VX] << ", " << a.mMatrix[VZ][VY] << ", " << a.mMatrix[VZ][VZ]
+ << " }";
+ return s;
+}
+
|