diff options
Diffstat (limited to 'indra/llmath/m3math.cpp')
-rw-r--r-- | indra/llmath/m3math.cpp | 530 |
1 files changed, 530 insertions, 0 deletions
diff --git a/indra/llmath/m3math.cpp b/indra/llmath/m3math.cpp new file mode 100644 index 0000000000..523acb4dcf --- /dev/null +++ b/indra/llmath/m3math.cpp @@ -0,0 +1,530 @@ +/** + * @file m3math.cpp + * @brief LLMatrix3 class implementation. + * + * Copyright (c) 2000-$CurrentYear$, Linden Research, Inc. + * $License$ + */ + +#include "linden_common.h" + +//#include "vmath.h" +#include "v3math.h" +#include "v3dmath.h" +#include "v4math.h" +#include "m4math.h" +#include "m3math.h" +#include "llquaternion.h" + +// LLMatrix3 + +// ji +// LLMatrix3 = |00 01 02 | +// |10 11 12 | +// |20 21 22 | + +// LLMatrix3 = |fx fy fz | forward-axis +// |lx ly lz | left-axis +// |ux uy uz | up-axis + + +// Constructors + + +LLMatrix3::LLMatrix3(const LLQuaternion &q) +{ + *this = q.getMatrix3(); +} + + +LLMatrix3::LLMatrix3(const F32 angle, const LLVector3 &vec) +{ + LLQuaternion quat(angle, vec); + *this = setRot(quat); +} + +LLMatrix3::LLMatrix3(const F32 angle, const LLVector3d &vec) +{ + LLVector3 vec_f; + vec_f.setVec(vec); + LLQuaternion quat(angle, vec_f); + *this = setRot(quat); +} + +LLMatrix3::LLMatrix3(const F32 angle, const LLVector4 &vec) +{ + LLQuaternion quat(angle, vec); + *this = setRot(quat); +} + +LLMatrix3::LLMatrix3(const F32 angle, const F32 x, const F32 y, const F32 z) +{ + LLVector3 vec(x, y, z); + LLQuaternion quat(angle, vec); + *this = setRot(quat); +} + +LLMatrix3::LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw) +{ + // Rotates RH about x-axis by 'roll' then + // rotates RH about the old y-axis by 'pitch' then + // rotates RH about the original z-axis by 'yaw'. + // . + // /|\ yaw axis + // | __. + // ._ ___| /| pitch axis + // _||\ \\ |-. / + // \|| \_______\_|__\_/_______ + // | _ _ o o o_o_o_o o /_\_ ________\ roll axis + // // /_______/ /__________> / + // /_,-' // / + // /__,-' + + F32 cx, sx, cy, sy, cz, sz; + F32 cxsy, sxsy; + + cx = (F32)cos(roll); //A + sx = (F32)sin(roll); //B + cy = (F32)cos(pitch); //C + sy = (F32)sin(pitch); //D + cz = (F32)cos(yaw); //E + sz = (F32)sin(yaw); //F + + cxsy = cx * sy; //AD + sxsy = sx * sy; //BD + + mMatrix[0][0] = cy * cz; + mMatrix[1][0] = -cy * sz; + mMatrix[2][0] = sy; + mMatrix[0][1] = sxsy * cz + cx * sz; + mMatrix[1][1] = -sxsy * sz + cx * cz; + mMatrix[2][1] = -sx * cy; + mMatrix[0][2] = -cxsy * cz + sx * sz; + mMatrix[1][2] = cxsy * sz + sx * cz; + mMatrix[2][2] = cx * cy; +} + +// From Matrix and Quaternion FAQ +void LLMatrix3::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const +{ + F64 angle_x, angle_y, angle_z; + F64 cx, cy, cz; // cosine of angle_x, angle_y, angle_z + F64 sx, sz; // sine of angle_x, angle_y, angle_z + + angle_y = asin(llclamp(mMatrix[2][0], -1.f, 1.f)); + cy = cos(angle_y); + + if (fabs(cy) > 0.005) // non-zero + { + // no gimbal lock + cx = mMatrix[2][2] / cy; + sx = - mMatrix[2][1] / cy; + + angle_x = (F32) atan2(sx, cx); + + cz = mMatrix[0][0] / cy; + sz = - mMatrix[1][0] / cy; + + angle_z = (F32) atan2(sz, cz); + } + else + { + // yup, gimbal lock + angle_x = 0; + + // some tricky math thereby avoided, see article + + cz = mMatrix[1][1]; + sz = mMatrix[0][1]; + + angle_z = atan2(sz, cz); + } + + *roll = (F32)angle_x; + *pitch = (F32)angle_y; + *yaw = (F32)angle_z; +} + + +// Clear and Assignment Functions + +const LLMatrix3& LLMatrix3::identity() +{ + mMatrix[0][0] = 1.f; + mMatrix[0][1] = 0.f; + mMatrix[0][2] = 0.f; + + mMatrix[1][0] = 0.f; + mMatrix[1][1] = 1.f; + mMatrix[1][2] = 0.f; + + mMatrix[2][0] = 0.f; + mMatrix[2][1] = 0.f; + mMatrix[2][2] = 1.f; + return (*this); +} + +const LLMatrix3& LLMatrix3::zero() +{ + mMatrix[0][0] = 0.f; + mMatrix[0][1] = 0.f; + mMatrix[0][2] = 0.f; + + mMatrix[1][0] = 0.f; + mMatrix[1][1] = 0.f; + mMatrix[1][2] = 0.f; + + mMatrix[2][0] = 0.f; + mMatrix[2][1] = 0.f; + mMatrix[2][2] = 0.f; + return (*this); +} + +// various useful mMatrix functions + +const LLMatrix3& LLMatrix3::transpose() +{ + // transpose the matrix + F32 temp; + temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp; + temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp; + temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp; + return *this; +} + + +F32 LLMatrix3::determinant() const +{ + // Is this a useful method when we assume the matrices are valid rotation + // matrices throughout this implementation? + return mMatrix[0][0] * (mMatrix[1][1] * mMatrix[2][2] - mMatrix[1][2] * mMatrix[2][1]) + + mMatrix[0][1] * (mMatrix[1][2] * mMatrix[2][0] - mMatrix[1][0] * mMatrix[2][2]) + + mMatrix[0][2] * (mMatrix[1][0] * mMatrix[2][1] - mMatrix[1][1] * mMatrix[2][0]); +} + +// This is identical to the transMat3() method because we assume a rotation matrix +const LLMatrix3& LLMatrix3::invert() +{ + // transpose the matrix + F32 temp; + temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp; + temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp; + temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp; + return *this; +} + +// does not assume a rotation matrix, and does not divide by determinant, assuming results will be renormalized +const LLMatrix3& LLMatrix3::adjointTranspose() +{ + LLMatrix3 adjoint_transpose; + adjoint_transpose.mMatrix[VX][VX] = mMatrix[VY][VY] * mMatrix[VZ][VZ] - mMatrix[VY][VZ] * mMatrix[VZ][VY] ; + adjoint_transpose.mMatrix[VY][VX] = mMatrix[VY][VZ] * mMatrix[VZ][VX] - mMatrix[VY][VX] * mMatrix[VZ][VZ] ; + adjoint_transpose.mMatrix[VZ][VX] = mMatrix[VY][VX] * mMatrix[VZ][VY] - mMatrix[VY][VY] * mMatrix[VZ][VX] ; + adjoint_transpose.mMatrix[VX][VY] = mMatrix[VZ][VY] * mMatrix[VX][VZ] - mMatrix[VZ][VZ] * mMatrix[VX][VY] ; + adjoint_transpose.mMatrix[VY][VY] = mMatrix[VZ][VZ] * mMatrix[VX][VX] - mMatrix[VZ][VX] * mMatrix[VX][VZ] ; + adjoint_transpose.mMatrix[VZ][VY] = mMatrix[VZ][VX] * mMatrix[VX][VY] - mMatrix[VZ][VY] * mMatrix[VX][VX] ; + adjoint_transpose.mMatrix[VX][VZ] = mMatrix[VX][VY] * mMatrix[VY][VZ] - mMatrix[VX][VZ] * mMatrix[VY][VY] ; + adjoint_transpose.mMatrix[VY][VZ] = mMatrix[VX][VZ] * mMatrix[VY][VX] - mMatrix[VX][VX] * mMatrix[VY][VZ] ; + adjoint_transpose.mMatrix[VZ][VZ] = mMatrix[VX][VX] * mMatrix[VY][VY] - mMatrix[VX][VY] * mMatrix[VY][VX] ; + + *this = adjoint_transpose; + return *this; +} + +// SJB: This code is correct for a logicly stored (non-transposed) matrix; +// Our matrices are stored transposed, OpenGL style, so this generates the +// INVERSE quaternion (-x, -y, -z, w)! +// Because we use similar logic in LLQuaternion::getMatrix3, +// we are internally consistant so everything works OK :) +LLQuaternion LLMatrix3::quaternion() const +{ + LLQuaternion quat; + F32 tr, s, q[4]; + U32 i, j, k; + U32 nxt[3] = {1, 2, 0}; + + tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2]; + + // check the diagonal + if (tr > 0.f) + { + s = (F32)sqrt (tr + 1.f); + quat.mQ[VS] = s / 2.f; + s = 0.5f / s; + quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s; + quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s; + quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s; + } + else + { + // diagonal is negative + i = 0; + if (mMatrix[1][1] > mMatrix[0][0]) + i = 1; + if (mMatrix[2][2] > mMatrix[i][i]) + i = 2; + + j = nxt[i]; + k = nxt[j]; + + + s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f); + + q[i] = s * 0.5f; + + if (s != 0.f) + s = 0.5f / s; + + q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s; + q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s; + q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s; + + quat.setQuat(q); + } + return quat; +} + + +// These functions take Rotation arguments +const LLMatrix3& LLMatrix3::setRot(const F32 angle, const F32 x, const F32 y, const F32 z) +{ + LLMatrix3 mat(angle, x, y, z); + *this = mat; + return *this; +} + +const LLMatrix3& LLMatrix3::setRot(const F32 angle, const LLVector3 &vec) +{ + LLMatrix3 mat(angle, vec); + *this = mat; + return *this; +} + +const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 yaw) +{ + LLMatrix3 mat(roll, pitch, yaw); + *this = mat; + return *this; +} + + +const LLMatrix3& LLMatrix3::setRot(const LLQuaternion &q) +{ + LLMatrix3 mat(q); + *this = mat; + return *this; +} + + +const LLMatrix3& LLMatrix3::setRows(const LLVector3 &fwd, const LLVector3 &left, const LLVector3 &up) +{ + mMatrix[0][0] = fwd.mV[0]; + mMatrix[0][1] = fwd.mV[1]; + mMatrix[0][2] = fwd.mV[2]; + + mMatrix[1][0] = left.mV[0]; + mMatrix[1][1] = left.mV[1]; + mMatrix[1][2] = left.mV[2]; + + mMatrix[2][0] = up.mV[0]; + mMatrix[2][1] = up.mV[1]; + mMatrix[2][2] = up.mV[2]; + + return *this; +} + + +// Rotate exisitng mMatrix +const LLMatrix3& LLMatrix3::rotate(const F32 angle, const F32 x, const F32 y, const F32 z) +{ + LLMatrix3 mat(angle, x, y, z); + *this *= mat; + return *this; +} + + +const LLMatrix3& LLMatrix3::rotate(const F32 angle, const LLVector3 &vec) +{ + LLMatrix3 mat(angle, vec); + *this *= mat; + return *this; +} + + +const LLMatrix3& LLMatrix3::rotate(const F32 roll, const F32 pitch, const F32 yaw) +{ + LLMatrix3 mat(roll, pitch, yaw); + *this *= mat; + return *this; +} + + +const LLMatrix3& LLMatrix3::rotate(const LLQuaternion &q) +{ + LLMatrix3 mat(q); + *this *= mat; + return *this; +} + + +LLVector3 LLMatrix3::getFwdRow() const +{ + return LLVector3(mMatrix[VX]); +} + +LLVector3 LLMatrix3::getLeftRow() const +{ + return LLVector3(mMatrix[VY]); +} + +LLVector3 LLMatrix3::getUpRow() const +{ + return LLVector3(mMatrix[VZ]); +} + + + +const LLMatrix3& LLMatrix3::orthogonalize() +{ + LLVector3 x_axis(mMatrix[VX]); + LLVector3 y_axis(mMatrix[VY]); + LLVector3 z_axis(mMatrix[VZ]); + + x_axis.normVec(); + y_axis -= x_axis * (x_axis * y_axis); + y_axis.normVec(); + z_axis = x_axis % y_axis; + setRows(x_axis, y_axis, z_axis); + return (*this); +} + + +// LLMatrix3 Operators + +LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b) +{ + U32 i, j; + LLMatrix3 mat; + for (i = 0; i < NUM_VALUES_IN_MAT3; i++) + { + for (j = 0; j < NUM_VALUES_IN_MAT3; j++) + { + mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + + a.mMatrix[j][1] * b.mMatrix[1][i] + + a.mMatrix[j][2] * b.mMatrix[2][i]; + } + } + return mat; +} + +/* Not implemented to help enforce code consistency with the syntax of + row-major notation. This is a Good Thing. +LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b) +{ + LLVector3 vec; + // matrix operates "from the left" on column vector + vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] + + a.mMatrix[VX][VY] * b.mV[VY] + + a.mMatrix[VX][VZ] * b.mV[VZ]; + + vec.mV[VY] = a.mMatrix[VY][VX] * b.mV[VX] + + a.mMatrix[VY][VY] * b.mV[VY] + + a.mMatrix[VY][VZ] * b.mV[VZ]; + + vec.mV[VZ] = a.mMatrix[VZ][VX] * b.mV[VX] + + a.mMatrix[VZ][VY] * b.mV[VY] + + a.mMatrix[VZ][VZ] * b.mV[VZ]; + return vec; +} +*/ + + +LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b) +{ + // matrix operates "from the right" on row vector + return LLVector3( + a.mV[VX] * b.mMatrix[VX][VX] + + a.mV[VY] * b.mMatrix[VY][VX] + + a.mV[VZ] * b.mMatrix[VZ][VX], + + a.mV[VX] * b.mMatrix[VX][VY] + + a.mV[VY] * b.mMatrix[VY][VY] + + a.mV[VZ] * b.mMatrix[VZ][VY], + + a.mV[VX] * b.mMatrix[VX][VZ] + + a.mV[VY] * b.mMatrix[VY][VZ] + + a.mV[VZ] * b.mMatrix[VZ][VZ] ); +} + +LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b) +{ + // matrix operates "from the right" on row vector + return LLVector3d( + a.mdV[VX] * b.mMatrix[VX][VX] + + a.mdV[VY] * b.mMatrix[VY][VX] + + a.mdV[VZ] * b.mMatrix[VZ][VX], + + a.mdV[VX] * b.mMatrix[VX][VY] + + a.mdV[VY] * b.mMatrix[VY][VY] + + a.mdV[VZ] * b.mMatrix[VZ][VY], + + a.mdV[VX] * b.mMatrix[VX][VZ] + + a.mdV[VY] * b.mMatrix[VY][VZ] + + a.mdV[VZ] * b.mMatrix[VZ][VZ] ); +} + +bool operator==(const LLMatrix3 &a, const LLMatrix3 &b) +{ + U32 i, j; + for (i = 0; i < NUM_VALUES_IN_MAT3; i++) + { + for (j = 0; j < NUM_VALUES_IN_MAT3; j++) + { + if (a.mMatrix[j][i] != b.mMatrix[j][i]) + return FALSE; + } + } + return TRUE; +} + +bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b) +{ + U32 i, j; + for (i = 0; i < NUM_VALUES_IN_MAT3; i++) + { + for (j = 0; j < NUM_VALUES_IN_MAT3; j++) + { + if (a.mMatrix[j][i] != b.mMatrix[j][i]) + return TRUE; + } + } + return FALSE; +} + +const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b) +{ + U32 i, j; + LLMatrix3 mat; + for (i = 0; i < NUM_VALUES_IN_MAT3; i++) + { + for (j = 0; j < NUM_VALUES_IN_MAT3; j++) + { + mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + + a.mMatrix[j][1] * b.mMatrix[1][i] + + a.mMatrix[j][2] * b.mMatrix[2][i]; + } + } + a = mat; + return a; +} + +std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a) +{ + s << "{ " + << a.mMatrix[VX][VX] << ", " << a.mMatrix[VX][VY] << ", " << a.mMatrix[VX][VZ] << "; " + << a.mMatrix[VY][VX] << ", " << a.mMatrix[VY][VY] << ", " << a.mMatrix[VY][VZ] << "; " + << a.mMatrix[VZ][VX] << ", " << a.mMatrix[VZ][VY] << ", " << a.mMatrix[VZ][VZ] + << " }"; + return s; +} + |