diff options
Diffstat (limited to 'indra/llmath/llvolume.cpp')
-rw-r--r-- | indra/llmath/llvolume.cpp | 1514 |
1 files changed, 459 insertions, 1055 deletions
diff --git a/indra/llmath/llvolume.cpp b/indra/llmath/llvolume.cpp index f503eea107..602f2c29e5 100644 --- a/indra/llmath/llvolume.cpp +++ b/indra/llmath/llvolume.cpp @@ -94,6 +94,8 @@ const S32 SCULPT_MIN_AREA_DETAIL = 1; extern BOOL gDebugGL; +bool less_than_max_mag(const LLVector4a& vec); + BOOL check_same_clock_dir( const LLVector3& pt1, const LLVector3& pt2, const LLVector3& pt3, const LLVector3& norm) { LLVector3 test = (pt2-pt1)%(pt3-pt2); @@ -474,7 +476,7 @@ void LLProfile::genNGon(const LLProfileParams& params, S32 sides, F32 offset, F3 const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f }; F32 scale = 0.5f; F32 t, t_step, t_first, t_fraction, ang, ang_step; - LLVector3 pt1,pt2; + LLVector4a pt1,pt2; F32 begin = params.getBegin(); F32 end = params.getEnd(); @@ -497,20 +499,21 @@ void LLProfile::genNGon(const LLProfileParams& params, S32 sides, F32 offset, F3 // Starting t and ang values for the first face t = t_first; ang = 2.0f*F_PI*(t*ang_scale + offset); - pt1.setVec(cos(ang)*scale,sin(ang)*scale, t); + pt1.set(cos(ang)*scale,sin(ang)*scale, t); // Increment to the next point. // pt2 is the end point on the fractional face t += t_step; ang += ang_step; - pt2.setVec(cos(ang)*scale,sin(ang)*scale,t); + pt2.set(cos(ang)*scale,sin(ang)*scale,t); t_fraction = (begin - t_first)*sides; // Only use if it's not almost exactly on an edge. if (t_fraction < 0.9999f) { - LLVector3 new_pt = lerp(pt1, pt2, t_fraction); + LLVector4a new_pt; + new_pt.setLerp(pt1, pt2, t_fraction); mProfile.push_back(new_pt); } @@ -518,12 +521,17 @@ void LLProfile::genNGon(const LLProfileParams& params, S32 sides, F32 offset, F3 while (t < end) { // Iterate through all the integer steps of t. - pt1.setVec(cos(ang)*scale,sin(ang)*scale,t); + pt1.set(cos(ang)*scale,sin(ang)*scale,t); if (mProfile.size() > 0) { - LLVector3 p = mProfile[mProfile.size()-1]; + LLVector4a p = mProfile[mProfile.size()-1]; for (S32 i = 0; i < split && mProfile.size() > 0; i++) { - mProfile.push_back(p+(pt1-p) * 1.0f/(float)(split+1) * (float)(i+1)); + //mProfile.push_back(p+(pt1-p) * 1.0f/(float)(split+1) * (float)(i+1)); + LLVector4a new_pt; + new_pt.setSub(pt1, p); + new_pt.mul(1.0f/(float)(split+1) * (float)(i+1)); + new_pt.add(p); + mProfile.push_back(new_pt); } } mProfile.push_back(pt1); @@ -536,18 +544,25 @@ void LLProfile::genNGon(const LLProfileParams& params, S32 sides, F32 offset, F3 // pt1 is the first point on the fractional face // pt2 is the end point on the fractional face - pt2.setVec(cos(ang)*scale,sin(ang)*scale,t); + pt2.set(cos(ang)*scale,sin(ang)*scale,t); // Find the fraction that we need to add to the end point. t_fraction = (end - (t - t_step))*sides; if (t_fraction > 0.0001f) { - LLVector3 new_pt = lerp(pt1, pt2, t_fraction); + LLVector4a new_pt; + new_pt.setLerp(pt1, pt2, t_fraction); if (mProfile.size() > 0) { - LLVector3 p = mProfile[mProfile.size()-1]; + LLVector4a p = mProfile[mProfile.size()-1]; for (S32 i = 0; i < split && mProfile.size() > 0; i++) { - mProfile.push_back(p+(new_pt-p) * 1.0f/(float)(split+1) * (float)(i+1)); + //mProfile.push_back(p+(new_pt-p) * 1.0f/(float)(split+1) * (float)(i+1)); + + LLVector4a pt1; + pt1.setSub(new_pt, p); + pt1.mul(1.0f/(float)(split+1) * (float)(i+1)); + pt1.add(p); + mProfile.push_back(pt1); } } mProfile.push_back(new_pt); @@ -568,7 +583,7 @@ void LLProfile::genNGon(const LLProfileParams& params, S32 sides, F32 offset, F3 if (params.getHollow() <= 0) { // put center point if not hollow. - mProfile.push_back(LLVector3(0,0,0)); + mProfile.push_back(LLVector4a(0,0,0)); } } else @@ -581,103 +596,6 @@ void LLProfile::genNGon(const LLProfileParams& params, S32 sides, F32 offset, F3 mTotal = mProfile.size(); } -void LLProfile::genNormals(const LLProfileParams& params) -{ - S32 count = mProfile.size(); - - S32 outer_count; - if (mTotalOut) - { - outer_count = mTotalOut; - } - else - { - outer_count = mTotal / 2; - } - - mEdgeNormals.resize(count * 2); - mEdgeCenters.resize(count * 2); - mNormals.resize(count); - - LLVector2 pt0,pt1; - - BOOL hollow = (params.getHollow() > 0); - - S32 i0, i1, i2, i3, i4; - - // Parametrically generate normal - for (i2 = 0; i2 < count; i2++) - { - mNormals[i2].mV[0] = mProfile[i2].mV[0]; - mNormals[i2].mV[1] = mProfile[i2].mV[1]; - if (hollow && (i2 >= outer_count)) - { - mNormals[i2] *= -1.f; - } - if (mNormals[i2].magVec() < 0.001) - { - // Special case for point at center, get adjacent points. - i1 = (i2 - 1) >= 0 ? i2 - 1 : count - 1; - i0 = (i1 - 1) >= 0 ? i1 - 1 : count - 1; - i3 = (i2 + 1) < count ? i2 + 1 : 0; - i4 = (i3 + 1) < count ? i3 + 1 : 0; - - pt0.setVec(mProfile[i1].mV[VX] + mProfile[i1].mV[VX] - mProfile[i0].mV[VX], - mProfile[i1].mV[VY] + mProfile[i1].mV[VY] - mProfile[i0].mV[VY]); - pt1.setVec(mProfile[i3].mV[VX] + mProfile[i3].mV[VX] - mProfile[i4].mV[VX], - mProfile[i3].mV[VY] + mProfile[i3].mV[VY] - mProfile[i4].mV[VY]); - - mNormals[i2] = pt0 + pt1; - mNormals[i2] *= 0.5f; - } - mNormals[i2].normVec(); - } - - S32 num_normal_sets = isConcave() ? 2 : 1; - for (S32 normal_set = 0; normal_set < num_normal_sets; normal_set++) - { - S32 point_num; - for (point_num = 0; point_num < mTotal; point_num++) - { - LLVector3 point_1 = mProfile[point_num]; - point_1.mV[VZ] = 0.f; - - LLVector3 point_2; - - if (isConcave() && normal_set == 0 && point_num == (mTotal - 1) / 2) - { - point_2 = mProfile[mTotal - 1]; - } - else if (isConcave() && normal_set == 1 && point_num == mTotal - 1) - { - point_2 = mProfile[(mTotal - 1) / 2]; - } - else - { - LLVector3 delta_pos; - S32 neighbor_point = (point_num + 1) % mTotal; - while(delta_pos.magVecSquared() < 0.01f * 0.01f) - { - point_2 = mProfile[neighbor_point]; - delta_pos = point_2 - point_1; - neighbor_point = (neighbor_point + 1) % mTotal; - if (neighbor_point == point_num) - { - break; - } - } - } - - point_2.mV[VZ] = 0.f; - LLVector3 face_normal = (point_2 - point_1) % LLVector3::z_axis; - face_normal.normVec(); - mEdgeNormals[normal_set * count + point_num] = face_normal; - mEdgeCenters[normal_set * count + point_num] = lerp(point_1, point_2, 0.5f); - } - } -} - - // Hollow is percent of the original bounding box, not of this particular // profile's geometry. Thus, a swept triangle needs lower hollow values than // a swept square. @@ -693,12 +611,13 @@ LLProfile::Face* LLProfile::addHole(const LLProfileParams& params, BOOL flat, F3 Face *face = addFace(mTotalOut, mTotal-mTotalOut,0,LL_FACE_INNER_SIDE, flat); - std::vector<LLVector3> pt; + static LLAlignedArray<LLVector4a,64> pt; pt.resize(mTotal) ; for (S32 i=mTotalOut;i<mTotal;i++) { - pt[i] = mProfile[i] * box_hollow; + pt[i] = mProfile[i]; + pt[i].mul(box_hollow); } S32 j=mTotal-1; @@ -844,8 +763,8 @@ BOOL LLProfile::generate(const LLProfileParams& params, BOOL path_open,F32 detai detail = MIN_LOD; } - mProfile.clear(); - mFaces.clear(); + mProfile.resize(0); + mFaces.resize(0); // Generate the face data S32 i; @@ -877,10 +796,12 @@ BOOL LLProfile::generate(const LLProfileParams& params, BOOL path_open,F32 detai addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE); } + LLVector4a scale(1,1,4,1); + for (i = 0; i <(S32) mProfile.size(); i++) { // Scale by 4 to generate proper tex coords. - mProfile[i].mV[2] *= 4.f; + mProfile[i].mul(scale); } if (hollow) @@ -913,10 +834,11 @@ BOOL LLProfile::generate(const LLProfileParams& params, BOOL path_open,F32 detai case LL_PCODE_PROFILE_EQUALTRI: { genNGon(params, 3,0, 0, 1, split); + LLVector4a scale(1,1,3,1); for (i = 0; i <(S32) mProfile.size(); i++) { // Scale by 3 to generate proper tex coords. - mProfile[i].mV[2] *= 3.f; + mProfile[i].mul(scale); } if (path_open) @@ -1094,8 +1016,6 @@ BOOL LLProfile::generate(const LLProfileParams& params, BOOL path_open,F32 detai addFace(mTotal-2, 2,0.5,LL_FACE_PROFILE_END, TRUE); } } - - //genNormals(params); return TRUE; } @@ -1379,25 +1299,29 @@ void LLPath::genNGon(const LLPathParams& params, S32 sides, F32 startOff, F32 en // the path begins at the correct cut. F32 step= 1.0f / sides; F32 t = params.getBegin(); - pt = vector_append(mPath, 1); + pt = mPath.append(1); ang = 2.0f*F_PI*revolutions * t; s = sin(ang)*lerp(radius_start, radius_end, t); c = cos(ang)*lerp(radius_start, radius_end, t); - pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s) + pt->mPos.set(0 + lerp(0,params.getShear().mV[0],s) + lerp(-skew ,skew, t) * 0.5f, c + lerp(0,params.getShear().mV[1],s), s); - pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t); - pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t); + pt->mScale.set(hole_x * lerp(taper_x_begin, taper_x_end, t), + hole_y * lerp(taper_y_begin, taper_y_end, t), + 0,1); pt->mTexT = t; // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02 twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1); // Rotate the point around the circle's center. qang.setQuat (ang,path_axis); - pt->mRot = twist * qang; + + LLMatrix3 rot(twist * qang); + + pt->mRot.loadu(rot); t+=step; @@ -1408,51 +1332,55 @@ void LLPath::genNGon(const LLPathParams& params, S32 sides, F32 startOff, F32 en // Run through the non-cut dependent points. while (t < params.getEnd()) { - pt = vector_append(mPath, 1); + pt = mPath.append(1); ang = 2.0f*F_PI*revolutions * t; c = cos(ang)*lerp(radius_start, radius_end, t); s = sin(ang)*lerp(radius_start, radius_end, t); - pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s) + pt->mPos.set(0 + lerp(0,params.getShear().mV[0],s) + lerp(-skew ,skew, t) * 0.5f, c + lerp(0,params.getShear().mV[1],s), s); - pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t); - pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t); + pt->mScale.set(hole_x * lerp(taper_x_begin, taper_x_end, t), + hole_y * lerp(taper_y_begin, taper_y_end, t), + 0,1); pt->mTexT = t; // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02 twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1); // Rotate the point around the circle's center. qang.setQuat (ang,path_axis); - pt->mRot = twist * qang; - + LLMatrix3 tmp(twist*qang); + pt->mRot.loadu(tmp); + t+=step; } // Make one final pass for the end cut. t = params.getEnd(); - pt = vector_append(mPath, 1); + pt = mPath.append(1); ang = 2.0f*F_PI*revolutions * t; c = cos(ang)*lerp(radius_start, radius_end, t); s = sin(ang)*lerp(radius_start, radius_end, t); - pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s) + pt->mPos.set(0 + lerp(0,params.getShear().mV[0],s) + lerp(-skew ,skew, t) * 0.5f, c + lerp(0,params.getShear().mV[1],s), s); - pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t); - pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t); + pt->mScale.set(hole_x * lerp(taper_x_begin, taper_x_end, t), + hole_y * lerp(taper_y_begin, taper_y_end, t), + 0,1); pt->mTexT = t; // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02 twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1); // Rotate the point around the circle's center. qang.setQuat (ang,path_axis); - pt->mRot = twist * qang; - + LLMatrix3 tmp(twist*qang); + pt->mRot.loadu(tmp); + mTotal = mPath.size(); } @@ -1549,7 +1477,7 @@ BOOL LLPath::generate(const LLPathParams& params, F32 detail, S32 split, mDirty = FALSE; S32 np = 2; // hardcode for line - mPath.clear(); + mPath.resize(0); mOpen = TRUE; // Is this 0xf0 mask really necessary? DK 03/02/05 @@ -1575,12 +1503,16 @@ BOOL LLPath::generate(const LLPathParams& params, F32 detail, S32 split, for (S32 i=0;i<np;i++) { F32 t = lerp(params.getBegin(),params.getEnd(),(F32)i * mStep); - mPath[i].mPos.setVec(lerp(0,params.getShear().mV[0],t), + mPath[i].mPos.set(lerp(0,params.getShear().mV[0],t), lerp(0,params.getShear().mV[1],t), t - 0.5f); - mPath[i].mRot.setQuat(lerp(F_PI * params.getTwistBegin(),F_PI * params.getTwist(),t),0,0,1); - mPath[i].mScale.mV[0] = lerp(start_scale.mV[0],end_scale.mV[0],t); - mPath[i].mScale.mV[1] = lerp(start_scale.mV[1],end_scale.mV[1],t); + LLQuaternion quat; + quat.setQuat(lerp(F_PI * params.getTwistBegin(),F_PI * params.getTwist(),t),0,0,1); + LLMatrix3 tmp(quat); + mPath[i].mRot.loadu(tmp); + mPath[i].mScale.set(lerp(start_scale.mV[0],end_scale.mV[0],t), + lerp(start_scale.mV[1],end_scale.mV[1],t), + 0,1); mPath[i].mTexT = t; } } @@ -1617,7 +1549,7 @@ BOOL LLPath::generate(const LLPathParams& params, F32 detail, S32 split, F32 toggle = 0.5f; for (S32 i=0;i<(S32)mPath.size();i++) { - mPath[i].mPos.mV[0] = toggle; + mPath[i].mPos.getF32ptr()[0] = toggle; if (toggle == 0.5f) toggle = -0.5f; else @@ -1638,13 +1570,16 @@ BOOL LLPath::generate(const LLPathParams& params, F32 detail, S32 split, for (S32 i=0;i<np;i++) { F32 t = (F32)i * mStep; - mPath[i].mPos.setVec(0, + mPath[i].mPos.set(0, lerp(0, -sin(F_PI*params.getTwist()*t)*0.5f,t), lerp(-0.5, cos(F_PI*params.getTwist()*t)*0.5f,t)); - mPath[i].mScale.mV[0] = lerp(1,params.getScale().mV[0],t); - mPath[i].mScale.mV[1] = lerp(1,params.getScale().mV[1],t); + mPath[i].mScale.set(lerp(1,params.getScale().mV[0],t), + lerp(1,params.getScale().mV[1],t), 0,1); mPath[i].mTexT = t; - mPath[i].mRot.setQuat(F_PI * params.getTwist() * t,1,0,0); + LLQuaternion quat; + quat.setQuat(F_PI * params.getTwist() * t,1,0,0); + LLMatrix3 tmp(quat); + mPath[i].mRot.loadu(tmp); } break; @@ -1668,11 +1603,15 @@ BOOL LLDynamicPath::generate(const LLPathParams& params, F32 detail, S32 split, // Path hasn't been generated yet. // Some algorithms later assume at least TWO path points. resizePath(2); + LLQuaternion quat; + quat.setQuat(0,0,0); + LLMatrix3 tmp(quat); + for (U32 i = 0; i < 2; i++) { - mPath[i].mPos.setVec(0, 0, 0); - mPath[i].mRot.setQuat(0, 0, 0); - mPath[i].mScale.setVec(1, 1); + mPath[i].mPos.set(0, 0, 0); + mPath[i].mRot.loadu(tmp); + mPath[i].mScale.set(1, 1, 0, 1); mPath[i].mTexT = 0; } } @@ -2045,7 +1984,7 @@ LLVolume::LLVolume(const LLVolumeParams ¶ms, const F32 detail, const BOOL ge mHullIndices = NULL; mNumHullPoints = 0; mNumHullIndices = 0; - + // set defaults if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_FLEXIBLE) { @@ -2105,6 +2044,7 @@ LLVolume::~LLVolume() BOOL LLVolume::generate() { + LL_CHECK_MEMORY llassert_always(mProfilep); //Added 10.03.05 Dave Parks @@ -2141,20 +2081,6 @@ BOOL LLVolume::generate() mLODScaleBias.setVec(0.6f, 0.6f, 0.6f); } - //******************************************************************** - //debug info, to be removed - if((U32)(mPathp->mPath.size() * mProfilep->mProfile.size()) > (1u << 20)) - { - llinfos << "sizeS: " << mPathp->mPath.size() << " sizeT: " << mProfilep->mProfile.size() << llendl ; - llinfos << "path_detail : " << path_detail << " split: " << split << " profile_detail: " << profile_detail << llendl ; - llinfos << mParams << llendl ; - llinfos << "more info to check if mProfilep is deleted or not." << llendl ; - llinfos << mProfilep->mNormals.size() << " : " << mProfilep->mFaces.size() << " : " << mProfilep->mEdgeNormals.size() << " : " << mProfilep->mEdgeCenters.size() << llendl ; - - llerrs << "LLVolume corrupted!" << llendl ; - } - //******************************************************************** - BOOL regenPath = mPathp->generate(mParams.getPathParams(), path_detail, split); BOOL regenProf = mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(),profile_detail, split); @@ -2163,21 +2089,6 @@ BOOL LLVolume::generate() S32 sizeS = mPathp->mPath.size(); S32 sizeT = mProfilep->mProfile.size(); - //******************************************************************** - //debug info, to be removed - if((U32)(sizeS * sizeT) > (1u << 20)) - { - llinfos << "regenPath: " << (S32)regenPath << " regenProf: " << (S32)regenProf << llendl ; - llinfos << "sizeS: " << sizeS << " sizeT: " << sizeT << llendl ; - llinfos << "path_detail : " << path_detail << " split: " << split << " profile_detail: " << profile_detail << llendl ; - llinfos << mParams << llendl ; - llinfos << "more info to check if mProfilep is deleted or not." << llendl ; - llinfos << mProfilep->mNormals.size() << " : " << mProfilep->mFaces.size() << " : " << mProfilep->mEdgeNormals.size() << " : " << mProfilep->mEdgeCenters.size() << llendl ; - - llerrs << "LLVolume corrupted!" << llendl ; - } - //******************************************************************** - sNumMeshPoints -= mMesh.size(); mMesh.resize(sizeT * sizeS); sNumMeshPoints += mMesh.size(); @@ -2185,22 +2096,39 @@ BOOL LLVolume::generate() //generate vertex positions // Run along the path. + LLVector4a* dst = mMesh.mArray; + for (S32 s = 0; s < sizeS; ++s) { - LLVector2 scale = mPathp->mPath[s].mScale; - LLQuaternion rot = mPathp->mPath[s].mRot; + F32* scale = mPathp->mPath[s].mScale.getF32ptr(); + + F32 sc [] = + { scale[0], 0, 0, 0, + 0, scale[1], 0, 0, + 0, 0, scale[2], 0, + 0, 0, 0, 1 }; + + LLMatrix4 rot((F32*) mPathp->mPath[s].mRot.mMatrix); + LLMatrix4 scale_mat(sc); + + scale_mat *= rot; + + LLMatrix4a rot_mat; + rot_mat.loadu(scale_mat); + + LLVector4a* profile = mProfilep->mProfile.mArray; + LLVector4a* end_profile = profile+sizeT; + LLVector4a offset = mPathp->mPath[s].mPos; + + LLVector4a tmp; // Run along the profile. - for (S32 t = 0; t < sizeT; ++t) + while (profile < end_profile) { - S32 m = s*sizeT + t; - Point& pt = mMesh[m]; - - pt.mPos.mV[0] = mProfilep->mProfile[t].mV[0] * scale.mV[0]; - pt.mPos.mV[1] = mProfilep->mProfile[t].mV[1] * scale.mV[1]; - pt.mPos.mV[2] = 0.0f; - pt.mPos = pt.mPos * rot; - pt.mPos += mPathp->mPath[s].mPos; + rot_mat.rotate(*profile++, tmp); + dst->setAdd(tmp,offset); + llassert(less_than_max_mag(*dst)); + ++dst; } } @@ -2210,9 +2138,11 @@ BOOL LLVolume::generate() LLFaceID id = iter->mFaceID; mFaceMask |= id; } - + LL_CHECK_MEMORY return TRUE; } + + LL_CHECK_MEMORY return FALSE; } @@ -2790,14 +2720,16 @@ void LLVolume::createVolumeFaces() } -inline LLVector3 sculpt_rgb_to_vector(U8 r, U8 g, U8 b) +inline LLVector4a sculpt_rgb_to_vector(U8 r, U8 g, U8 b) { // maps RGB values to vector values [0..255] -> [-0.5..0.5] - LLVector3 value; - value.mV[VX] = r / 255.f - 0.5f; - value.mV[VY] = g / 255.f - 0.5f; - value.mV[VZ] = b / 255.f - 0.5f; + LLVector4a value; + LLVector4a sub(0.5f, 0.5f, 0.5f); + value.set(r,g,b); + value.mul(1.f/255.f); + value.sub(sub); + return value; } @@ -2817,21 +2749,21 @@ inline U32 sculpt_st_to_index(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_w } -inline LLVector3 sculpt_index_to_vector(U32 index, const U8* sculpt_data) +inline LLVector4a sculpt_index_to_vector(U32 index, const U8* sculpt_data) { - LLVector3 v = sculpt_rgb_to_vector(sculpt_data[index], sculpt_data[index+1], sculpt_data[index+2]); + LLVector4a v = sculpt_rgb_to_vector(sculpt_data[index], sculpt_data[index+1], sculpt_data[index+2]); return v; } -inline LLVector3 sculpt_st_to_vector(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data) +inline LLVector4a sculpt_st_to_vector(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data) { U32 index = sculpt_st_to_index(s, t, size_s, size_t, sculpt_width, sculpt_height, sculpt_components); return sculpt_index_to_vector(index, sculpt_data); } -inline LLVector3 sculpt_xy_to_vector(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data) +inline LLVector4a sculpt_xy_to_vector(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data) { U32 index = sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components); @@ -2853,15 +2785,26 @@ F32 LLVolume::sculptGetSurfaceArea() for (S32 t = 0; t < sizeT-1; t++) { // get four corners of quad - LLVector3 p1 = mMesh[(s )*sizeT + (t )].mPos; - LLVector3 p2 = mMesh[(s+1)*sizeT + (t )].mPos; - LLVector3 p3 = mMesh[(s )*sizeT + (t+1)].mPos; - LLVector3 p4 = mMesh[(s+1)*sizeT + (t+1)].mPos; + LLVector4a& p1 = mMesh[(s )*sizeT + (t )]; + LLVector4a& p2 = mMesh[(s+1)*sizeT + (t )]; + LLVector4a& p3 = mMesh[(s )*sizeT + (t+1)]; + LLVector4a& p4 = mMesh[(s+1)*sizeT + (t+1)]; // compute the area of the quad by taking the length of the cross product of the two triangles - LLVector3 cross1 = (p1 - p2) % (p1 - p3); - LLVector3 cross2 = (p4 - p2) % (p4 - p3); - area += (cross1.magVec() + cross2.magVec()) / 2.f; + LLVector4a v0,v1,v2,v3; + v0.setSub(p1,p2); + v1.setSub(p1,p3); + v2.setSub(p4,p2); + v3.setSub(p4,p3); + + LLVector4a cross1, cross2; + cross1.setCross3(v0,v1); + cross2.setCross3(v2,v3); + + //LLVector3 cross1 = (p1 - p2) % (p1 - p3); + //LLVector3 cross2 = (p4 - p2) % (p4 - p3); + + area += (cross1.getLength3() + cross2.getLength3()).getF32() / 2.f; } } @@ -2882,17 +2825,19 @@ void LLVolume::sculptGeneratePlaceholder() for (S32 t = 0; t < sizeT; t++) { S32 i = t + line; - Point& pt = mMesh[i]; + LLVector4a& pt = mMesh[i]; F32 u = (F32)s/(sizeS-1); F32 v = (F32)t/(sizeT-1); const F32 RADIUS = (F32) 0.3; - - pt.mPos.mV[0] = (F32)(sin(F_PI * v) * cos(2.0 * F_PI * u) * RADIUS); - pt.mPos.mV[1] = (F32)(sin(F_PI * v) * sin(2.0 * F_PI * u) * RADIUS); - pt.mPos.mV[2] = (F32)(cos(F_PI * v) * RADIUS); + + F32* p = pt.getF32ptr(); + + p[0] = (F32)(sin(F_PI * v) * cos(2.0 * F_PI * u) * RADIUS); + p[1] = (F32)(sin(F_PI * v) * sin(2.0 * F_PI * u) * RADIUS); + p[2] = (F32)(cos(F_PI * v) * RADIUS); } line += sizeT; @@ -2917,7 +2862,7 @@ void LLVolume::sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 for (S32 t = 0; t < sizeT; t++) { S32 i = t + line; - Point& pt = mMesh[i]; + LLVector4a& pt = mMesh[i]; S32 reversed_t = t; @@ -2974,11 +2919,12 @@ void LLVolume::sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 } } - pt.mPos = sculpt_xy_to_vector(x, y, sculpt_width, sculpt_height, sculpt_components, sculpt_data); + pt = sculpt_xy_to_vector(x, y, sculpt_width, sculpt_height, sculpt_components, sculpt_data); if (sculpt_mirror) { - pt.mPos.mV[VX] *= -1.f; + LLVector4a scale(-1.f,1,1,1); + pt.mul(scale); } } @@ -3560,627 +3506,6 @@ bool LLVolumeParams::validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 h return true; } -S32 *LLVolume::getTriangleIndices(U32 &num_indices) const -{ - S32 expected_num_triangle_indices = getNumTriangleIndices(); - if (expected_num_triangle_indices > MAX_VOLUME_TRIANGLE_INDICES) - { - // we don't allow LLVolumes with this many vertices - llwarns << "Couldn't allocate triangle indices" << llendl; - num_indices = 0; - return NULL; - } - - S32* index = new S32[expected_num_triangle_indices]; - S32 count = 0; - - // Let's do this totally diffently, as we don't care about faces... - // Counter-clockwise triangles are forward facing... - - BOOL open = getProfile().isOpen(); - BOOL hollow = (mParams.getProfileParams().getHollow() > 0); - BOOL path_open = getPath().isOpen(); - S32 size_s, size_s_out, size_t; - S32 s, t, i; - size_s = getProfile().getTotal(); - size_s_out = getProfile().getTotalOut(); - size_t = getPath().mPath.size(); - - // NOTE -- if the construction of the triangles below ever changes - // then getNumTriangleIndices() method may also have to be updated. - - if (open) /* Flawfinder: ignore */ - { - if (hollow) - { - // Open hollow -- much like the closed solid, except we - // we need to stitch up the gap between s=0 and s=size_s-1 - - for (t = 0; t < size_t - 1; t++) - { - // The outer face, first cut, and inner face - for (s = 0; s < size_s - 1; s++) - { - i = s + t*size_s; - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 - - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s + 1; // x+1,y+1 - } - - // The other cut face - index[count++] = s + t*size_s; // x,y - index[count++] = 0 + t*size_s; // x+1,y - index[count++] = s + (t+1)*size_s; // x,y+1 - - index[count++] = s + (t+1)*size_s; // x,y+1 - index[count++] = 0 + t*size_s; // x+1,y - index[count++] = 0 + (t+1)*size_s; // x+1,y+1 - } - - // Do the top and bottom caps, if necessary - if (path_open) - { - // Top cap - S32 pt1 = 0; - S32 pt2 = size_s-1; - S32 i = (size_t - 1)*size_s; - - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = getProfile().mProfile[pt1]; - LLVector3 p2 = getProfile().mProfile[pt2]; - LLVector3 pa = getProfile().mProfile[pt1+1]; - LLVector3 pb = getProfile().mProfile[pt2-1]; - - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; - - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; - - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } - - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; - - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } - - if (use_tri1a2) - { - index[count++] = pt1 + i; - index[count++] = pt1 + 1 + i; - index[count++] = pt2 + i; - pt1++; - } - else - { - index[count++] = pt1 + i; - index[count++] = pt2 - 1 + i; - index[count++] = pt2 + i; - pt2--; - } - } - - // Bottom cap - pt1 = 0; - pt2 = size_s-1; - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = getProfile().mProfile[pt1]; - LLVector3 p2 = getProfile().mProfile[pt2]; - LLVector3 pa = getProfile().mProfile[pt1+1]; - LLVector3 pb = getProfile().mProfile[pt2-1]; - - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; - - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; - - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } - - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; - - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } - - if (use_tri1a2) - { - index[count++] = pt1; - index[count++] = pt2; - index[count++] = pt1 + 1; - pt1++; - } - else - { - index[count++] = pt1; - index[count++] = pt2; - index[count++] = pt2 - 1; - pt2--; - } - } - } - } - else - { - // Open solid - - for (t = 0; t < size_t - 1; t++) - { - // Outer face + 1 cut face - for (s = 0; s < size_s - 1; s++) - { - i = s + t*size_s; - - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 - - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s + 1; // x+1,y+1 - } - - // The other cut face - index[count++] = (size_s - 1) + (t*size_s); // x,y - index[count++] = 0 + t*size_s; // x+1,y - index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1 - - index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1 - index[count++] = 0 + (t*size_s); // x+1,y - index[count++] = 0 + (t+1)*size_s; // x+1,y+1 - } - - // Do the top and bottom caps, if necessary - if (path_open) - { - for (s = 0; s < size_s - 2; s++) - { - index[count++] = s+1; - index[count++] = s; - index[count++] = size_s - 1; - } - - // We've got a top cap - S32 offset = (size_t - 1)*size_s; - for (s = 0; s < size_s - 2; s++) - { - // Inverted ordering from bottom cap. - index[count++] = offset + size_s - 1; - index[count++] = offset + s; - index[count++] = offset + s + 1; - } - } - } - } - else if (hollow) - { - // Closed hollow - // Outer face - - for (t = 0; t < size_t - 1; t++) - { - for (s = 0; s < size_s_out - 1; s++) - { - i = s + t*size_s; - - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 - - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + 1 + size_s; // x+1,y+1 - } - } - - // Inner face - // Invert facing from outer face - for (t = 0; t < size_t - 1; t++) - { - for (s = size_s_out; s < size_s - 1; s++) - { - i = s + t*size_s; - - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 - - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + 1 + size_s; // x+1,y+1 - } - } - - // Do the top and bottom caps, if necessary - if (path_open) - { - // Top cap - S32 pt1 = 0; - S32 pt2 = size_s-1; - S32 i = (size_t - 1)*size_s; - - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = getProfile().mProfile[pt1]; - LLVector3 p2 = getProfile().mProfile[pt2]; - LLVector3 pa = getProfile().mProfile[pt1+1]; - LLVector3 pb = getProfile().mProfile[pt2-1]; - - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; - - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; - - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } - - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; - - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } - - if (use_tri1a2) - { - index[count++] = pt1 + i; - index[count++] = pt1 + 1 + i; - index[count++] = pt2 + i; - pt1++; - } - else - { - index[count++] = pt1 + i; - index[count++] = pt2 - 1 + i; - index[count++] = pt2 + i; - pt2--; - } - } - - // Bottom cap - pt1 = 0; - pt2 = size_s-1; - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = getProfile().mProfile[pt1]; - LLVector3 p2 = getProfile().mProfile[pt2]; - LLVector3 pa = getProfile().mProfile[pt1+1]; - LLVector3 pb = getProfile().mProfile[pt2-1]; - - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; - - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; - - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } - - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; - - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } - - if (use_tri1a2) - { - index[count++] = pt1; - index[count++] = pt2; - index[count++] = pt1 + 1; - pt1++; - } - else - { - index[count++] = pt1; - index[count++] = pt2; - index[count++] = pt2 - 1; - pt2--; - } - } - } - } - else - { - // Closed solid. Easy case. - for (t = 0; t < size_t - 1; t++) - { - for (s = 0; s < size_s - 1; s++) - { - // Should wrap properly, but for now... - i = s + t*size_s; - - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 - - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s + 1; // x+1,y+1 - } - } - - // Do the top and bottom caps, if necessary - if (path_open) - { - // bottom cap - for (s = 1; s < size_s - 2; s++) - { - index[count++] = s+1; - index[count++] = s; - index[count++] = 0; - } - - // top cap - S32 offset = (size_t - 1)*size_s; - for (s = 1; s < size_s - 2; s++) - { - // Inverted ordering from bottom cap. - index[count++] = offset; - index[count++] = offset + s; - index[count++] = offset + s + 1; - } - } - } - -#ifdef LL_DEBUG - // assert that we computed the correct number of indices - if (count != expected_num_triangle_indices ) - { - llerrs << "bad index count prediciton:" - << " expected=" << expected_num_triangle_indices - << " actual=" << count << llendl; - } -#endif - -#if 0 - // verify that each index does not point beyond the size of the mesh - S32 num_vertices = mMesh.size(); - for (i = 0; i < count; i+=3) - { - llinfos << index[i] << ":" << index[i+1] << ":" << index[i+2] << llendl; - llassert(index[i] < num_vertices); - llassert(index[i+1] < num_vertices); - llassert(index[i+2] < num_vertices); - } -#endif - - num_indices = count; - return index; -} - void LLVolume::getLoDTriangleCounts(const LLVolumeParams& params, S32* counts) { //attempt to approximate the number of triangles that will result from generating a volume LoD set for the //supplied LLVolumeParams -- inaccurate, but a close enough approximation for determining streaming cost @@ -4198,63 +3523,6 @@ void LLVolume::getLoDTriangleCounts(const LLVolumeParams& params, S32* counts) } } -S32 LLVolume::getNumTriangleIndices() const -{ - BOOL profile_open = getProfile().isOpen(); - BOOL hollow = (mParams.getProfileParams().getHollow() > 0); - BOOL path_open = getPath().isOpen(); - - S32 size_s, size_s_out, size_t; - size_s = getProfile().getTotal(); - size_s_out = getProfile().getTotalOut(); - size_t = getPath().mPath.size(); - - S32 count = 0; - if (profile_open) /* Flawfinder: ignore */ - { - if (hollow) - { - // Open hollow -- much like the closed solid, except we - // we need to stitch up the gap between s=0 and s=size_s-1 - count = (size_t - 1) * (((size_s -1) * 6) + 6); - } - else - { - count = (size_t - 1) * (((size_s -1) * 6) + 6); - } - } - else if (hollow) - { - // Closed hollow - // Outer face - count = (size_t - 1) * (size_s_out - 1) * 6; - - // Inner face - count += (size_t - 1) * ((size_s - 1) - size_s_out) * 6; - } - else - { - // Closed solid. Easy case. - count = (size_t - 1) * (size_s - 1) * 6; - } - - if (path_open) - { - S32 cap_triangle_count = size_s - 3; - if ( profile_open - || hollow ) - { - cap_triangle_count = size_s - 2; - } - if ( cap_triangle_count > 0 ) - { - // top and bottom caps - count += cap_triangle_count * 2 * 3; - } - } - return count; -} - S32 LLVolume::getNumTriangles(S32* vcount) const { @@ -5243,8 +4511,6 @@ LLVolumeFace& LLVolumeFace::operator=(const LLVolumeFace& src) freeData(); - LLVector4a::memcpyNonAliased16((F32*) mExtents, (F32*) src.mExtents, 3*sizeof(LLVector4a)); - resizeVertices(src.mNumVertices); resizeIndices(src.mNumIndices); @@ -5331,52 +4597,23 @@ BOOL LLVolumeFace::create(LLVolume* volume, BOOL partial_build) delete mOctree; mOctree = NULL; + LL_CHECK_MEMORY BOOL ret = FALSE ; if (mTypeMask & CAP_MASK) { ret = createCap(volume, partial_build); + LL_CHECK_MEMORY } else if ((mTypeMask & END_MASK) || (mTypeMask & SIDE_MASK)) { ret = createSide(volume, partial_build); + LL_CHECK_MEMORY } else { llerrs << "Unknown/uninitialized face type!" << llendl; } - //update the range of the texture coordinates - if(ret) - { - mTexCoordExtents[0].setVec(1.f, 1.f) ; - mTexCoordExtents[1].setVec(0.f, 0.f) ; - - for(U32 i = 0 ; i < mNumVertices ; i++) - { - if(mTexCoordExtents[0].mV[0] > mTexCoords[i].mV[0]) - { - mTexCoordExtents[0].mV[0] = mTexCoords[i].mV[0] ; - } - if(mTexCoordExtents[1].mV[0] < mTexCoords[i].mV[0]) - { - mTexCoordExtents[1].mV[0] = mTexCoords[i].mV[0] ; - } - - if(mTexCoordExtents[0].mV[1] > mTexCoords[i].mV[1]) - { - mTexCoordExtents[0].mV[1] = mTexCoords[i].mV[1] ; - } - if(mTexCoordExtents[1].mV[1] < mTexCoords[i].mV[1]) - { - mTexCoordExtents[1].mV[1] = mTexCoords[i].mV[1] ; - } - } - mTexCoordExtents[0].mV[0] = llmax(0.f, mTexCoordExtents[0].mV[0]) ; - mTexCoordExtents[0].mV[1] = llmax(0.f, mTexCoordExtents[0].mV[1]) ; - mTexCoordExtents[1].mV[0] = llmin(1.f, mTexCoordExtents[1].mV[0]) ; - mTexCoordExtents[1].mV[1] = llmin(1.f, mTexCoordExtents[1].mV[1]) ; - } - return ret ; } @@ -5492,7 +4729,9 @@ void LLVolumeFace::optimize(F32 angle_cutoff) } } - if (new_face.mNumVertices) + // Only swap data if we've actually optimized the mesh + // + if (new_face.mNumVertices <= mNumVertices) { llassert(new_face.mNumIndices == mNumIndices); swapData(new_face); @@ -6069,18 +5308,15 @@ void LerpPlanarVertex(LLVolumeFace::VertexData& v0, BOOL LLVolumeFace::createUnCutCubeCap(LLVolume* volume, BOOL partial_build) { - const std::vector<LLVolume::Point>& mesh = volume->getMesh(); - const std::vector<LLVector3>& profile = volume->getProfile().mProfile; + LL_CHECK_MEMORY + + const LLAlignedArray<LLVector4a,64>& mesh = volume->getMesh(); + const LLAlignedArray<LLVector4a,64>& profile = volume->getProfile().mProfile; S32 max_s = volume->getProfile().getTotal(); S32 max_t = volume->getPath().mPath.size(); // S32 i; - S32 num_vertices = 0, num_indices = 0; S32 grid_size = (profile.size()-1)/4; - S32 quad_count = (grid_size * grid_size); - - num_vertices = (grid_size+1)*(grid_size+1); - num_indices = quad_count * 4; LLVector4a& min = mExtents[0]; LLVector4a& max = mExtents[1]; @@ -6100,9 +5336,9 @@ BOOL LLVolumeFace::createUnCutCubeCap(LLVolume* volume, BOOL partial_build) VertexData baseVert; for(S32 t = 0; t < 4; t++) { - corners[t].getPosition().load3( mesh[offset + (grid_size*t)].mPos.mV); - corners[t].mTexCoord.mV[0] = profile[grid_size*t].mV[0]+0.5f; - corners[t].mTexCoord.mV[1] = 0.5f - profile[grid_size*t].mV[1]; + corners[t].getPosition().load4a(mesh[offset + (grid_size*t)].getF32ptr()); + corners[t].mTexCoord.mV[0] = profile[grid_size*t][0]+0.5f; + corners[t].mTexCoord.mV[1] = 0.5f - profile[grid_size*t][1]; } { @@ -6183,6 +5419,9 @@ BOOL LLVolumeFace::createUnCutCubeCap(LLVolume* volume, BOOL partial_build) mCenter->mul(0.5f); } + llassert(less_than_max_mag(mExtents[0])); + llassert(less_than_max_mag(mExtents[1])); + if (!partial_build) { resizeIndices(grid_size*grid_size*6); @@ -6213,6 +5452,7 @@ BOOL LLVolumeFace::createUnCutCubeCap(LLVolume* volume, BOOL partial_build) } } + LL_CHECK_MEMORY return TRUE; } @@ -6231,8 +5471,8 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) S32 num_vertices = 0, num_indices = 0; - const std::vector<LLVolume::Point>& mesh = volume->getMesh(); - const std::vector<LLVector3>& profile = volume->getProfile().mProfile; + const LLAlignedArray<LLVector4a,64>& mesh = volume->getMesh(); + const LLAlignedArray<LLVector4a,64>& profile = volume->getProfile().mProfile; // All types of caps have the same number of vertices and indices num_vertices = profile.size(); @@ -6252,13 +5492,14 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) { resizeVertices(num_vertices); allocateBinormals(num_vertices); - if (!partial_build) { resizeIndices(num_indices); } } + LL_CHECK_MEMORY; + S32 max_s = volume->getProfile().getTotal(); S32 max_t = volume->getPath().mPath.size(); @@ -6289,35 +5530,68 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) LLVector4a* binorm = (LLVector4a*) mBinormals; // Copy the vertices into the array - for (S32 i = 0; i < num_vertices; i++) + + const LLVector4a* src = mesh.mArray+offset; + const LLVector4a* end = src+num_vertices; + + min = *src; + max = min; + + + const LLVector4a* p = profile.mArray; + + if (mTypeMask & TOP_MASK) { - if (mTypeMask & TOP_MASK) - { - tc[i].mV[0] = profile[i].mV[0]+0.5f; - tc[i].mV[1] = profile[i].mV[1]+0.5f; - } - else + min_uv.set((*p)[0]+0.5f, + (*p)[1]+0.5f); + + max_uv = min_uv; + + while(src < end) { - // Mirror for underside. - tc[i].mV[0] = profile[i].mV[0]+0.5f; - tc[i].mV[1] = 0.5f - profile[i].mV[1]; - } + tc->mV[0] = (*p)[0]+0.5f; + tc->mV[1] = (*p)[1]+0.5f; - pos[i].load3(mesh[i + offset].mPos.mV); + llassert(less_than_max_mag(*src)); + update_min_max(min,max,*src); + update_min_max(min_uv, max_uv, *tc); - if (i == 0) - { - max = pos[i]; - min = max; - min_uv = max_uv = tc[i]; + *pos = *src; + + ++p; + ++tc; + ++src; + ++pos; } - else + } + else + { + + min_uv.set((*p)[0]+0.5f, + 0.5f - (*p)[1]); + max_uv = min_uv; + + while(src < end) { - update_min_max(min,max,pos[i]); - update_min_max(min_uv, max_uv, tc[i]); + // Mirror for underside. + tc->mV[0] = (*p)[0]+0.5f; + tc->mV[1] = 0.5f - (*p)[1]; + + llassert(less_than_max_mag(*src)); + update_min_max(min,max,*src); + update_min_max(min_uv, max_uv, *tc); + + *pos = *src; + + ++p; + ++tc; + ++src; + ++pos; } } + LL_CHECK_MEMORY + mCenter->setAdd(min, max); mCenter->mul(0.5f); @@ -6354,15 +5628,25 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK)) { - pos[num_vertices] = *mCenter; - tc[num_vertices] = cuv; + *pos++ = *mCenter; + *tc++ = cuv; num_vertices++; } - - for (S32 i = 0; i < num_vertices; i++) + + LL_CHECK_MEMORY + + F32* dst_binorm = (F32*) binorm; + F32* end_binorm = (F32*) (binorm+num_vertices); + + F32* dst_norm = (F32*) norm; + + while (dst_binorm < end_binorm) { - binorm[i].load4a(binormal.getF32ptr()); - norm[i].load4a(normal.getF32ptr()); + binormal.store4a(dst_binorm); + normal.store4a(dst_norm); + + dst_binorm += 4; + dst_norm += 4; } if (partial_build) @@ -6383,33 +5667,38 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) { // Use the profile points instead of the mesh, since you want // the un-transformed profile distances. - LLVector3 p1 = profile[pt1]; - LLVector3 p2 = profile[pt2]; - LLVector3 pa = profile[pt1+1]; - LLVector3 pb = profile[pt2-1]; + const LLVector4a& p1 = profile[pt1]; + const LLVector4a& p2 = profile[pt2]; + const LLVector4a& pa = profile[pt1+1]; + const LLVector4a& pb = profile[pt2-1]; + + const F32* p1V = p1.getF32ptr(); + const F32* p2V = p2.getF32ptr(); + const F32* paV = pa.getF32ptr(); + const F32* pbV = pb.getF32ptr(); - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; + //p1.mV[VZ] = 0.f; + //p2.mV[VZ] = 0.f; + //pa.mV[VZ] = 0.f; + //pb.mV[VZ] = 0.f; // Use area of triangle to determine backfacing F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); + area_1a2 = (p1V[0]*paV[1] - paV[0]*p1V[1]) + + (paV[0]*p2V[1] - p2V[0]*paV[1]) + + (p2V[0]*p1V[1] - p1V[0]*p2V[1]); - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); + area_1ba = (p1V[0]*pbV[1] - pbV[0]*p1V[1]) + + (pbV[0]*paV[1] - paV[0]*pbV[1]) + + (paV[0]*p1V[1] - p1V[0]*paV[1]); - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + area_21b = (p2V[0]*p1V[1] - p1V[0]*p2V[1]) + + (p1V[0]*pbV[1] - pbV[0]*p1V[1]) + + (pbV[0]*p2V[1] - p2V[0]*pbV[1]); - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + area_2ab = (p2V[0]*paV[1] - paV[0]*p2V[1]) + + (paV[0]*pbV[1] - pbV[0]*paV[1]) + + (pbV[0]*p2V[1] - p2V[0]*pbV[1]); BOOL use_tri1a2 = TRUE; BOOL tri_1a2 = TRUE; @@ -6444,10 +5733,13 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) } else { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; + LLVector4a d1; + d1.setSub(p1, pa); + + LLVector4a d2; + d2.setSub(p2, pb); - if (d1.magVecSquared() < d2.magVecSquared()) + if (d1.dot3(d1) < d2.dot3(d2)) { use_tri1a2 = TRUE; } @@ -6486,33 +5778,33 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) { // Use the profile points instead of the mesh, since you want // the un-transformed profile distances. - LLVector3 p1 = profile[pt1]; - LLVector3 p2 = profile[pt2]; - LLVector3 pa = profile[pt1+1]; - LLVector3 pb = profile[pt2-1]; - - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; - + const LLVector4a& p1 = profile[pt1]; + const LLVector4a& p2 = profile[pt2]; + const LLVector4a& pa = profile[pt1+1]; + const LLVector4a& pb = profile[pt2-1]; + + const F32* p1V = p1.getF32ptr(); + const F32* p2V = p2.getF32ptr(); + const F32* paV = pa.getF32ptr(); + const F32* pbV = pb.getF32ptr(); + // Use area of triangle to determine backfacing F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); + area_1a2 = (p1V[0]*paV[1] - paV[0]*p1V[1]) + + (paV[0]*p2V[1] - p2V[0]*paV[1]) + + (p2V[0]*p1V[1] - p1V[0]*p2V[1]); - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); + area_1ba = (p1V[0]*pbV[1] - pbV[0]*p1V[1]) + + (pbV[0]*paV[1] - paV[0]*pbV[1]) + + (paV[0]*p1V[1] - p1V[0]*paV[1]); - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + area_21b = (p2V[0]*p1V[1] - p1V[0]*p2V[1]) + + (p1V[0]*pbV[1] - pbV[0]*p1V[1]) + + (pbV[0]*p2V[1] - p2V[0]*pbV[1]); - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + area_2ab = (p2V[0]*paV[1] - paV[0]*p2V[1]) + + (paV[0]*pbV[1] - pbV[0]*paV[1]) + + (pbV[0]*p2V[1] - p2V[0]*pbV[1]); BOOL use_tri1a2 = TRUE; BOOL tri_1a2 = TRUE; @@ -6547,10 +5839,12 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) } else { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; + LLVector4a d1; + d1.setSub(p1,pa); + LLVector4a d2; + d2.setSub(p2,pb); - if (d1.magVecSquared() < d2.magVecSquared()) + if (d1.dot3(d1) < d2.dot3(d2)) { use_tri1a2 = TRUE; } @@ -6599,6 +5893,8 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) } + + LL_CHECK_MEMORY return TRUE; } @@ -6901,6 +6197,7 @@ void LLVolumeFace::appendFace(const LLVolumeFace& face, LLMatrix4& mat_in, LLMat BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) { + LL_CHECK_MEMORY BOOL flat = mTypeMask & FLAT_MASK; U8 sculpt_type = volume->getParams().getSculptType(); @@ -6911,9 +6208,9 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) S32 num_vertices, num_indices; - const std::vector<LLVolume::Point>& mesh = volume->getMesh(); - const std::vector<LLVector3>& profile = volume->getProfile().mProfile; - const std::vector<LLPath::PathPt>& path_data = volume->getPath().mPath; + const LLAlignedArray<LLVector4a,64>& mesh = volume->getMesh(); + const LLAlignedArray<LLVector4a,64>& profile = volume->getProfile().mProfile; + const LLAlignedArray<LLPath::PathPt,64>& path_data = volume->getPath().mPath; S32 max_s = volume->getProfile().getTotal(); @@ -6934,10 +6231,11 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) } } + LL_CHECK_MEMORY + LLVector4a* pos = (LLVector4a*) mPositions; - LLVector4a* norm = (LLVector4a*) mNormals; LLVector2* tc = (LLVector2*) mTexCoords; - F32 begin_stex = floorf(profile[mBeginS].mV[2]); + F32 begin_stex = floorf(profile[mBeginS][2]); S32 num_s = ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2) ? mNumS/2 : mNumS; S32 cur_vertex = 0; @@ -6966,11 +6264,11 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) // Get s value for tex-coord. if (!flat) { - ss = profile[mBeginS + s].mV[2]; + ss = profile[mBeginS + s][2]; } else { - ss = profile[mBeginS + s].mV[2] - begin_stex; + ss = profile[mBeginS + s][2] - begin_stex; } } @@ -6990,19 +6288,17 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) i = mBeginS + s + max_s*t; } - pos[cur_vertex].load3(mesh[i].mPos.mV); - tc[cur_vertex] = LLVector2(ss,tt); + llassert(less_than_max_mag(mesh[i])); + mesh[i].store4a((F32*)(pos+cur_vertex)); + tc[cur_vertex].set(ss,tt); - norm[cur_vertex].clear(); cur_vertex++; if (test && s > 0) { - pos[cur_vertex].load3(mesh[i].mPos.mV); - tc[cur_vertex] = LLVector2(ss,tt); - - norm[cur_vertex].clear(); - + llassert(less_than_max_mag(mesh[i])); + mesh[i].store4a((F32*)(pos+cur_vertex)); + tc[cur_vertex].set(ss,tt); cur_vertex++; } } @@ -7019,28 +6315,66 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) } i = mBeginS + s + max_s*t; - ss = profile[mBeginS + s].mV[2] - begin_stex; - pos[cur_vertex].load3(mesh[i].mPos.mV); - tc[cur_vertex] = LLVector2(ss,tt); - norm[cur_vertex].clear(); - + ss = profile[mBeginS + s][2] - begin_stex; + + llassert(less_than_max_mag(mesh[i])); + mesh[i].store4a((F32*)(pos+cur_vertex)); + tc[cur_vertex].set(ss,tt); + cur_vertex++; } } + LL_CHECK_MEMORY - //get bounding box for this side - LLVector4a& face_min = mExtents[0]; - LLVector4a& face_max = mExtents[1]; + mCenter->clear(); - face_min = face_max = pos[0]; + LLVector4a* cur_pos = pos; + LLVector4a* end_pos = pos + mNumVertices; + + //get bounding box for this side + LLVector4a face_min; + LLVector4a face_max; + + face_min = face_max = *cur_pos++; + + while (cur_pos < end_pos) + { + update_min_max(face_min, face_max, *cur_pos++); + } + + mExtents[0] = face_min; + mExtents[1] = face_max; + + U32 tc_count = mNumVertices; + if (tc_count%2 == 1) + { //odd number of texture coordinates, duplicate last entry to padded end of array + tc_count++; + mTexCoords[mNumVertices] = mTexCoords[mNumVertices-1]; + } + + LLVector4a* cur_tc = (LLVector4a*) mTexCoords; + LLVector4a* end_tc = (LLVector4a*) (mTexCoords+tc_count); + + LLVector4a tc_min; + LLVector4a tc_max; + + tc_min = tc_max = *cur_tc++; - for (U32 i = 1; i < mNumVertices; ++i) + while (cur_tc < end_tc) { - update_min_max(face_min, face_max, pos[i]); + update_min_max(tc_min, tc_max, *cur_tc++); } + F32* minp = tc_min.getF32ptr(); + F32* maxp = tc_max.getF32ptr(); + + mTexCoordExtents[0].mV[0] = llmin(minp[0], minp[2]); + mTexCoordExtents[0].mV[1] = llmin(minp[1], minp[3]); + mTexCoordExtents[1].mV[0] = llmax(maxp[0], maxp[2]); + mTexCoordExtents[1].mV[1] = llmax(maxp[1], maxp[3]); + mCenter->setAdd(face_min, face_max); mCenter->mul(0.5f); @@ -7105,33 +6439,94 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) } } + LL_CHECK_MEMORY + //clear normals - for (U32 i = 0; i < mNumVertices; i++) + F32* dst = (F32*) mNormals; + F32* end = (F32*) (mNormals+mNumVertices); + LLVector4a zero = LLVector4a::getZero(); + + while (dst < end) { - mNormals[i].clear(); + zero.store4a(dst); + dst += 4; } + LL_CHECK_MEMORY + //generate normals U32 count = mNumIndices/3; - for (U32 i = 0; i < count; i++) //for each triangle + LLVector4a* norm = mNormals; + + static LLAlignedArray<LLVector4a, 64> triangle_normals; + triangle_normals.resize(count); + LLVector4a* output = triangle_normals.mArray; + LLVector4a* end_output = output+count; + + U16* idx = mIndices; + + while (output < end_output) { - const U16* idx = &(mIndices[i*3]); - - LLVector4a& v0 = *(pos+idx[0]); - LLVector4a& v1 = *(pos+idx[1]); - LLVector4a& v2 = *(pos+idx[2]); - - LLVector4a& n0 = *(norm+idx[0]); - LLVector4a& n1 = *(norm+idx[1]); - LLVector4a& n2 = *(norm+idx[2]); + LLVector4a b,v1,v2; + b.load4a((F32*) (pos+idx[0])); + v1.load4a((F32*) (pos+idx[1])); + v2.load4a((F32*) (pos+idx[2])); //calculate triangle normal - LLVector4a a, b, c; + LLVector4a a; - a.setSub(v0, v1); - b.setSub(v0, v2); - c.setCross3(a,b); + a.setSub(b, v1); + b.sub(v2); + + + LLQuad& vector1 = *((LLQuad*) &v1); + LLQuad& vector2 = *((LLQuad*) &v2); + + LLQuad& amQ = *((LLQuad*) &a); + LLQuad& bmQ = *((LLQuad*) &b); + + //v1.setCross3(t,v0); + //setCross3(const LLVector4a& a, const LLVector4a& b) + // Vectors are stored in memory in w, z, y, x order from high to low + // Set vector1 = { a[W], a[X], a[Z], a[Y] } + vector1 = _mm_shuffle_ps( amQ, amQ, _MM_SHUFFLE( 3, 0, 2, 1 )); + // Set vector2 = { b[W], b[Y], b[X], b[Z] } + vector2 = _mm_shuffle_ps( bmQ, bmQ, _MM_SHUFFLE( 3, 1, 0, 2 )); + // mQ = { a[W]*b[W], a[X]*b[Y], a[Z]*b[X], a[Y]*b[Z] } + vector2 = _mm_mul_ps( vector1, vector2 ); + // vector3 = { a[W], a[Y], a[X], a[Z] } + amQ = _mm_shuffle_ps( amQ, amQ, _MM_SHUFFLE( 3, 1, 0, 2 )); + // vector4 = { b[W], b[X], b[Z], b[Y] } + bmQ = _mm_shuffle_ps( bmQ, bmQ, _MM_SHUFFLE( 3, 0, 2, 1 )); + // mQ = { 0, a[X]*b[Y] - a[Y]*b[X], a[Z]*b[X] - a[X]*b[Z], a[Y]*b[Z] - a[Z]*b[Y] } + vector1 = _mm_sub_ps( vector2, _mm_mul_ps( amQ, bmQ )); + + v1.store4a((F32*) output); + + output++; + idx += 3; + } + + idx = mIndices; + + LLVector4a* src = triangle_normals.mArray; + + for (U32 i = 0; i < count; i++) //for each triangle + { + LLVector4a c; + c.load4a((F32*) (src++)); + + LLVector4a* n0p = norm+idx[0]; + LLVector4a* n1p = norm+idx[1]; + LLVector4a* n2p = norm+idx[2]; + + idx += 3; + + LLVector4a n0,n1,n2; + n0.load4a((F32*) n0p); + n1.load4a((F32*) n1p); + n2.load4a((F32*) n2p); n0.add(c); n1.add(c); @@ -7144,8 +6539,14 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) case 1: n1.add(c); break; case 2: n2.add(c); break; }; + + n0.store4a((F32*) n0p); + n1.store4a((F32*) n1p); + n2.store4a((F32*) n2p); } + LL_CHECK_MEMORY + // adjust normals based on wrapping and stitching LLVector4a top; @@ -7277,6 +6678,8 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) } + LL_CHECK_MEMORY + return TRUE; } @@ -7330,3 +6733,4 @@ void calc_binormal_from_triangle(LLVector4a& binormal, binormal.set( 0, 1 , 0 ); } } + |