summaryrefslogtreecommitdiff
path: root/indra/llmath/llvolume.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llmath/llvolume.cpp')
-rw-r--r--indra/llmath/llvolume.cpp4557
1 files changed, 4557 insertions, 0 deletions
diff --git a/indra/llmath/llvolume.cpp b/indra/llmath/llvolume.cpp
new file mode 100644
index 0000000000..41e01b5193
--- /dev/null
+++ b/indra/llmath/llvolume.cpp
@@ -0,0 +1,4557 @@
+/**
+ * @file llvolume.cpp
+ *
+ * Copyright (c) 2002-$CurrentYear$, Linden Research, Inc.
+ * $License$
+ */
+
+#include "linden_common.h"
+#include "llmath.h"
+
+#include <set>
+
+#include "llerror.h"
+
+#include "llvolumemgr.h"
+#include "v2math.h"
+#include "v3math.h"
+#include "v4math.h"
+#include "m4math.h"
+#include "m3math.h"
+#include "lldarray.h"
+#include "llvolume.h"
+#include "llstl.h"
+
+#define DEBUG_SILHOUETTE_BINORMALS 0
+#define DEBUG_SILHOUETTE_NORMALS 0 // TomY: Use this to display normals using the silhouette
+#define DEBUG_SILHOUETTE_EDGE_MAP 0 // DaveP: Use this to display edge map using the silhouette
+
+const F32 CUT_MIN = 0.f;
+const F32 CUT_MAX = 1.f;
+const F32 MIN_CUT_DELTA = 0.02f;
+
+const F32 HOLLOW_MIN = 0.f;
+const F32 HOLLOW_MAX = 0.95f;
+const F32 HOLLOW_MAX_SQUARE = 0.7f;
+
+const F32 TWIST_MIN = -1.f;
+const F32 TWIST_MAX = 1.f;
+
+const F32 RATIO_MIN = 0.f;
+const F32 RATIO_MAX = 2.f; // Tom Y: Inverted sense here: 0 = top taper, 2 = bottom taper
+
+const F32 HOLE_X_MIN= 0.05f;
+const F32 HOLE_X_MAX= 1.0f;
+
+const F32 HOLE_Y_MIN= 0.05f;
+const F32 HOLE_Y_MAX= 0.5f;
+
+const F32 SHEAR_MIN = -0.5f;
+const F32 SHEAR_MAX = 0.5f;
+
+const F32 REV_MIN = 1.f;
+const F32 REV_MAX = 4.f;
+
+const F32 TAPER_MIN = -1.f;
+const F32 TAPER_MAX = 1.f;
+
+const F32 SKEW_MIN = -0.95f;
+const F32 SKEW_MAX = 0.95f;
+
+BOOL check_same_clock_dir( const LLVector3& pt1, const LLVector3& pt2, const LLVector3& pt3, const LLVector3& norm)
+{
+ LLVector3 test = (pt2-pt1)%(pt3-pt2);
+
+ //answer
+ if(test * norm < 0)
+ {
+ return FALSE;
+ }
+ else
+ {
+ return TRUE;
+ }
+}
+
+// intersect test between triangle pt1,pt2,pt3 and line from linept to linept+vect
+//returns TRUE if intersecting and moves linept to the point of intersection
+BOOL LLTriangleLineSegmentIntersect( const LLVector3& pt1, const LLVector3& pt2, const LLVector3& pt3, LLVector3& linept, const LLVector3& vect)
+{
+ LLVector3 V1 = pt2-pt1;
+ LLVector3 V2 = pt3-pt2;
+
+ LLVector3 norm = V1 % V2;
+
+ F32 dotprod = norm * vect;
+
+ if(dotprod < 0)
+ {
+ //Find point of intersect to triangle plane.
+ //find t to intersect point
+ F32 t = -(norm * (linept-pt1))/dotprod;
+
+ // if ds is neg line started past triangle so can't hit triangle.
+ if (t > 0)
+ {
+ return FALSE;
+ }
+
+ LLVector3 pt_int = linept + (vect*t);
+
+ if(check_same_clock_dir(pt1, pt2, pt_int, norm))
+ {
+ if(check_same_clock_dir(pt2, pt3, pt_int, norm))
+ {
+ if(check_same_clock_dir(pt3, pt1, pt_int, norm))
+ {
+ // answer in pt_int is insde triangle
+ linept.setVec(pt_int);
+ return TRUE;
+ }
+ }
+ }
+ }
+
+ return FALSE;
+}
+
+
+//-------------------------------------------------------------------
+// statics
+//-------------------------------------------------------------------
+
+
+//----------------------------------------------------
+
+LLProfile::Face* LLProfile::addCap(S16 faceID)
+{
+ Face *face = vector_append(mFaces, 1);
+
+ face->mIndex = 0;
+ face->mCount = mTotal;
+ face->mScaleU= 1.0f;
+ face->mCap = TRUE;
+ face->mFaceID = faceID;
+ return face;
+}
+
+LLProfile::Face* LLProfile::addFace(S32 i, S32 count, F32 scaleU, S16 faceID, BOOL flat)
+{
+ Face *face = vector_append(mFaces, 1);
+
+ face->mIndex = i;
+ face->mCount = count;
+ face->mScaleU= scaleU;
+
+ face->mFlat = flat;
+ face->mCap = FALSE;
+ face->mFaceID = faceID;
+ return face;
+}
+
+// What is the bevel parameter used for? - DJS 04/05/02
+// Bevel parameter is currently unused but presumedly would support
+// filleted and chamfered corners
+void LLProfile::genNGon(S32 sides, F32 offset, F32 bevel, F32 ang_scale, S32 split)
+{
+ // Generate an n-sided "circular" path.
+ // 0 is (1,0), and we go counter-clockwise along a circular path from there.
+ const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f };
+ F32 scale = 0.5f;
+ F32 t, t_step, t_first, t_fraction, ang, ang_step;
+ LLVector3 pt1,pt2;
+
+ mMaxX = 0.f;
+ mMinX = 0.f;
+
+ F32 begin = mParams.getBegin();
+ F32 end = mParams.getEnd();
+
+ t_step = 1.0f / sides;
+ ang_step = 2.0f*F_PI*t_step*ang_scale;
+
+ // Scale to have size "match" scale. Compensates to get object to generally fill bounding box.
+
+ S32 total_sides = llround(sides / ang_scale); // Total number of sides all around
+
+ if (total_sides < 8)
+ {
+ scale = tableScale[total_sides];
+ }
+
+ t_first = floor(begin * sides) / (F32)sides;
+
+ // pt1 is the first point on the fractional face.
+ // Starting t and ang values for the first face
+ t = t_first;
+ ang = 2.0f*F_PI*(t*ang_scale + offset);
+ pt1.setVec(cos(ang)*scale,sin(ang)*scale, t);
+
+ // Increment to the next point.
+ // pt2 is the end point on the fractional face
+ t += t_step;
+ ang += ang_step;
+ pt2.setVec(cos(ang)*scale,sin(ang)*scale,t);
+
+ t_fraction = (begin - t_first)*sides;
+
+ // Only use if it's not almost exactly on an edge.
+ if (t_fraction < 0.99f)
+ {
+ LLVector3 new_pt = lerp(pt1, pt2, t_fraction);
+ F32 pt_x = new_pt.mV[VX];
+ if (pt_x < mMinX)
+ {
+ mMinX = pt_x;
+ }
+ else if (pt_x > mMaxX)
+ {
+ mMaxX = pt_x;
+ }
+ mProfile.push_back(new_pt);
+ }
+
+ // There's lots of potential here for floating point error to generate unneeded extra points - DJS 04/05/02
+ while (t < end)
+ {
+ // Iterate through all the integer steps of t.
+ pt1.setVec(cos(ang)*scale,sin(ang)*scale,t);
+
+ F32 pt_x = pt1.mV[VX];
+ if (pt_x < mMinX)
+ {
+ mMinX = pt_x;
+ }
+ else if (pt_x > mMaxX)
+ {
+ mMaxX = pt_x;
+ }
+
+ if (mProfile.size() > 0) {
+ LLVector3 p = mProfile[mProfile.size()-1];
+ for (S32 i = 0; i < split && mProfile.size() > 0; i++) {
+ mProfile.push_back(p+(pt1-p) * 1.0f/(float)(split+1) * (float)(i+1));
+ }
+ }
+ mProfile.push_back(pt1);
+
+ t += t_step;
+ ang += ang_step;
+ }
+
+ t_fraction = (end - (t - t_step))*sides;
+
+ // pt1 is the first point on the fractional face
+ // pt2 is the end point on the fractional face
+ pt2.setVec(cos(ang)*scale,sin(ang)*scale,t);
+
+ // Find the fraction that we need to add to the end point.
+ t_fraction = (end - (t - t_step))*sides;
+ if (t_fraction > 0.01f)
+ {
+ LLVector3 new_pt = lerp(pt1, pt2, t_fraction);
+ F32 pt_x = new_pt.mV[VX];
+ if (pt_x < mMinX)
+ {
+ mMinX = pt_x;
+ }
+ else if (pt_x > mMaxX)
+ {
+ mMaxX = pt_x;
+ }
+
+ if (mProfile.size() > 0) {
+ LLVector3 p = mProfile[mProfile.size()-1];
+ for (S32 i = 0; i < split && mProfile.size() > 0; i++) {
+ mProfile.push_back(p+(new_pt-p) * 1.0f/(float)(split+1) * (float)(i+1));
+ }
+ }
+ mProfile.push_back(new_pt);
+ }
+
+ // If we're sliced, the profile is open.
+ if ((end - begin)*ang_scale < 0.99f)
+ {
+ if ((end - begin)*ang_scale > 0.5f)
+ {
+ mConcave = TRUE;
+ }
+ else
+ {
+ mConcave = FALSE;
+ }
+ mOpen = TRUE;
+ if (!isHollow())
+ {
+ // put center point if not hollow.
+ mProfile.push_back(LLVector3(0,0,0));
+ }
+ }
+ else
+ {
+ // The profile isn't open.
+ mOpen = FALSE;
+ mConcave = FALSE;
+ }
+
+ mTotal = mProfile.size();
+}
+
+void LLProfile::genNormals()
+{
+ S32 count = mProfile.size();
+
+ S32 outer_count;
+ if (mTotalOut)
+ {
+ outer_count = mTotalOut;
+ }
+ else
+ {
+ outer_count = mTotal / 2;
+ }
+
+ mEdgeNormals.resize(count * 2);
+ mEdgeCenters.resize(count * 2);
+ mNormals.resize(count);
+
+ LLVector2 pt0,pt1;
+
+ BOOL hollow;
+ hollow = isHollow();
+
+ S32 i0, i1, i2, i3, i4;
+
+ // Parametrically generate normal
+ for (i2 = 0; i2 < count; i2++)
+ {
+ mNormals[i2].mV[0] = mProfile[i2].mV[0];
+ mNormals[i2].mV[1] = mProfile[i2].mV[1];
+ if (hollow && (i2 >= outer_count))
+ {
+ mNormals[i2] *= -1.f;
+ }
+ if (mNormals[i2].magVec() < 0.001)
+ {
+ // Special case for point at center, get adjacent points.
+ i1 = (i2 - 1) >= 0 ? i2 - 1 : count - 1;
+ i0 = (i1 - 1) >= 0 ? i1 - 1 : count - 1;
+ i3 = (i2 + 1) < count ? i2 + 1 : 0;
+ i4 = (i3 + 1) < count ? i3 + 1 : 0;
+
+ pt0.setVec(mProfile[i1].mV[VX] + mProfile[i1].mV[VX] - mProfile[i0].mV[VX],
+ mProfile[i1].mV[VY] + mProfile[i1].mV[VY] - mProfile[i0].mV[VY]);
+ pt1.setVec(mProfile[i3].mV[VX] + mProfile[i3].mV[VX] - mProfile[i4].mV[VX],
+ mProfile[i3].mV[VY] + mProfile[i3].mV[VY] - mProfile[i4].mV[VY]);
+
+ mNormals[i2] = pt0 + pt1;
+ mNormals[i2] *= 0.5f;
+ }
+ mNormals[i2].normVec();
+ }
+
+ S32 num_normal_sets = isConcave() ? 2 : 1;
+ for (S32 normal_set = 0; normal_set < num_normal_sets; normal_set++)
+ {
+ S32 point_num;
+ for (point_num = 0; point_num < mTotal; point_num++)
+ {
+ LLVector3 point_1 = mProfile[point_num];
+ point_1.mV[VZ] = 0.f;
+
+ LLVector3 point_2;
+
+ if (isConcave() && normal_set == 0 && point_num == (mTotal - 1) / 2)
+ {
+ point_2 = mProfile[mTotal - 1];
+ }
+ else if (isConcave() && normal_set == 1 && point_num == mTotal - 1)
+ {
+ point_2 = mProfile[(mTotal - 1) / 2];
+ }
+ else
+ {
+ LLVector3 delta_pos;
+ S32 neighbor_point = (point_num + 1) % mTotal;
+ while(delta_pos.magVecSquared() < 0.01f * 0.01f)
+ {
+ point_2 = mProfile[neighbor_point];
+ delta_pos = point_2 - point_1;
+ neighbor_point = (neighbor_point + 1) % mTotal;
+ if (neighbor_point == point_num)
+ {
+ break;
+ }
+ }
+ }
+
+ point_2.mV[VZ] = 0.f;
+ LLVector3 face_normal = (point_2 - point_1) % LLVector3::z_axis;
+ face_normal.normVec();
+ mEdgeNormals[normal_set * count + point_num] = face_normal;
+ mEdgeCenters[normal_set * count + point_num] = lerp(point_1, point_2, 0.5f);
+ }
+ }
+}
+
+
+// Hollow is percent of the original bounding box, not of this particular
+// profile's geometry. Thus, a swept triangle needs lower hollow values than
+// a swept square.
+LLProfile::Face* LLProfile::addHole(BOOL flat, F32 sides, F32 offset, F32 box_hollow, F32 ang_scale, S32 split)
+{
+ // Note that addHole will NOT work for non-"circular" profiles, if we ever decide to use them.
+
+ // Total add has number of vertices on outside.
+ mTotalOut = mTotal;
+
+ // Why is the "bevel" parameter -1? DJS 04/05/02
+ genNGon(llfloor(sides),offset,-1, ang_scale, split);
+
+ Face *face = addFace(mTotalOut, mTotal-mTotalOut,0,LL_FACE_INNER_SIDE, flat);
+
+ LLVector3 pt[128];
+
+ for (S32 i=mTotalOut;i<mTotal;i++)
+ {
+ pt[i] = mProfile[i] * box_hollow;
+ }
+
+ S32 j=mTotal-1;
+ for (S32 i=mTotalOut;i<mTotal;i++)
+ {
+ mProfile[i] = pt[j--];
+ }
+
+ for (S32 i=0;i<(S32)mFaces.size();i++)
+ {
+ if (mFaces[i].mCap)
+ {
+ mFaces[i].mCount *= 2;
+ }
+ }
+
+ return face;
+}
+
+BOOL LLProfile::generate(BOOL path_open,F32 detail, S32 split)
+{
+ if (!mDirty)
+ {
+ return FALSE;
+ }
+ mDirty = FALSE;
+
+ if (detail < MIN_LOD)
+ {
+ llinfos << "Generating profile with LOD < MIN_LOD. CLAMPING" << llendl;
+ detail = MIN_LOD;
+ }
+
+ mProfile.clear();
+ mFaces.clear();
+
+ // Generate the face data
+ S32 i;
+ F32 begin = mParams.getBegin();
+ F32 end = mParams.getEnd();
+ F32 hollow = mParams.getHollow();
+
+ // Quick validation to eliminate some server crashes.
+ if (begin > end - 0.01f)
+ {
+ llwarns << "LLProfile::generate() assertion failed (begin >= end)" << llendl;
+ return FALSE;
+ }
+
+ S32 face_num = 0;
+
+ switch (mParams.getCurveType() & LL_PCODE_PROFILE_MASK)
+ {
+ case LL_PCODE_PROFILE_SQUARE:
+ {
+ genNGon(4,-0.375, 0, 1, split);
+ if (path_open)
+ {
+ addCap (LL_FACE_PATH_BEGIN);
+ }
+
+ for (i = llfloor(begin * 4.f); i < llfloor(end * 4.f + .999f); i++)
+ {
+ addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE);
+ }
+
+ for (i = 0; i <(S32) mProfile.size(); i++)
+ {
+ // Scale by 4 to generate proper tex coords.
+ mProfile[i].mV[2] *= 4.f;
+ }
+
+ if (hollow)
+ {
+ switch (mParams.getCurveType() & LL_PCODE_HOLE_MASK)
+ {
+ case LL_PCODE_HOLE_TRIANGLE:
+ // This offset is not correct, but we can't change it now... DK 11/17/04
+ addHole(TRUE, 3, -0.375f, hollow, 1.f, split);
+ break;
+ case LL_PCODE_HOLE_CIRCLE:
+ // TODO: Compute actual detail levels for cubes
+ addHole(FALSE, MIN_DETAIL_FACES * detail, -0.375f, hollow, 1.f);
+ break;
+ case LL_PCODE_HOLE_SAME:
+ case LL_PCODE_HOLE_SQUARE:
+ default:
+ addHole(TRUE, 4, -0.375f, hollow, 1.f, split);
+ break;
+ }
+ }
+
+ if (path_open) {
+ mFaces[0].mCount = mTotal;
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_ISOTRI:
+ case LL_PCODE_PROFILE_RIGHTTRI:
+ case LL_PCODE_PROFILE_EQUALTRI:
+ {
+ genNGon(3,0, 0, 1, split);
+ for (i = 0; i <(S32) mProfile.size(); i++)
+ {
+ // Scale by 3 to generate proper tex coords.
+ mProfile[i].mV[2] *= 3.f;
+ }
+
+ if (path_open)
+ {
+ addCap(LL_FACE_PATH_BEGIN);
+ }
+
+ for (i = llfloor(begin * 3.f); i < llfloor(end * 3.f + .999f); i++)
+ {
+ addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE);
+ }
+ if (hollow)
+ {
+ // Swept triangles need smaller hollowness values,
+ // because the triangle doesn't fill the bounding box.
+ F32 triangle_hollow = hollow / 2.f;
+
+ switch (mParams.getCurveType() & LL_PCODE_HOLE_MASK)
+ {
+ case LL_PCODE_HOLE_CIRCLE:
+ // TODO: Actually generate level of detail for triangles
+ addHole(FALSE, MIN_DETAIL_FACES * detail, 0, triangle_hollow, 1.f);
+ break;
+ case LL_PCODE_HOLE_SQUARE:
+ addHole(TRUE, 4, 0, triangle_hollow, 1.f, split);
+ break;
+ case LL_PCODE_HOLE_SAME:
+ case LL_PCODE_HOLE_TRIANGLE:
+ default:
+ addHole(TRUE, 3, 0, triangle_hollow, 1.f, split);
+ break;
+ }
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_CIRCLE:
+ {
+ // If this has a square hollow, we should adjust the
+ // number of faces a bit so that the geometry lines up.
+ U8 hole_type=0;
+ F32 circle_detail = MIN_DETAIL_FACES * detail;
+ if (hollow)
+ {
+ hole_type = mParams.getCurveType() & LL_PCODE_HOLE_MASK;
+ if (hole_type == LL_PCODE_HOLE_SQUARE)
+ {
+ // Snap to the next multiple of four sides,
+ // so that corners line up.
+ circle_detail = llceil(circle_detail / 4.0f) * 4.0f;
+ }
+ }
+
+ //llinfos << "(CIRCLE) detail: " << detail << "; genNGon("
+ // << llfloor(circle_detail) << ")" << llendl;
+ genNGon(llfloor(circle_detail));
+ if (path_open)
+ {
+ addCap (LL_FACE_PATH_BEGIN);
+ }
+
+ if (mOpen && !hollow)
+ {
+ addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, FALSE);
+ }
+ else
+ {
+ addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, FALSE);
+ }
+
+ if (hollow)
+ {
+ switch (hole_type)
+ {
+ case LL_PCODE_HOLE_SQUARE:
+ addHole(TRUE, 4, 0, hollow, 1.f, split);
+ break;
+ case LL_PCODE_HOLE_TRIANGLE:
+ addHole(TRUE, 3, 0, hollow, 1.f, split);
+ break;
+ case LL_PCODE_HOLE_CIRCLE:
+ case LL_PCODE_HOLE_SAME:
+ default:
+ addHole(FALSE, circle_detail, 0, hollow, 1.f);
+ break;
+ }
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_CIRCLE_HALF:
+ {
+ // If this has a square hollow, we should adjust the
+ // number of faces a bit so that the geometry lines up.
+ U8 hole_type=0;
+ // Number of faces is cut in half because it's only a half-circle.
+ F32 circle_detail = MIN_DETAIL_FACES * detail * 0.5f;
+ if (hollow)
+ {
+ hole_type = mParams.getCurveType() & LL_PCODE_HOLE_MASK;
+ if (hole_type == LL_PCODE_HOLE_SQUARE)
+ {
+ // Snap to the next multiple of four sides (div 2),
+ // so that corners line up.
+ circle_detail = llceil(circle_detail / 2.0f) * 2.0f;
+ }
+ }
+ genNGon(llfloor(circle_detail), 0.5f, 0.f, 0.5f);
+ if (path_open)
+ {
+ addCap(LL_FACE_PATH_BEGIN);
+ }
+ if (mOpen && !mParams.getHollow())
+ {
+ addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, FALSE);
+ }
+ else
+ {
+ addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, FALSE);
+ }
+
+ if (hollow)
+ {
+ switch (hole_type)
+ {
+ case LL_PCODE_HOLE_SQUARE:
+ addHole(TRUE, 2, 0.5f, hollow, 0.5f, split);
+ break;
+ case LL_PCODE_HOLE_TRIANGLE:
+ addHole(TRUE, 3, 0.5f, hollow, 0.5f, split);
+ break;
+ case LL_PCODE_HOLE_CIRCLE:
+ case LL_PCODE_HOLE_SAME:
+ default:
+ addHole(FALSE, circle_detail, 0.5f, hollow, 0.5f);
+ break;
+ }
+ }
+
+ // Special case for openness of sphere
+ if ((mParams.getEnd() - mParams.getBegin()) < 1.f)
+ {
+ mOpen = TRUE;
+ }
+ else if (!hollow)
+ {
+ mOpen = FALSE;
+ mProfile.push_back(mProfile[0]);
+ mTotal++;
+ }
+ }
+ break;
+ default:
+ llerrs << "Unknown profile: getCurveType()=" << mParams.getCurveType() << llendl;
+ break;
+ };
+
+ if (path_open)
+ {
+ addCap(LL_FACE_PATH_END); // bottom
+ }
+
+ if ( mOpen) // interior edge caps
+ {
+ addFace(mTotal-1, 2,0.5,LL_FACE_PROFILE_BEGIN, TRUE);
+
+ if (hollow)
+ {
+ addFace(mTotalOut-1, 2,0.5,LL_FACE_PROFILE_END, TRUE);
+ }
+ else
+ {
+ addFace(mTotal-2, 2,0.5,LL_FACE_PROFILE_END, TRUE);
+ }
+ }
+
+ //genNormals();
+
+ return TRUE;
+}
+
+
+
+BOOL LLProfileParams::importFile(FILE *fp)
+{
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE];
+ char keyword[256];
+ char valuestr[256];
+ keyword[0] = 0;
+ valuestr[0] = 0;
+ F32 tempF32;
+ U32 tempU32;
+
+ while (!feof(fp))
+ {
+ fgets(buffer, BUFSIZE, fp);
+ sscanf(buffer, " %s %s", keyword, valuestr);
+ if (!keyword)
+ {
+ continue;
+ }
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("curve", keyword))
+ {
+ sscanf(valuestr,"%d",&tempU32);
+ setCurveType((U8) tempU32);
+ }
+ else if (!strcmp("begin",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setBegin(tempF32);
+ }
+ else if (!strcmp("end",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setEnd(tempF32);
+ }
+ else if (!strcmp("hollow",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setHollow(tempF32);
+ }
+ else
+ {
+ llwarns << "unknown keyword " << keyword << " in profile import" << llendl;
+ }
+ }
+
+ return TRUE;
+}
+
+
+BOOL LLProfileParams::exportFile(FILE *fp) const
+{
+ fprintf(fp,"\t\tprofile 0\n");
+ fprintf(fp,"\t\t{\n");
+ fprintf(fp,"\t\t\tcurve\t%d\n", getCurveType());
+ fprintf(fp,"\t\t\tbegin\t%g\n", getBegin());
+ fprintf(fp,"\t\t\tend\t%g\n", getEnd());
+ fprintf(fp,"\t\t\thollow\t%g\n", getHollow());
+ fprintf(fp, "\t\t}\n");
+ return TRUE;
+}
+
+
+BOOL LLProfileParams::importLegacyStream(std::istream& input_stream)
+{
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE];
+ char keyword[256];
+ char valuestr[256];
+ keyword[0] = 0;
+ valuestr[0] = 0;
+ F32 tempF32;
+ U32 tempU32;
+
+ while (input_stream.good())
+ {
+ input_stream.getline(buffer, BUFSIZE);
+ sscanf(buffer, " %s %s", keyword, valuestr);
+ if (!keyword)
+ {
+ continue;
+ }
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("curve", keyword))
+ {
+ sscanf(valuestr,"%d",&tempU32);
+ setCurveType((U8) tempU32);
+ }
+ else if (!strcmp("begin",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setBegin(tempF32);
+ }
+ else if (!strcmp("end",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setEnd(tempF32);
+ }
+ else if (!strcmp("hollow",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setHollow(tempF32);
+ }
+ else
+ {
+ llwarns << "unknown keyword " << keyword << " in profile import" << llendl;
+ }
+ }
+
+ return TRUE;
+}
+
+
+BOOL LLProfileParams::exportLegacyStream(std::ostream& output_stream) const
+{
+ output_stream <<"\t\tprofile 0\n";
+ output_stream <<"\t\t{\n";
+ output_stream <<"\t\t\tcurve\t" << (S32) getCurveType() << "\n";
+ output_stream <<"\t\t\tbegin\t" << getBegin() << "\n";
+ output_stream <<"\t\t\tend\t" << getEnd() << "\n";
+ output_stream <<"\t\t\thollow\t" << getHollow() << "\n";
+ output_stream << "\t\t}\n";
+ return TRUE;
+}
+
+LLSD LLProfileParams::asLLSD() const
+{
+ LLSD sd;
+
+ sd["curve"] = getCurveType();
+ sd["begin"] = getBegin();
+ sd["end"] = getEnd();
+ sd["hollow"] = getHollow();
+ return sd;
+}
+
+bool LLProfileParams::fromLLSD(LLSD& sd)
+{
+ setCurveType(sd["curve"].asInteger());
+ setBegin((F32)sd["begin"].asReal());
+ setEnd((F32)sd["end"].asReal());
+ setHollow((F32)sd["hollow"].asReal());
+ return true;
+}
+
+void LLProfileParams::copyParams(const LLProfileParams &params)
+{
+ setCurveType(params.getCurveType());
+ setBegin(params.getBegin());
+ setEnd(params.getEnd());
+ setHollow(params.getHollow());
+}
+
+
+LLPath::~LLPath()
+{
+}
+
+void LLPath::genNGon(S32 sides, F32 startOff, F32 end_scale, F32 twist_scale)
+{
+ // Generates a circular path, starting at (1, 0, 0), counterclockwise along the xz plane.
+ const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f };
+
+ F32 revolutions = mParams.getRevolutions();
+ F32 skew = mParams.getSkew();
+ F32 skew_mag = fabs(skew);
+ F32 hole_x = mParams.getScaleX() * (1.0f - skew_mag);
+ F32 hole_y = mParams.getScaleY();
+
+ // Calculate taper begin/end for x,y (Negative means taper the beginning)
+ F32 taper_x_begin = 1.0f;
+ F32 taper_x_end = 1.0f - mParams.getTaperX();
+ F32 taper_y_begin = 1.0f;
+ F32 taper_y_end = 1.0f - mParams.getTaperY();
+
+ if ( taper_x_end > 1.0f )
+ {
+ // Flip tapering.
+ taper_x_begin = 2.0f - taper_x_end;
+ taper_x_end = 1.0f;
+ }
+ if ( taper_y_end > 1.0f )
+ {
+ // Flip tapering.
+ taper_y_begin = 2.0f - taper_y_end;
+ taper_y_end = 1.0f;
+ }
+
+ // For spheres, the radius is usually zero.
+ F32 radius_start = 0.5f;
+ if (sides < 8)
+ {
+ radius_start = tableScale[sides];
+ }
+
+ // Scale the radius to take the hole size into account.
+ radius_start *= 1.0f - hole_y;
+
+ // Now check the radius offset to calculate the start,end radius. (Negative means
+ // decrease the start radius instead).
+ F32 radius_end = radius_start;
+ F32 radius_offset = mParams.getRadiusOffset();
+ if (radius_offset < 0.f)
+ {
+ radius_start *= 1.f + radius_offset;
+ }
+ else
+ {
+ radius_end *= 1.f - radius_offset;
+ }
+
+ // Is the path NOT a closed loop?
+ mOpen = ( (mParams.getEnd()*end_scale - mParams.getBegin() < 1.0f) ||
+ (skew_mag > 0.001f) ||
+ (fabs(taper_x_end - taper_x_begin) > 0.001f) ||
+ (fabs(taper_y_end - taper_y_begin) > 0.001f) ||
+ (fabs(radius_end - radius_start) > 0.001f) );
+
+ F32 ang, c, s;
+ LLQuaternion twist, qang;
+ PathPt *pt;
+ LLVector3 path_axis (1.f, 0.f, 0.f);
+ //LLVector3 twist_axis(0.f, 0.f, 1.f);
+ F32 twist_begin = mParams.getTwistBegin() * twist_scale;
+ F32 twist_end = mParams.getTwist() * twist_scale;
+
+ // We run through this once before the main loop, to make sure
+ // the path begins at the correct cut.
+ F32 step= 1.0f / sides;
+ F32 t = mParams.getBegin();
+ pt = vector_append(mPath, 1);
+ ang = 2.0f*F_PI*revolutions * t;
+ s = sin(ang)*lerp(radius_start, radius_end, t);
+ c = cos(ang)*lerp(radius_start, radius_end, t);
+
+
+ pt->mPos.setVec(0 + lerp(0,mParams.getShear().mV[0],s)
+ + lerp(-skew ,skew, t) * 0.5f,
+ c + lerp(0,mParams.getShear().mV[1],s),
+ s);
+ pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t);
+ pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t);
+ pt->mTexT = t;
+
+ // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
+ twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
+ // Rotate the point around the circle's center.
+ qang.setQuat (ang,path_axis);
+ pt->mRot = twist * qang;
+
+ t+=step;
+
+ // Snap to a quantized parameter, so that cut does not
+ // affect most sample points.
+ t = ((S32)(t * sides)) / (F32)sides;
+
+ // Run through the non-cut dependent points.
+ while (t < mParams.getEnd())
+ {
+ pt = vector_append(mPath, 1);
+
+ ang = 2.0f*F_PI*revolutions * t;
+ c = cos(ang)*lerp(radius_start, radius_end, t);
+ s = sin(ang)*lerp(radius_start, radius_end, t);
+
+ pt->mPos.setVec(0 + lerp(0,mParams.getShear().mV[0],s)
+ + lerp(-skew ,skew, t) * 0.5f,
+ c + lerp(0,mParams.getShear().mV[1],s),
+ s);
+
+ pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t);
+ pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t);
+ pt->mTexT = t;
+
+ // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
+ twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
+ // Rotate the point around the circle's center.
+ qang.setQuat (ang,path_axis);
+ pt->mRot = twist * qang;
+
+ t+=step;
+ }
+
+ // Make one final pass for the end cut.
+ t = mParams.getEnd();
+ pt = vector_append(mPath, 1);
+ ang = 2.0f*F_PI*revolutions * t;
+ c = cos(ang)*lerp(radius_start, radius_end, t);
+ s = sin(ang)*lerp(radius_start, radius_end, t);
+
+ pt->mPos.setVec(0 + lerp(0,mParams.getShear().mV[0],s)
+ + lerp(-skew ,skew, t) * 0.5f,
+ c + lerp(0,mParams.getShear().mV[1],s),
+ s);
+ pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t);
+ pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t);
+ pt->mTexT = t;
+
+ // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
+ twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
+ // Rotate the point around the circle's center.
+ qang.setQuat (ang,path_axis);
+ pt->mRot = twist * qang;
+
+ mTotal = mPath.size();
+}
+
+const LLVector2 LLPathParams::getBeginScale() const
+{
+ LLVector2 begin_scale(1.f, 1.f);
+ if (getScaleX() > 1)
+ {
+ begin_scale.mV[0] = 2-getScaleX();
+ }
+ if (getScaleY() > 1)
+ {
+ begin_scale.mV[1] = 2-getScaleY();
+ }
+ return begin_scale;
+}
+
+const LLVector2 LLPathParams::getEndScale() const
+{
+ LLVector2 end_scale(1.f, 1.f);
+ if (getScaleX() < 1)
+ {
+ end_scale.mV[0] = getScaleX();
+ }
+ if (getScaleY() < 1)
+ {
+ end_scale.mV[1] = getScaleY();
+ }
+ return end_scale;
+}
+
+BOOL LLPath::generate(F32 detail, S32 split)
+{
+ if (!mDirty)
+ {
+ return FALSE;
+ }
+
+ if (detail < MIN_LOD)
+ {
+ llinfos << "Generating path with LOD < MIN! Clamping to 1" << llendl;
+ detail = MIN_LOD;
+ }
+
+ mDirty = FALSE;
+ S32 np = 2; // hardcode for line
+
+ mPath.clear();
+ mOpen = TRUE;
+
+ // Is this 0xf0 mask really necessary? DK 03/02/05
+ switch (mParams.getCurveType() & 0xf0)
+ {
+ default:
+ case LL_PCODE_PATH_LINE:
+ {
+ // Take the begin/end twist into account for detail.
+ np = llfloor(fabs(mParams.getTwistBegin() - mParams.getTwist()) * 3.5f * (detail-0.5f)) + 2;
+ if (np < split+2)
+ {
+ np = split+2;
+ }
+
+ mStep = 1.0f / (np-1);
+
+ mPath.resize(np);
+
+ LLVector2 start_scale = mParams.getBeginScale();
+ LLVector2 end_scale = mParams.getEndScale();
+
+ for (S32 i=0;i<np;i++)
+ {
+ F32 t = lerp(mParams.getBegin(),mParams.getEnd(),(F32)i * mStep);
+ mPath[i].mPos.setVec(lerp(0,mParams.getShear().mV[0],t),
+ lerp(0,mParams.getShear().mV[1],t),
+ t - 0.5f);
+ mPath[i].mRot.setQuat(lerp(F_PI * mParams.getTwistBegin(),F_PI * mParams.getTwist(),t),0,0,1);
+ mPath[i].mScale.mV[0] = lerp(start_scale.mV[0],end_scale.mV[0],t);
+ mPath[i].mScale.mV[1] = lerp(start_scale.mV[1],end_scale.mV[1],t);
+ mPath[i].mTexT = t;
+ }
+ }
+ break;
+
+ case LL_PCODE_PATH_CIRCLE:
+ {
+ // Increase the detail as the revolutions and twist increase.
+ F32 twist_mag = fabs(mParams.getTwistBegin() - mParams.getTwist());
+ genNGon(llfloor(llfloor((MIN_DETAIL_FACES * detail + twist_mag * 3.5f * (detail-0.5f))) * mParams.getRevolutions()));
+ }
+ break;
+
+ case LL_PCODE_PATH_CIRCLE2:
+ {
+ if (mParams.getEnd() - mParams.getBegin() >= 0.99f &&
+ mParams.getScaleX() >= .99f)
+ {
+ mOpen = FALSE;
+ }
+
+ //genNGon(llfloor(MIN_DETAIL_FACES * detail), 4.f, 0.f);
+ genNGon(llfloor(MIN_DETAIL_FACES * detail));
+
+ F32 t = 0.f;
+ F32 tStep = 1.0f / mPath.size();
+
+ F32 toggle = 0.5f;
+ for (S32 i=0;i<(S32)mPath.size();i++)
+ {
+ mPath[i].mPos.mV[0] = toggle;
+ if (toggle == 0.5f)
+ toggle = -0.5f;
+ else
+ toggle = 0.5f;
+ t += tStep;
+ }
+ }
+
+ break;
+
+ case LL_PCODE_PATH_TEST:
+
+ np = 5;
+ mStep = 1.0f / (np-1);
+
+ mPath.resize(np);
+
+ for (S32 i=0;i<np;i++)
+ {
+ F32 t = (F32)i * mStep;
+ mPath[i].mPos.setVec(0,
+ lerp(0, -sin(F_PI*mParams.getTwist()*t)*0.5f,t),
+ lerp(-0.5, cos(F_PI*mParams.getTwist()*t)*0.5f,t));
+ mPath[i].mScale.mV[0] = lerp(1,mParams.getScale().mV[0],t);
+ mPath[i].mScale.mV[1] = lerp(1,mParams.getScale().mV[1],t);
+ mPath[i].mTexT = t;
+ mPath[i].mRot.setQuat(F_PI * mParams.getTwist() * t,1,0,0);
+ }
+
+ break;
+ };
+
+ if (mParams.getTwist() != mParams.getTwistBegin()) mOpen = TRUE;
+
+ //if ((int(fabsf(mParams.getTwist() - mParams.getTwistBegin())*100))%100 != 0) {
+ // mOpen = TRUE;
+ //}
+
+ return TRUE;
+}
+
+BOOL LLDynamicPath::generate(F32 detail, S32 split)
+{
+ mOpen = TRUE; // Draw end caps
+ if (getPathLength() == 0)
+ {
+ // Path hasn't been generated yet.
+ // Some algorithms later assume at least TWO path points.
+ resizePath(2);
+ for (U32 i = 0; i < 2; i++)
+ {
+ mPath[i].mPos.setVec(0, 0, 0);
+ mPath[i].mRot.setQuat(0, 0, 0);
+ mPath[i].mScale.setVec(1, 1);
+ mPath[i].mTexT = 0;
+ }
+ }
+
+ return TRUE;
+}
+
+
+BOOL LLPathParams::importFile(FILE *fp)
+{
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE];
+ char keyword[256];
+ char valuestr[256];
+ keyword[0] = 0;
+ valuestr[0] = 0;
+
+ F32 tempF32;
+ F32 x, y;
+ U32 tempU32;
+
+ while (!feof(fp))
+ {
+ fgets(buffer, BUFSIZE, fp);
+ sscanf(buffer, " %s %s", keyword, valuestr);
+ if (!keyword)
+ {
+ continue;
+ }
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("curve", keyword))
+ {
+ sscanf(valuestr,"%d",&tempU32);
+ setCurveType((U8) tempU32);
+ }
+ else if (!strcmp("begin",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setBegin(tempF32);
+ }
+ else if (!strcmp("end",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setEnd(tempF32);
+ }
+ else if (!strcmp("scale",keyword))
+ {
+ // Legacy for one dimensional scale per path
+ sscanf(valuestr,"%g",&tempF32);
+ setScale(tempF32, tempF32);
+ }
+ else if (!strcmp("scale_x", keyword))
+ {
+ sscanf(valuestr, "%g", &x);
+ setScaleX(x);
+ }
+ else if (!strcmp("scale_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setScaleY(y);
+ }
+ else if (!strcmp("shear_x", keyword))
+ {
+ sscanf(valuestr, "%g", &x);
+ setShearX(x);
+ }
+ else if (!strcmp("shear_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setShearY(y);
+ }
+ else if (!strcmp("twist",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setTwist(tempF32);
+ }
+ else if (!strcmp("twist_begin", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTwistBegin(y);
+ }
+ else if (!strcmp("radius_offset", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setRadiusOffset(y);
+ }
+ else if (!strcmp("taper_x", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTaperX(y);
+ }
+ else if (!strcmp("taper_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTaperY(y);
+ }
+ else if (!strcmp("revolutions", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setRevolutions(y);
+ }
+ else if (!strcmp("skew", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setSkew(y);
+ }
+ else
+ {
+ llwarns << "unknown keyword " << " in path import" << llendl;
+ }
+ }
+ return TRUE;
+}
+
+
+BOOL LLPathParams::exportFile(FILE *fp) const
+{
+ fprintf(fp, "\t\tpath 0\n");
+ fprintf(fp, "\t\t{\n");
+ fprintf(fp, "\t\t\tcurve\t%d\n", getCurveType());
+ fprintf(fp, "\t\t\tbegin\t%g\n", getBegin());
+ fprintf(fp, "\t\t\tend\t%g\n", getEnd());
+ fprintf(fp, "\t\t\tscale_x\t%g\n", getScaleX() );
+ fprintf(fp, "\t\t\tscale_y\t%g\n", getScaleY() );
+ fprintf(fp, "\t\t\tshear_x\t%g\n", getShearX() );
+ fprintf(fp, "\t\t\tshear_y\t%g\n", getShearY() );
+ fprintf(fp,"\t\t\ttwist\t%g\n", getTwist());
+
+ fprintf(fp,"\t\t\ttwist_begin\t%g\n", getTwistBegin());
+ fprintf(fp,"\t\t\tradius_offset\t%g\n", getRadiusOffset());
+ fprintf(fp,"\t\t\ttaper_x\t%g\n", getTaperX());
+ fprintf(fp,"\t\t\ttaper_y\t%g\n", getTaperY());
+ fprintf(fp,"\t\t\trevolutions\t%g\n", getRevolutions());
+ fprintf(fp,"\t\t\tskew\t%g\n", getSkew());
+
+ fprintf(fp, "\t\t}\n");
+ return TRUE;
+}
+
+
+BOOL LLPathParams::importLegacyStream(std::istream& input_stream)
+{
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE];
+ char keyword[256];
+ char valuestr[256];
+ keyword[0] = 0;
+ valuestr[0] = 0;
+
+ F32 tempF32;
+ F32 x, y;
+ U32 tempU32;
+
+ while (input_stream.good())
+ {
+ input_stream.getline(buffer, BUFSIZE);
+ sscanf(buffer, " %s %s", keyword, valuestr);
+ if (!keyword)
+ {
+ continue;
+ }
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("curve", keyword))
+ {
+ sscanf(valuestr,"%d",&tempU32);
+ setCurveType((U8) tempU32);
+ }
+ else if (!strcmp("begin",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setBegin(tempF32);
+ }
+ else if (!strcmp("end",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setEnd(tempF32);
+ }
+ else if (!strcmp("scale",keyword))
+ {
+ // Legacy for one dimensional scale per path
+ sscanf(valuestr,"%g",&tempF32);
+ setScale(tempF32, tempF32);
+ }
+ else if (!strcmp("scale_x", keyword))
+ {
+ sscanf(valuestr, "%g", &x);
+ setScaleX(x);
+ }
+ else if (!strcmp("scale_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setScaleY(y);
+ }
+ else if (!strcmp("shear_x", keyword))
+ {
+ sscanf(valuestr, "%g", &x);
+ setShearX(x);
+ }
+ else if (!strcmp("shear_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setShearY(y);
+ }
+ else if (!strcmp("twist",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setTwist(tempF32);
+ }
+ else if (!strcmp("twist_begin", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTwistBegin(y);
+ }
+ else if (!strcmp("radius_offset", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setRadiusOffset(y);
+ }
+ else if (!strcmp("taper_x", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTaperX(y);
+ }
+ else if (!strcmp("taper_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTaperY(y);
+ }
+ else if (!strcmp("revolutions", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setRevolutions(y);
+ }
+ else if (!strcmp("skew", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setSkew(y);
+ }
+ else
+ {
+ llwarns << "unknown keyword " << " in path import" << llendl;
+ }
+ }
+ return TRUE;
+}
+
+
+BOOL LLPathParams::exportLegacyStream(std::ostream& output_stream) const
+{
+ output_stream << "\t\tpath 0\n";
+ output_stream << "\t\t{\n";
+ output_stream << "\t\t\tcurve\t" << (S32) getCurveType() << "\n";
+ output_stream << "\t\t\tbegin\t" << getBegin() << "\n";
+ output_stream << "\t\t\tend\t" << getEnd() << "\n";
+ output_stream << "\t\t\tscale_x\t" << getScaleX() << "\n";
+ output_stream << "\t\t\tscale_y\t" << getScaleY() << "\n";
+ output_stream << "\t\t\tshear_x\t" << getShearX() << "\n";
+ output_stream << "\t\t\tshear_y\t" << getShearY() << "\n";
+ output_stream <<"\t\t\ttwist\t" << getTwist() << "\n";
+
+ output_stream <<"\t\t\ttwist_begin\t" << getTwistBegin() << "\n";
+ output_stream <<"\t\t\tradius_offset\t" << getRadiusOffset() << "\n";
+ output_stream <<"\t\t\ttaper_x\t" << getTaperX() << "\n";
+ output_stream <<"\t\t\ttaper_y\t" << getTaperY() << "\n";
+ output_stream <<"\t\t\trevolutions\t" << getRevolutions() << "\n";
+ output_stream <<"\t\t\tskew\t" << getSkew() << "\n";
+
+ output_stream << "\t\t}\n";
+ return TRUE;
+}
+
+LLSD LLPathParams::asLLSD() const
+{
+ LLSD sd = LLSD();
+ sd["curve"] = getCurveType();
+ sd["begin"] = getBegin();
+ sd["end"] = getEnd();
+ sd["scale_x"] = getScaleX();
+ sd["scale_y"] = getScaleY();
+ sd["shear_x"] = getShearX();
+ sd["shear_y"] = getShearY();
+ sd["twist"] = getTwist();
+ sd["twist_begin"] = getTwistBegin();
+ sd["radius_offset"] = getRadiusOffset();
+ sd["taper_x"] = getTaperX();
+ sd["taper_y"] = getTaperY();
+ sd["revolutions"] = getRevolutions();
+ sd["skew"] = getSkew();
+
+ return sd;
+}
+
+bool LLPathParams::fromLLSD(LLSD& sd)
+{
+ setCurveType(sd["curve"].asInteger());
+ setBegin((F32)sd["begin"].asReal());
+ setEnd((F32)sd["end"].asReal());
+ setScaleX((F32)sd["scale_x"].asReal());
+ setScaleY((F32)sd["scale_y"].asReal());
+ setShearX((F32)sd["shear_x"].asReal());
+ setShearY((F32)sd["shear_y"].asReal());
+ setTwist((F32)sd["twist"].asReal());
+ setTwistBegin((F32)sd["twist_begin"].asReal());
+ setRadiusOffset((F32)sd["radius_offset"].asReal());
+ setTaperX((F32)sd["taper_x"].asReal());
+ setTaperY((F32)sd["taper_y"].asReal());
+ setRevolutions((F32)sd["revolutions"].asReal());
+ setSkew((F32)sd["skew"].asReal());
+ return true;
+}
+
+void LLPathParams::copyParams(const LLPathParams &params)
+{
+ setCurveType(params.getCurveType());
+ setBegin(params.getBegin());
+ setEnd(params.getEnd());
+ setScale(params.getScaleX(), params.getScaleY() );
+ setShear(params.getShearX(), params.getShearY() );
+ setTwist(params.getTwist());
+ setTwistBegin(params.getTwistBegin());
+ setRadiusOffset(params.getRadiusOffset());
+ setTaper( params.getTaperX(), params.getTaperY() );
+ setRevolutions(params.getRevolutions());
+ setSkew(params.getSkew());
+}
+
+LLProfile::~LLProfile()
+{
+
+}
+
+
+S32 LLVolume::mNumMeshPoints = 0;
+
+LLVolume::LLVolume(const LLVolumeParams &params, const F32 detail, const BOOL generate_single_face, const BOOL is_unique) : mParams(params)
+{
+ mUnique = is_unique;
+ mFaceMask = 0x0;
+ mDetail = detail;
+ // set defaults
+ if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_FLEXIBLE)
+ {
+ mPathp = new LLDynamicPath(mParams.getPathParams());
+ }
+ else
+ {
+ mPathp = new LLPath(mParams.getPathParams());
+ }
+ mProfilep = new LLProfile(mParams.getProfileParams());
+
+ mNumVolumeFaces = 0;
+ mVolumeFaces = NULL;
+ mGenerateSingleFace = generate_single_face;
+
+ generate();
+ createVolumeFaces();
+}
+
+void LLVolume::regen()
+{
+ generate();
+ createVolumeFaces();
+}
+
+LLVolume::~LLVolume()
+{
+ mNumMeshPoints -= mMesh.size();
+ delete mPathp;
+ delete mProfilep;
+ delete[] mVolumeFaces;
+
+ mPathp = NULL;
+ mProfilep = NULL;
+ mVolumeFaces = NULL;
+}
+
+BOOL LLVolume::generate()
+{
+ //Added 10.03.05 Dave Parks
+ // Split is a parameter to LLProfile::generate that tesselates edges on the profile
+ // to prevent lighting and texture interpolation errors on triangles that are
+ // stretched due to twisting or scaling on the path.
+ S32 split = (S32) ((mDetail)*0.66f);
+
+ if (mPathp->mParams.getCurveType() == LL_PCODE_PATH_LINE &&
+ (mPathp->mParams.getScale().mV[0] != 1.0f ||
+ mPathp->mParams.getScale().mV[1] != 1.0f) &&
+ (mProfilep->mParams.getCurveType() == LL_PCODE_PROFILE_SQUARE ||
+ mProfilep->mParams.getCurveType() == LL_PCODE_PROFILE_ISOTRI ||
+ mProfilep->mParams.getCurveType() == LL_PCODE_PROFILE_EQUALTRI ||
+ mProfilep->mParams.getCurveType() == LL_PCODE_PROFILE_RIGHTTRI))
+ {
+ split = 0;
+ }
+
+ mLODScaleBias.setVec(0.5f, 0.5f, 0.5f);
+
+ F32 profile_detail = mDetail;
+ F32 path_detail = mDetail;
+
+ U8 path_type = mPathp->mParams.getCurveType();
+ U8 profile_type = mProfilep->mParams.getCurveType();
+
+ if (path_type == LL_PCODE_PATH_LINE && profile_type == LL_PCODE_PROFILE_CIRCLE)
+ { //cylinders don't care about Z-Axis
+ mLODScaleBias.setVec(0.6f, 0.6f, 0.0f);
+ }
+ else if (path_type == LL_PCODE_PATH_CIRCLE)
+ {
+ mLODScaleBias.setVec(0.6f, 0.6f, 0.6f);
+ }
+
+ BOOL regenPath = mPathp->generate(path_detail, split);
+ BOOL regenProf = mProfilep->generate(mPathp->isOpen(),profile_detail, split);
+
+ if (regenPath || regenProf )
+ {
+ mNumMeshPoints -= mMesh.size();
+ mMesh.resize(mProfilep->mProfile.size() * mPathp->mPath.size());
+ mNumMeshPoints += mMesh.size();
+
+ S32 s = 0, t=0;
+ S32 sizeS = mPathp->mPath.size();
+ S32 sizeT = mProfilep->mProfile.size();
+ S32 line = 0;
+
+ //generate vertex positions
+
+ // Run along the path.
+ while (s < sizeS)
+ {
+ LLVector2 scale = mPathp->mPath[s].mScale;
+ LLQuaternion rot = mPathp->mPath[s].mRot;
+
+ t = 0;
+ // Run along the profile.
+ while (t < sizeT)
+ {
+ S32 i = t + line;
+ Point& pt = mMesh[i];
+
+ pt.mPos.mV[0] = mProfilep->mProfile[t].mV[0] * scale.mV[0];
+ pt.mPos.mV[1] = mProfilep->mProfile[t].mV[1] * scale.mV[1];
+ pt.mPos.mV[2] = 0.0f;
+ pt.mPos = pt.mPos * rot;
+ pt.mPos += mPathp->mPath[s].mPos;
+ t++;
+ }
+ line += sizeT;
+ s++;
+ }
+
+ for (S32 i = 0; i < (S32)mProfilep->mFaces.size(); i++)
+ {
+ mFaceMask |= mProfilep->mFaces[i].mFaceID;
+ }
+ return TRUE;
+ }
+ return FALSE;
+}
+
+
+void LLVolume::createVolumeFaces()
+{
+ S32 i;
+
+ if (mVolumeFaces != NULL)
+ {
+ delete[] mVolumeFaces;
+ mVolumeFaces = NULL;
+ }
+
+ if (mGenerateSingleFace)
+ {
+ mNumVolumeFaces = 0;
+ }
+ else
+ {
+ S32 num_faces = getNumFaces();
+ mNumVolumeFaces = num_faces;
+ mVolumeFaces = new LLVolumeFace[num_faces];
+ // Initialize volume faces with parameter data
+ for (i = 0; i < num_faces; i++)
+ {
+ LLVolumeFace &vf = mVolumeFaces[i];
+ LLProfile::Face &face = mProfilep->mFaces[i];
+ vf.mVolumep = this;
+ vf.mBeginS = face.mIndex;
+ vf.mNumS = face.mCount;
+ vf.mBeginT = 0;
+ vf.mNumT= getPath().mPath.size();
+ vf.mID = i;
+
+ // Set the type mask bits correctly
+ if (mProfilep->isHollow())
+ {
+ vf.mTypeMask |= LLVolumeFace::HOLLOW_MASK;
+ }
+ if (mProfilep->isOpen())
+ {
+ vf.mTypeMask |= LLVolumeFace::OPEN_MASK;
+ }
+ if (face.mCap)
+ {
+ vf.mTypeMask |= LLVolumeFace::CAP_MASK;
+ if (face.mFaceID == LL_FACE_PATH_BEGIN)
+ {
+ vf.mTypeMask |= LLVolumeFace::TOP_MASK;
+ }
+ else
+ {
+ llassert(face.mFaceID == LL_FACE_PATH_END);
+ vf.mTypeMask |= LLVolumeFace::BOTTOM_MASK;
+ }
+ }
+ else if (face.mFaceID & (LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END))
+ {
+ vf.mTypeMask |= LLVolumeFace::FLAT_MASK | LLVolumeFace::END_MASK;
+ }
+ else
+ {
+ vf.mTypeMask |= LLVolumeFace::SIDE_MASK;
+ if (face.mFlat)
+ {
+ vf.mTypeMask |= LLVolumeFace::FLAT_MASK;
+ }
+ if (face.mFaceID & LL_FACE_INNER_SIDE)
+ {
+ vf.mTypeMask |= LLVolumeFace::INNER_MASK;
+ if (face.mFlat && vf.mNumS > 2)
+ { //flat inner faces have to copy vert normals
+ vf.mNumS = vf.mNumS*2;
+ }
+ }
+ else
+ {
+ vf.mTypeMask |= LLVolumeFace::OUTER_MASK;
+ }
+ }
+ }
+
+ for (i = 0; i < mNumVolumeFaces; i++)
+ {
+ mVolumeFaces[i].create();
+ }
+ }
+
+ mBounds[1] = LLVector3(0,0,0);
+ mBounds[0] = LLVector3(512,512,512);
+}
+
+
+BOOL LLVolume::isCap(S32 face)
+{
+ return mProfilep->mFaces[face].mCap;
+}
+
+BOOL LLVolume::isFlat(S32 face)
+{
+ return mProfilep->mFaces[face].mFlat;
+}
+
+
+bool LLVolumeParams::operator==(const LLVolumeParams &params) const
+{
+ return (getPathParams() == params.getPathParams()) &&
+ (getProfileParams() == params.getProfileParams());
+}
+
+bool LLVolumeParams::operator!=(const LLVolumeParams &params) const
+{
+ return (getPathParams() != params.getPathParams()) ||
+ (getProfileParams() != params.getProfileParams());
+}
+
+bool LLVolumeParams::operator<(const LLVolumeParams &params) const
+{
+ if( getPathParams() != params.getPathParams() )
+ {
+ return getPathParams() < params.getPathParams();
+ }
+ else
+ {
+ return getProfileParams() < params.getProfileParams();
+ }
+}
+
+void LLVolumeParams::copyParams(const LLVolumeParams &params)
+{
+ mProfileParams.copyParams(params.mProfileParams);
+ mPathParams.copyParams(params.mPathParams);
+}
+
+// return true if in range (or nearly so)
+static bool limit_range(F32& v, F32 min, F32 max)
+{
+ F32 min_delta = v - min;
+ if (min_delta < 0.f)
+ {
+ v = min;
+ if (!is_approx_zero(min_delta))
+ return false;
+ }
+ F32 max_delta = max - v;
+ if (max_delta < 0.f)
+ {
+ v = max;
+ if (!is_approx_zero(max_delta))
+ return false;
+ }
+ return true;
+}
+
+bool LLVolumeParams::setBeginAndEndS(const F32 b, const F32 e)
+{
+ bool valid = true;
+
+ // First, clamp to valid ranges.
+ F32 begin = b;
+ valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA);
+
+ F32 end = e;
+ valid &= limit_range(end, MIN_CUT_DELTA, 1.f);
+
+ valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA);
+
+ // Now set them.
+ mProfileParams.setBegin(begin);
+ mProfileParams.setEnd(end);
+
+ return valid;
+}
+
+bool LLVolumeParams::setBeginAndEndT(const F32 b, const F32 e)
+{
+ bool valid = true;
+
+ // First, clamp to valid ranges.
+ F32 begin = b;
+ valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA);
+
+ F32 end = e;
+ valid &= limit_range(end, MIN_CUT_DELTA, 1.f);
+
+ valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA);
+
+ // Now set them.
+ mPathParams.setBegin(begin);
+ mPathParams.setEnd(end);
+
+ return valid;
+}
+
+bool LLVolumeParams::setHollow(const F32 h)
+{
+ // Validate the hollow based on path and profile.
+ U8 profile = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
+ U8 hole_type = mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK;
+
+ F32 max_hollow = HOLLOW_MAX;
+
+ // Only square holes have trouble.
+ if (LL_PCODE_HOLE_SQUARE == hole_type)
+ {
+ switch(profile)
+ {
+ case LL_PCODE_PROFILE_CIRCLE:
+ case LL_PCODE_PROFILE_CIRCLE_HALF:
+ case LL_PCODE_PROFILE_EQUALTRI:
+ max_hollow = HOLLOW_MAX_SQUARE;
+ }
+ }
+
+ F32 hollow = h;
+ bool valid = limit_range(hollow, HOLLOW_MIN, max_hollow);
+ mProfileParams.setHollow(hollow);
+
+ return valid;
+}
+
+bool LLVolumeParams::setTwistBegin(const F32 b)
+{
+ F32 twist_begin = b;
+ bool valid = limit_range(twist_begin, TWIST_MIN, TWIST_MAX);
+ mPathParams.setTwistBegin(twist_begin);
+ return valid;
+}
+
+bool LLVolumeParams::setTwistEnd(const F32 e)
+{
+ F32 twist_end = e;
+ bool valid = limit_range(twist_end, TWIST_MIN, TWIST_MAX);
+ mPathParams.setTwistEnd(twist_end);
+ return valid;
+}
+
+bool LLVolumeParams::setRatio(const F32 x, const F32 y)
+{
+ F32 min_x = RATIO_MIN;
+ F32 max_x = RATIO_MAX;
+ F32 min_y = RATIO_MIN;
+ F32 max_y = RATIO_MAX;
+ // If this is a circular path (and not a sphere) then 'ratio' is actually hole size.
+ U8 path_type = mPathParams.getCurveType();
+ U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
+ if ( LL_PCODE_PATH_CIRCLE == path_type &&
+ LL_PCODE_PROFILE_CIRCLE_HALF != profile_type)
+ {
+ // Holes are more restricted...
+ min_x = HOLE_X_MIN;
+ max_x = HOLE_X_MAX;
+ min_y = HOLE_Y_MIN;
+ max_y = HOLE_Y_MAX;
+ }
+
+ F32 ratio_x = x;
+ bool valid = limit_range(ratio_x, min_x, max_x);
+ F32 ratio_y = y;
+ valid &= limit_range(ratio_y, min_y, max_y);
+
+ mPathParams.setScale(ratio_x, ratio_y);
+
+ return valid;
+}
+
+bool LLVolumeParams::setShear(const F32 x, const F32 y)
+{
+ F32 shear_x = x;
+ bool valid = limit_range(shear_x, SHEAR_MIN, SHEAR_MAX);
+ F32 shear_y = y;
+ valid &= limit_range(shear_y, SHEAR_MIN, SHEAR_MAX);
+ mPathParams.setShear(shear_x, shear_y);
+ return valid;
+}
+
+bool LLVolumeParams::setTaperX(const F32 v)
+{
+ F32 taper = v;
+ bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX);
+ mPathParams.setTaperX(taper);
+ return valid;
+}
+
+bool LLVolumeParams::setTaperY(const F32 v)
+{
+ F32 taper = v;
+ bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX);
+ mPathParams.setTaperY(taper);
+ return valid;
+}
+
+bool LLVolumeParams::setRevolutions(const F32 r)
+{
+ F32 revolutions = r;
+ bool valid = limit_range(revolutions, REV_MIN, REV_MAX);
+ mPathParams.setRevolutions(revolutions);
+ return valid;
+}
+
+bool LLVolumeParams::setRadiusOffset(const F32 offset)
+{
+ bool valid = true;
+
+ // If this is a sphere, just set it to 0 and get out.
+ U8 path_type = mPathParams.getCurveType();
+ U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
+ if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ||
+ LL_PCODE_PATH_CIRCLE != path_type )
+ {
+ mPathParams.setRadiusOffset(0.f);
+ return true;
+ }
+
+ // Limit radius offset, based on taper and hole size y.
+ F32 radius_offset = offset;
+ F32 taper_y = getTaperY();
+ F32 radius_mag = fabs(radius_offset);
+ F32 hole_y_mag = fabs(getRatioY());
+ F32 taper_y_mag = fabs(taper_y);
+ // Check to see if the taper effects us.
+ if ( (radius_offset > 0.f && taper_y < 0.f) ||
+ (radius_offset < 0.f && taper_y > 0.f) )
+ {
+ // The taper does not help increase the radius offset range.
+ taper_y_mag = 0.f;
+ }
+ F32 max_radius_mag = 1.f - hole_y_mag * (1.f - taper_y_mag) / (1.f - hole_y_mag);
+
+ // Enforce the maximum magnitude.
+ F32 delta = max_radius_mag - radius_mag;
+ if (delta < 0.f)
+ {
+ // Check radius offset sign.
+ if (radius_offset < 0.f)
+ {
+ radius_offset = -max_radius_mag;
+ }
+ else
+ {
+ radius_offset = max_radius_mag;
+ }
+ valid = is_approx_zero(delta);
+ }
+
+ mPathParams.setRadiusOffset(radius_offset);
+ return valid;
+}
+
+bool LLVolumeParams::setSkew(const F32 skew_value)
+{
+ bool valid = true;
+
+ // Check the skew value against the revolutions.
+ F32 skew = llclamp(skew_value, SKEW_MIN, SKEW_MAX);
+ F32 skew_mag = fabs(skew);
+ F32 revolutions = getRevolutions();
+ F32 scale_x = getRatioX();
+ F32 min_skew_mag = 1.0f - 1.0f / (revolutions * scale_x + 1.0f);
+ // Discontinuity; A revolution of 1 allows skews below 0.5.
+ if ( fabs(revolutions - 1.0f) < 0.001)
+ min_skew_mag = 0.0f;
+
+ // Clip skew.
+ F32 delta = skew_mag - min_skew_mag;
+ if (delta < 0.f)
+ {
+ // Check skew sign.
+ if (skew < 0.0f)
+ {
+ skew = -min_skew_mag;
+ }
+ else
+ {
+ skew = min_skew_mag;
+ }
+ valid = is_approx_zero(delta);
+ }
+
+ mPathParams.setSkew(skew);
+ return valid;
+}
+
+bool LLVolumeParams::setType(U8 profile, U8 path)
+{
+ bool result = true;
+ // First, check profile and path for validity.
+ U8 profile_type = profile & LL_PCODE_PROFILE_MASK;
+ U8 hole_type = (profile & LL_PCODE_HOLE_MASK) >> 4;
+ U8 path_type = path >> 4;
+
+ if (profile_type > LL_PCODE_PROFILE_MAX)
+ {
+ // Bad profile. Make it square.
+ profile = LL_PCODE_PROFILE_SQUARE;
+ result = false;
+ llwarns << "LLVolumeParams::setType changing bad profile type (" << profile_type
+ << ") to be LL_PCODE_PROFILE_SQUARE" << llendl;
+ }
+ else if (hole_type > LL_PCODE_HOLE_MAX)
+ {
+ // Bad hole. Make it the same.
+ profile = profile_type;
+ result = false;
+ llwarns << "LLVolumeParams::setType changing bad hole type (" << hole_type
+ << ") to be LL_PCODE_HOLE_SAME" << llendl;
+ }
+
+ if (path_type < LL_PCODE_PATH_MIN ||
+ path_type > LL_PCODE_PATH_MAX)
+ {
+ // Bad path. Make it linear.
+ result = false;
+ llwarns << "LLVolumeParams::setType changing bad path (" << path
+ << ") to be LL_PCODE_PATH_LINE" << llendl;
+ path = LL_PCODE_PATH_LINE;
+ }
+
+ mProfileParams.setCurveType(profile);
+ mPathParams.setCurveType(path);
+ return result;
+}
+
+// static
+bool LLVolumeParams::validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow,
+ U8 path_curve, F32 path_begin, F32 path_end,
+ F32 scx, F32 scy, F32 shx, F32 shy,
+ F32 twistend, F32 twistbegin, F32 radiusoffset,
+ F32 tx, F32 ty, F32 revolutions, F32 skew)
+{
+ LLVolumeParams test_params;
+ if (!test_params.setType (prof_curve, path_curve))
+ {
+ return false;
+ }
+ if (!test_params.setBeginAndEndS (prof_begin, prof_end))
+ {
+ return false;
+ }
+ if (!test_params.setBeginAndEndT (path_begin, path_end))
+ {
+ return false;
+ }
+ if (!test_params.setHollow (hollow))
+ {
+ return false;
+ }
+ if (!test_params.setTwistBegin (twistbegin))
+ {
+ return false;
+ }
+ if (!test_params.setTwistEnd (twistend))
+ {
+ return false;
+ }
+ if (!test_params.setRatio (scx, scy))
+ {
+ return false;
+ }
+ if (!test_params.setShear (shx, shy))
+ {
+ return false;
+ }
+ if (!test_params.setTaper (tx, ty))
+ {
+ return false;
+ }
+ if (!test_params.setRevolutions (revolutions))
+ {
+ return false;
+ }
+ if (!test_params.setRadiusOffset (radiusoffset))
+ {
+ return false;
+ }
+ if (!test_params.setSkew (skew))
+ {
+ return false;
+ }
+ return true;
+}
+
+#define MAX_INDEX 10000
+S32 *LLVolume::getTriangleIndices(U32 &num_indices) const
+{
+ S32 index[MAX_INDEX];
+ S32 count = 0;
+ S32 *indices = NULL;
+
+ // Let's do this totally diffently, as we don't care about faces...
+ // Counter-clockwise triangles are forward facing...
+
+ BOOL open = getProfile().isOpen();
+ BOOL hollow = getProfile().isHollow();
+ BOOL path_open = getPath().isOpen();
+ S32 size_s, size_s_out, size_t;
+ S32 s, t, i;
+ size_s = getProfile().getTotal();
+ size_s_out = getProfile().getTotalOut();
+ size_t = getPath().mPath.size();
+
+ if (open)
+ {
+ if (hollow)
+ {
+ // Open hollow -- much like the closed solid, except we
+ // we need to stitch up the gap between s=0 and s=size_s-1
+
+ if ( (size_t - 1) * (((size_s -1) * 6) + 6) >= MAX_INDEX)
+ goto noindices;
+
+ for (t = 0; t < size_t - 1; t++)
+ {
+ // The outer face, first cut, and inner face
+ for (s = 0; s < size_s - 1; s++)
+ {
+ i = s + t*size_s;
+ index[count++] = i; // x,y
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s; // x,y+1
+
+ index[count++] = i + size_s; // x,y+1
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s + 1; // x+1,y+1
+ }
+
+ // The other cut face
+ index[count++] = s + t*size_s; // x,y
+ index[count++] = 0 + t*size_s; // x+1,y
+ index[count++] = s + (t+1)*size_s; // x,y+1
+
+ index[count++] = s + (t+1)*size_s; // x,y+1
+ index[count++] = 0 + t*size_s; // x+1,y
+ index[count++] = 0 + (t+1)*size_s; // x+1,y+1
+ }
+
+ // Do the top and bottom caps, if necessary
+ if (path_open)
+ {
+ // Top cap
+ S32 pt1 = 0;
+ S32 pt2 = size_s-1;
+ S32 i = (size_t - 1)*size_s;
+
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ LLVector3 p1 = getProfile().mProfile[pt1];
+ LLVector3 p2 = getProfile().mProfile[pt2];
+ LLVector3 pa = getProfile().mProfile[pt1+1];
+ LLVector3 pb = getProfile().mProfile[pt2-1];
+
+ p1.mV[VZ] = 0.f;
+ p2.mV[VZ] = 0.f;
+ pa.mV[VZ] = 0.f;
+ pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
+ (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
+ (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
+
+ area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
+ (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
+
+ area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
+ (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
+ (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ BOOL use_tri1a2 = TRUE;
+ BOOL tri_1a2 = TRUE;
+ BOOL tri_21b = TRUE;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = FALSE;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = FALSE;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = FALSE;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = FALSE;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = FALSE;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ LLVector3 d1 = p1 - pa;
+ LLVector3 d2 = p2 - pb;
+
+ if (d1.magVecSquared() < d2.magVecSquared())
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ use_tri1a2 = FALSE;
+ }
+ }
+
+ if (use_tri1a2)
+ {
+ if (count + 3 >= MAX_INDEX)
+ goto noindices;
+ index[count++] = pt1 + i;
+ index[count++] = pt1 + 1 + i;
+ index[count++] = pt2 + i;
+ pt1++;
+ }
+ else
+ {
+ if (count + 3 >= MAX_INDEX)
+ goto noindices;
+ index[count++] = pt1 + i;
+ index[count++] = pt2 - 1 + i;
+ index[count++] = pt2 + i;
+ pt2--;
+ }
+ }
+
+ // Bottom cap
+ pt1 = 0;
+ pt2 = size_s-1;
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ LLVector3 p1 = getProfile().mProfile[pt1];
+ LLVector3 p2 = getProfile().mProfile[pt2];
+ LLVector3 pa = getProfile().mProfile[pt1+1];
+ LLVector3 pb = getProfile().mProfile[pt2-1];
+
+ p1.mV[VZ] = 0.f;
+ p2.mV[VZ] = 0.f;
+ pa.mV[VZ] = 0.f;
+ pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
+ (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
+ (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
+
+ area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
+ (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
+
+ area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
+ (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
+ (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ BOOL use_tri1a2 = TRUE;
+ BOOL tri_1a2 = TRUE;
+ BOOL tri_21b = TRUE;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = FALSE;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = FALSE;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = FALSE;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = FALSE;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = FALSE;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ LLVector3 d1 = p1 - pa;
+ LLVector3 d2 = p2 - pb;
+
+ if (d1.magVecSquared() < d2.magVecSquared())
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ use_tri1a2 = FALSE;
+ }
+ }
+
+ if (use_tri1a2)
+ {
+ if (count + 3 >= MAX_INDEX)
+ goto noindices;
+ index[count++] = pt1;
+ index[count++] = pt2;
+ index[count++] = pt1 + 1;
+ pt1++;
+ }
+ else
+ {
+ if (count + 3 >= MAX_INDEX)
+ goto noindices;
+ index[count++] = pt1;
+ index[count++] = pt2;
+ index[count++] = pt2 - 1;
+ pt2--;
+ }
+ }
+ }
+ }
+ else
+ {
+ // Open solid
+
+ if ( (size_t - 1) * (((size_s -1) * 6) + 6) >= MAX_INDEX)
+ goto noindices;
+
+ for (t = 0; t < size_t - 1; t++)
+ {
+ // Outer face + 1 cut face
+ for (s = 0; s < size_s - 1; s++)
+ {
+ i = s + t*size_s;
+
+ index[count++] = i; // x,y
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s; // x,y+1
+
+ index[count++] = i + size_s; // x,y+1
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s + 1; // x+1,y+1
+ }
+
+ // The other cut face
+ index[count++] = (size_s - 1) + (t*size_s); // x,y
+ index[count++] = 0 + t*size_s; // x+1,y
+ index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1
+
+ index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1
+ index[count++] = 0 + (t*size_s); // x+1,y
+ index[count++] = 0 + (t+1)*size_s; // x+1,y+1
+ }
+
+ // Do the top and bottom caps, if necessary
+ if (path_open)
+ {
+ if ( count + (size_s - 2) * 3 >= MAX_INDEX)
+ goto noindices;
+ for (s = 0; s < size_s - 2; s++)
+ {
+ index[count++] = s+1;
+ index[count++] = s;
+ index[count++] = size_s - 1;
+ }
+
+ // We've got a top cap
+ S32 offset = (size_t - 1)*size_s;
+ if ( count + (size_s - 2) * 3 >= MAX_INDEX)
+ goto noindices;
+ for (s = 0; s < size_s - 2; s++)
+ {
+ // Inverted ordering from bottom cap.
+ index[count++] = offset + size_s - 1;
+ index[count++] = offset + s;
+ index[count++] = offset + s + 1;
+ }
+ }
+ }
+ }
+ else if (hollow)
+ {
+ // Closed hollow
+ // Outer face
+
+ if ( (size_t - 1) * (size_s_out - 1) * 6 >= MAX_INDEX)
+ goto noindices;
+ for (t = 0; t < size_t - 1; t++)
+ {
+ for (s = 0; s < size_s_out - 1; s++)
+ {
+ i = s + t*size_s;
+
+ index[count++] = i; // x,y
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s; // x,y+1
+
+ index[count++] = i + size_s; // x,y+1
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + 1 + size_s; // x+1,y+1
+ }
+ }
+
+ // Inner face
+ // Invert facing from outer face
+ if ( count + (size_t - 1) * ((size_s - 1) - size_s_out) * 6 >= MAX_INDEX)
+ goto noindices;
+ for (t = 0; t < size_t - 1; t++)
+ {
+ for (s = size_s_out; s < size_s - 1; s++)
+ {
+ i = s + t*size_s;
+
+ index[count++] = i; // x,y
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s; // x,y+1
+
+ index[count++] = i + size_s; // x,y+1
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + 1 + size_s; // x+1,y+1
+ }
+ }
+
+ // Do the top and bottom caps, if necessary
+ if (path_open)
+ {
+ // Top cap
+ S32 pt1 = 0;
+ S32 pt2 = size_s-1;
+ S32 i = (size_t - 1)*size_s;
+
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ LLVector3 p1 = getProfile().mProfile[pt1];
+ LLVector3 p2 = getProfile().mProfile[pt2];
+ LLVector3 pa = getProfile().mProfile[pt1+1];
+ LLVector3 pb = getProfile().mProfile[pt2-1];
+
+ p1.mV[VZ] = 0.f;
+ p2.mV[VZ] = 0.f;
+ pa.mV[VZ] = 0.f;
+ pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
+ (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
+ (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
+
+ area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
+ (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
+
+ area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
+ (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
+ (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ BOOL use_tri1a2 = TRUE;
+ BOOL tri_1a2 = TRUE;
+ BOOL tri_21b = TRUE;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = FALSE;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = FALSE;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = FALSE;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = FALSE;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = FALSE;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ LLVector3 d1 = p1 - pa;
+ LLVector3 d2 = p2 - pb;
+
+ if (d1.magVecSquared() < d2.magVecSquared())
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ use_tri1a2 = FALSE;
+ }
+ }
+
+ if (use_tri1a2)
+ {
+ if (count + 3 >= MAX_INDEX)
+ goto noindices;
+ index[count++] = pt1 + i;
+ index[count++] = pt1 + 1 + i;
+ index[count++] = pt2 + i;
+ pt1++;
+ }
+ else
+ {
+ if (count + 3 >= MAX_INDEX)
+ goto noindices;
+ index[count++] = pt1 + i;
+ index[count++] = pt2 - 1 + i;
+ index[count++] = pt2 + i;
+ pt2--;
+ }
+ }
+
+ // Bottom cap
+ pt1 = 0;
+ pt2 = size_s-1;
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ LLVector3 p1 = getProfile().mProfile[pt1];
+ LLVector3 p2 = getProfile().mProfile[pt2];
+ LLVector3 pa = getProfile().mProfile[pt1+1];
+ LLVector3 pb = getProfile().mProfile[pt2-1];
+
+ p1.mV[VZ] = 0.f;
+ p2.mV[VZ] = 0.f;
+ pa.mV[VZ] = 0.f;
+ pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
+ (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
+ (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
+
+ area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
+ (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
+
+ area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
+ (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
+ (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ BOOL use_tri1a2 = TRUE;
+ BOOL tri_1a2 = TRUE;
+ BOOL tri_21b = TRUE;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = FALSE;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = FALSE;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = FALSE;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = FALSE;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = FALSE;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ LLVector3 d1 = p1 - pa;
+ LLVector3 d2 = p2 - pb;
+
+ if (d1.magVecSquared() < d2.magVecSquared())
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ use_tri1a2 = FALSE;
+ }
+ }
+
+ if (use_tri1a2)
+ {
+ if (count + 3 >= MAX_INDEX)
+ goto noindices;
+ index[count++] = pt1;
+ index[count++] = pt2;
+ index[count++] = pt1 + 1;
+ pt1++;
+ }
+ else
+ {
+ if (count + 3 >= MAX_INDEX)
+ goto noindices;
+ index[count++] = pt1;
+ index[count++] = pt2;
+ index[count++] = pt2 - 1;
+ pt2--;
+ }
+ }
+ }
+ }
+ else
+ {
+ // Closed solid. Easy case.
+ if ( (size_t - 1) * (size_s - 1) * 6 > MAX_INDEX)
+ goto noindices;
+ for (t = 0; t < size_t - 1; t++)
+ {
+ for (s = 0; s < size_s - 1; s++)
+ {
+ // Should wrap properly, but for now...
+ i = s + t*size_s;
+
+ index[count++] = i; // x,y
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s; // x,y+1
+
+ index[count++] = i + size_s; // x,y+1
+ index[count++] = i + 1; // x+1,y
+ index[count++] = i + size_s + 1; // x+1,y+1
+ }
+ }
+
+ // Do the top and bottom caps, if necessary
+ if (path_open)
+ {
+ // bottom cap
+ if ( count + (size_s - 2 - 1) * 3 >= MAX_INDEX)
+ goto noindices;
+ for (s = 1; s < size_s - 2; s++)
+ {
+ index[count++] = s+1;
+ index[count++] = s;
+ index[count++] = 0;
+ }
+
+ // top cap
+ S32 offset = (size_t - 1)*size_s;
+ if ( count + (size_s - 2 - 1) * 3 >= MAX_INDEX)
+ goto noindices;
+ for (s = 1; s < size_s - 2; s++)
+ {
+ // Inverted ordering from bottom cap.
+ index[count++] = offset;
+ index[count++] = offset + s;
+ index[count++] = offset + s + 1;
+ }
+ }
+ }
+
+#if 0
+ S32 num_vertices = mMesh.size();
+ for (i = 0; i < count; i+=3)
+ {
+ llinfos << index[i] << ":" << index[i+1] << ":" << index[i+2] << llendl;
+ llassert(index[i] < num_vertices);
+ llassert(index[i+1] < num_vertices);
+ llassert(index[i+2] < num_vertices);
+ }
+#endif
+
+ indices = new S32[count];
+noindices:
+ if (!indices)
+ {
+ llwarns << "Couldn't allocate triangle indices" << llendl;
+ num_indices = 0;
+ return NULL;
+ }
+ num_indices = count;
+ memcpy(indices, index, count * sizeof(S32));
+ return indices;
+}
+
+//-----------------------------------------------------------------------------
+// generateSilhouetteVertices()
+//-----------------------------------------------------------------------------
+void LLVolume::generateSilhouetteVertices(std::vector<LLVector3> &vertices,
+ std::vector<LLVector3> &normals,
+ std::vector<S32> &segments,
+ const LLVector3& obj_cam_vec,
+ const LLMatrix4& mat,
+ const LLMatrix3& norm_mat)
+{
+ vertices.clear();
+ normals.clear();
+ segments.clear();
+
+ //for each face
+ for (S32 i = 0; i < getNumFaces(); i++) {
+ LLVolumeFace face = this->getVolumeFace(i);
+
+ if (face.mTypeMask & (LLVolumeFace::CAP_MASK)) {
+
+ }
+ else {
+
+ //==============================================
+ //DEBUG draw edge map instead of silhouette edge
+ //==============================================
+
+#if DEBUG_SILHOUETTE_EDGE_MAP
+
+ //for each triangle
+ U32 count = face.mIndices.size();
+ for (U32 j = 0; j < count/3; j++) {
+ //get vertices
+ S32 v1 = face.mIndices[j*3+0];
+ S32 v2 = face.mIndices[j*3+1];
+ S32 v3 = face.mIndices[j*3+2];
+
+ //get current face center
+ LLVector3 cCenter = (face.mVertices[v1].mPosition +
+ face.mVertices[v2].mPosition +
+ face.mVertices[v3].mPosition) / 3.0f;
+
+ //for each edge
+ for (S32 k = 0; k < 3; k++) {
+ S32 nIndex = face.mEdge[j*3+k];
+ if (nIndex <= -1) {
+ continue;
+ }
+
+ if (nIndex >= (S32) count/3) {
+ continue;
+ }
+ //get neighbor vertices
+ v1 = face.mIndices[nIndex*3+0];
+ v2 = face.mIndices[nIndex*3+1];
+ v3 = face.mIndices[nIndex*3+2];
+
+ //get neighbor face center
+ LLVector3 nCenter = (face.mVertices[v1].mPosition +
+ face.mVertices[v2].mPosition +
+ face.mVertices[v3].mPosition) / 3.0f;
+
+ //draw line
+ vertices.push_back(cCenter);
+ vertices.push_back(nCenter);
+ normals.push_back(LLVector3(1,1,1));
+ normals.push_back(LLVector3(1,1,1));
+ segments.push_back(vertices.size());
+ }
+ }
+
+ continue;
+
+ //==============================================
+ //DEBUG
+ //==============================================
+
+ //==============================================
+ //DEBUG draw normals instead of silhouette edge
+ //==============================================
+#elif DEBUG_SILHOUETTE_NORMALS
+
+ //for each vertex
+ for (U32 j = 0; j < face.mVertices.size(); j++) {
+ vertices.push_back(face.mVertices[j].mPosition);
+ vertices.push_back(face.mVertices[j].mPosition + face.mVertices[j].mNormal*0.1f);
+ normals.push_back(LLVector3(0,0,1));
+ normals.push_back(LLVector3(0,0,1));
+ segments.push_back(vertices.size());
+#if DEBUG_SILHOUETTE_BINORMALS
+ vertices.push_back(face.mVertices[j].mPosition);
+ vertices.push_back(face.mVertices[j].mPosition + face.mVertices[j].mBinormal*0.1f);
+ normals.push_back(LLVector3(0,0,1));
+ normals.push_back(LLVector3(0,0,1));
+ segments.push_back(vertices.size());
+#endif
+ }
+
+ continue;
+#else
+ //==============================================
+ //DEBUG
+ //==============================================
+
+ static const U8 AWAY = 0x01,
+ TOWARDS = 0x02;
+
+ //for each triangle
+ std::vector<U8> fFacing;
+ vector_append(fFacing, face.mIndices.size()/3);
+ for (U32 j = 0; j < face.mIndices.size()/3; j++)
+ {
+ //approximate normal
+ S32 v1 = face.mIndices[j*3+0];
+ S32 v2 = face.mIndices[j*3+1];
+ S32 v3 = face.mIndices[j*3+2];
+
+ LLVector3 norm = (face.mVertices[v1].mPosition - face.mVertices[v2].mPosition) %
+ (face.mVertices[v2].mPosition - face.mVertices[v3].mPosition);
+
+ if (norm.magVecSquared() < 0.00000001f)
+ {
+ fFacing[j] = AWAY | TOWARDS;
+ }
+ else
+ {
+ //get view vector
+ LLVector3 view = (obj_cam_vec-face.mVertices[v1].mPosition);
+ bool away = view * norm > 0.0f;
+ if (away)
+ {
+ fFacing[j] = AWAY;
+ }
+ else
+ {
+ fFacing[j] = TOWARDS;
+ }
+ }
+ }
+
+ //for each triangle
+ for (U32 j = 0; j < face.mIndices.size()/3; j++)
+ {
+ if (fFacing[j] == (AWAY | TOWARDS))
+ { //this is a degenerate triangle
+ //take neighbor facing (degenerate faces get facing of one of their neighbors)
+ // FIXME IF NEEDED: this does not deal with neighboring degenerate faces
+ for (S32 k = 0; k < 3; k++)
+ {
+ S32 index = face.mEdge[j*3+k];
+ if (index != -1)
+ {
+ fFacing[j] = fFacing[index];
+ break;
+ }
+ }
+ continue; //skip degenerate face
+ }
+
+ //for each edge
+ for (S32 k = 0; k < 3; k++) {
+ S32 index = face.mEdge[j*3+k];
+ if (index != -1 && fFacing[index] == (AWAY | TOWARDS)) {
+ //our neighbor is degenerate, make him face our direction
+ fFacing[face.mEdge[j*3+k]] = fFacing[j];
+ continue;
+ }
+
+ if (index == -1 || //edge has no neighbor, MUST be a silhouette edge
+ (fFacing[index] & fFacing[j]) == 0) { //we found a silhouette edge
+
+ S32 v1 = face.mIndices[j*3+k];
+ S32 v2 = face.mIndices[j*3+((k+1)%3)];
+
+ vertices.push_back(face.mVertices[v1].mPosition*mat);
+ normals.push_back(face.mVertices[v1].mNormal*norm_mat);
+
+ vertices.push_back(face.mVertices[v2].mPosition*mat);
+ normals.push_back(face.mVertices[v2].mNormal*norm_mat);
+ segments.push_back(vertices.size());
+ }
+ }
+ }
+#endif
+ }
+ }
+}
+
+S32 LLVolume::lineSegmentIntersect(const LLVector3& start, LLVector3& end) const
+{
+ S32 ret = -1;
+
+ LLVector3 vec = end - start;
+
+ for (U32 i = 0; i < (U32)getNumFaces(); i++)
+ {
+ LLVolumeFace face = getVolumeFace(i);
+
+ for (U32 j = 0; j < face.mIndices.size()/3; j++)
+ {
+ //approximate normal
+ S32 v1 = face.mIndices[j*3+0];
+ S32 v2 = face.mIndices[j*3+1];
+ S32 v3 = face.mIndices[j*3+2];
+
+ LLVector3 norm = (face.mVertices[v2].mPosition - face.mVertices[v1].mPosition) %
+ (face.mVertices[v3].mPosition - face.mVertices[v2].mPosition);
+
+ if (norm.magVecSquared() >= 0.00000001f)
+ {
+ //get view vector
+ //LLVector3 view = (start-face.mVertices[v1].mPosition);
+ //if (view * norm < 0.0f)
+ {
+ if (LLTriangleLineSegmentIntersect( face.mVertices[v1].mPosition,
+ face.mVertices[v2].mPosition,
+ face.mVertices[v3].mPosition,
+ end,
+ vec))
+ {
+ vec = end-start;
+ ret = (S32) i;
+ }
+ }
+ }
+ }
+ }
+
+ return ret;
+}
+
+class LLVertexIndexPair
+{
+public:
+ LLVertexIndexPair(const LLVector3 &vertex, const S32 index);
+
+ LLVector3 mVertex;
+ S32 mIndex;
+};
+
+LLVertexIndexPair::LLVertexIndexPair(const LLVector3 &vertex, const S32 index)
+{
+ mVertex = vertex;
+ mIndex = index;
+}
+
+const F32 VERTEX_SLOP = 0.00001f;
+const F32 VERTEX_SLOP_SQRD = VERTEX_SLOP * VERTEX_SLOP;
+
+struct lessVertex
+{
+ bool operator()(const LLVertexIndexPair *a, const LLVertexIndexPair *b)
+ {
+ const F32 slop = VERTEX_SLOP;
+
+ if (a->mVertex.mV[0] + slop < b->mVertex.mV[0])
+ {
+ return TRUE;
+ }
+ else if (a->mVertex.mV[0] - slop > b->mVertex.mV[0])
+ {
+ return FALSE;
+ }
+
+ if (a->mVertex.mV[1] + slop < b->mVertex.mV[1])
+ {
+ return TRUE;
+ }
+ else if (a->mVertex.mV[1] - slop > b->mVertex.mV[1])
+ {
+ return FALSE;
+ }
+
+ if (a->mVertex.mV[2] + slop < b->mVertex.mV[2])
+ {
+ return TRUE;
+ }
+ else if (a->mVertex.mV[2] - slop > b->mVertex.mV[2])
+ {
+ return FALSE;
+ }
+
+ return FALSE;
+ }
+};
+
+struct lessTriangle
+{
+ bool operator()(const S32 *a, const S32 *b)
+ {
+ if (*a < *b)
+ {
+ return TRUE;
+ }
+ else if (*a > *b)
+ {
+ return FALSE;
+ }
+
+ if (*(a+1) < *(b+1))
+ {
+ return TRUE;
+ }
+ else if (*(a+1) > *(b+1))
+ {
+ return FALSE;
+ }
+
+ if (*(a+2) < *(b+2))
+ {
+ return TRUE;
+ }
+ else if (*(a+2) > *(b+2))
+ {
+ return FALSE;
+ }
+
+ return FALSE;
+ }
+};
+
+BOOL equalTriangle(const S32 *a, const S32 *b)
+{
+ if ((*a == *b) && (*(a+1) == *(b+1)) && ((*a+2) == (*b+2)))
+ {
+ return TRUE;
+ }
+ return FALSE;
+}
+
+BOOL LLVolume::cleanupTriangleData( const S32 num_input_vertices,
+ const std::vector<Point>& input_vertices,
+ const S32 num_input_triangles,
+ S32 *input_triangles,
+ S32 &num_output_vertices,
+ LLVector3 **output_vertices,
+ S32 &num_output_triangles,
+ S32 **output_triangles)
+{
+ // Here's how we do this:
+ // Create a structure which contains the original vertex index and the
+ // LLVector3 data.
+ // "Sort" the data by the vectors
+ // Create an array the size of the old vertex list, with a mapping of
+ // old indices to new indices.
+ // Go through triangles, shift so the lowest index is first
+ // Sort triangles by first index
+ // Remove duplicate triangles
+ // Allocate and pack new triangle data.
+
+ //LLTimer cleanupTimer;
+ //llinfos << "In vertices: " << num_input_vertices << llendl;
+ //llinfos << "In triangles: " << num_input_triangles << llendl;
+
+ S32 i;
+ typedef std::multiset<LLVertexIndexPair*, lessVertex> vertex_set_t;
+ vertex_set_t vertex_list;
+
+ LLVertexIndexPair *pairp = NULL;
+ for (i = 0; i < num_input_vertices; i++)
+ {
+ LLVertexIndexPair *new_pairp = new LLVertexIndexPair(input_vertices[i].mPos, i);
+ vertex_list.insert(new_pairp);
+ }
+
+ // Generate the vertex mapping and the list of vertices without
+ // duplicates. This will crash if there are no vertices.
+ S32 *vertex_mapping = new S32[num_input_vertices];
+ LLVector3 *new_vertices = new LLVector3[num_input_vertices];
+ LLVertexIndexPair *prev_pairp = NULL;
+
+ S32 new_num_vertices;
+
+ new_num_vertices = 0;
+ for (vertex_set_t::iterator iter = vertex_list.begin(),
+ end = vertex_list.end();
+ iter != end; iter++)
+ {
+ pairp = *iter;
+ if (!prev_pairp || ((pairp->mVertex - prev_pairp->mVertex).magVecSquared() >= VERTEX_SLOP_SQRD))
+ {
+ new_vertices[new_num_vertices] = pairp->mVertex;
+ //llinfos << "Added vertex " << new_num_vertices << " : " << pairp->mVertex << llendl;
+ new_num_vertices++;
+ // Update the previous
+ prev_pairp = pairp;
+ }
+ else
+ {
+ //llinfos << "Removed duplicate vertex " << pairp->mVertex << llendl;
+ }
+ vertex_mapping[pairp->mIndex] = new_num_vertices - 1;
+ }
+
+ // Iterate through triangles and remove degenerates, re-ordering vertices
+ // along the way.
+ S32 *new_triangles = new S32[num_input_triangles * 3];
+ S32 new_num_triangles = 0;
+
+ for (i = 0; i < num_input_triangles; i++)
+ {
+ //llinfos << "Checking triangle " << input_triangles[i*3] << ":" << input_triangles[i*3+1] << ":" << input_triangles[i*3+2] << llendl;
+ input_triangles[i*3] = vertex_mapping[input_triangles[i*3]];
+ input_triangles[i*3+1] = vertex_mapping[input_triangles[i*3+1]];
+ input_triangles[i*3+2] = vertex_mapping[input_triangles[i*3+2]];
+
+ if ((input_triangles[i*3] == input_triangles[i*3+1])
+ || (input_triangles[i*3] == input_triangles[i*3+2])
+ || (input_triangles[i*3+1] == input_triangles[i*3+2]))
+ {
+ //llinfos << "Removing degenerate triangle " << input_triangles[i*3] << ":" << input_triangles[i*3+1] << ":" << input_triangles[i*3+2] << llendl;
+ // Degenerate triangle, skip
+ continue;
+ }
+
+ if (input_triangles[i*3] < input_triangles[i*3+1])
+ {
+ if (input_triangles[i*3] < input_triangles[i*3+2])
+ {
+ // (0 < 1) && (0 < 2)
+ new_triangles[new_num_triangles*3] = input_triangles[i*3];
+ new_triangles[new_num_triangles*3+1] = input_triangles[i*3+1];
+ new_triangles[new_num_triangles*3+2] = input_triangles[i*3+2];
+ }
+ else
+ {
+ // (0 < 1) && (2 < 0)
+ new_triangles[new_num_triangles*3] = input_triangles[i*3+2];
+ new_triangles[new_num_triangles*3+1] = input_triangles[i*3];
+ new_triangles[new_num_triangles*3+2] = input_triangles[i*3+1];
+ }
+ }
+ else if (input_triangles[i*3+1] < input_triangles[i*3+2])
+ {
+ // (1 < 0) && (1 < 2)
+ new_triangles[new_num_triangles*3] = input_triangles[i*3+1];
+ new_triangles[new_num_triangles*3+1] = input_triangles[i*3+2];
+ new_triangles[new_num_triangles*3+2] = input_triangles[i*3];
+ }
+ else
+ {
+ // (1 < 0) && (2 < 1)
+ new_triangles[new_num_triangles*3] = input_triangles[i*3+2];
+ new_triangles[new_num_triangles*3+1] = input_triangles[i*3];
+ new_triangles[new_num_triangles*3+2] = input_triangles[i*3+1];
+ }
+ new_num_triangles++;
+ }
+
+ if (new_num_triangles == 0)
+ {
+ llwarns << "Created volume object with 0 faces." << llendl;
+ return FALSE;
+ }
+
+ typedef std::set<S32*, lessTriangle> triangle_set_t;
+ triangle_set_t triangle_list;
+
+ for (i = 0; i < new_num_triangles; i++)
+ {
+ triangle_list.insert(&new_triangles[i*3]);
+ }
+
+ // Sort through the triangle list, and delete duplicates
+
+ S32 *prevp = NULL;
+ S32 *curp = NULL;
+
+ S32 *sorted_tris = new S32[new_num_triangles*3];
+ S32 cur_tri = 0;
+ for (triangle_set_t::iterator iter = triangle_list.begin(),
+ end = triangle_list.end();
+ iter != end; iter++)
+ {
+ curp = *iter;
+ if (!prevp || !equalTriangle(prevp, curp))
+ {
+ //llinfos << "Added triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl;
+ sorted_tris[cur_tri*3] = *curp;
+ sorted_tris[cur_tri*3+1] = *(curp+1);
+ sorted_tris[cur_tri*3+2] = *(curp+2);
+ cur_tri++;
+ prevp = curp;
+ }
+ else
+ {
+ //llinfos << "Skipped triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl;
+ }
+ }
+
+ *output_vertices = new LLVector3[new_num_vertices];
+ num_output_vertices = new_num_vertices;
+ for (i = 0; i < new_num_vertices; i++)
+ {
+ (*output_vertices)[i] = new_vertices[i];
+ }
+
+ *output_triangles = new S32[cur_tri*3];
+ num_output_triangles = cur_tri;
+ memcpy(*output_triangles, sorted_tris, 3*cur_tri*sizeof(S32));
+
+ /*
+ llinfos << "Out vertices: " << num_output_vertices << llendl;
+ llinfos << "Out triangles: " << num_output_triangles << llendl;
+ for (i = 0; i < num_output_vertices; i++)
+ {
+ llinfos << i << ":" << (*output_vertices)[i] << llendl;
+ }
+ for (i = 0; i < num_output_triangles; i++)
+ {
+ llinfos << i << ":" << (*output_triangles)[i*3] << ":" << (*output_triangles)[i*3+1] << ":" << (*output_triangles)[i*3+2] << llendl;
+ }
+ */
+
+ //llinfos << "Out vertices: " << num_output_vertices << llendl;
+ //llinfos << "Out triangles: " << num_output_triangles << llendl;
+ delete[] vertex_mapping;
+ vertex_mapping = NULL;
+ delete[] new_vertices;
+ new_vertices = NULL;
+ delete[] new_triangles;
+ new_triangles = NULL;
+ delete[] sorted_tris;
+ sorted_tris = NULL;
+ triangle_list.clear();
+ std::for_each(vertex_list.begin(), vertex_list.end(), DeletePointer());
+ vertex_list.clear();
+
+ return TRUE;
+}
+
+
+BOOL LLVolumeParams::importFile(FILE *fp)
+{
+ //llinfos << "importing volume" << llendl;
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE];
+ char keyword[256];
+ keyword[0] = 0;
+
+ while (!feof(fp))
+ {
+ fgets(buffer, BUFSIZE, fp);
+ sscanf(buffer, " %s", keyword);
+ if (!keyword)
+ {
+ continue;
+ }
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("profile", keyword))
+ {
+ mProfileParams.importFile(fp);
+ }
+ else if (!strcmp("path",keyword))
+ {
+ mPathParams.importFile(fp);
+ }
+ else
+ {
+ llwarns << "unknown keyword " << keyword << " in volume import" << llendl;
+ }
+ }
+
+ return TRUE;
+}
+
+BOOL LLVolumeParams::exportFile(FILE *fp) const
+{
+ fprintf(fp,"\tshape 0\n");
+ fprintf(fp,"\t{\n");
+ mPathParams.exportFile(fp);
+ mProfileParams.exportFile(fp);
+ fprintf(fp, "\t}\n");
+ return TRUE;
+}
+
+
+BOOL LLVolumeParams::importLegacyStream(std::istream& input_stream)
+{
+ //llinfos << "importing volume" << llendl;
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE];
+ char keyword[256];
+ keyword[0] = 0;
+
+ while (input_stream.good())
+ {
+ input_stream.getline(buffer, BUFSIZE);
+ sscanf(buffer, " %s", keyword);
+ if (!keyword)
+ {
+ continue;
+ }
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("profile", keyword))
+ {
+ mProfileParams.importLegacyStream(input_stream);
+ }
+ else if (!strcmp("path",keyword))
+ {
+ mPathParams.importLegacyStream(input_stream);
+ }
+ else
+ {
+ llwarns << "unknown keyword " << keyword << " in volume import" << llendl;
+ }
+ }
+
+ return TRUE;
+}
+
+BOOL LLVolumeParams::exportLegacyStream(std::ostream& output_stream) const
+{
+ output_stream <<"\tshape 0\n";
+ output_stream <<"\t{\n";
+ mPathParams.exportLegacyStream(output_stream);
+ mProfileParams.exportLegacyStream(output_stream);
+ output_stream << "\t}\n";
+ return TRUE;
+}
+
+LLSD LLVolumeParams::asLLSD() const
+{
+ LLSD sd = LLSD();
+ sd["path"] = mPathParams;
+ sd["profile"] = mProfileParams;
+ return sd;
+}
+
+bool LLVolumeParams::fromLLSD(LLSD& sd)
+{
+ mPathParams.fromLLSD(sd["path"]);
+ mProfileParams.fromLLSD(sd["profile"]);
+ return true;
+}
+
+void LLVolumeParams::reduceS(F32 begin, F32 end)
+{
+ begin = llclampf(begin);
+ end = llclampf(end);
+ if (begin > end)
+ {
+ F32 temp = begin;
+ begin = end;
+ end = temp;
+ }
+ F32 a = mProfileParams.getBegin();
+ F32 b = mProfileParams.getEnd();
+ mProfileParams.setBegin(a + begin * (b - a));
+ mProfileParams.setEnd(a + end * (b - a));
+}
+
+void LLVolumeParams::reduceT(F32 begin, F32 end)
+{
+ begin = llclampf(begin);
+ end = llclampf(end);
+ if (begin > end)
+ {
+ F32 temp = begin;
+ begin = end;
+ end = temp;
+ }
+ F32 a = mPathParams.getBegin();
+ F32 b = mPathParams.getEnd();
+ mPathParams.setBegin(a + begin * (b - a));
+ mPathParams.setEnd(a + end * (b - a));
+}
+
+BOOL LLVolumeParams::isConvex() const
+{
+ // The logic for determining convexity is a little convoluted.
+
+ // Do we need to take getTwistBegin into account? DK 08/12/04
+ if ( mProfileParams.getHollow() != 0.0f
+ || mPathParams.getTwist() != mPathParams.getTwistBegin() )
+ {
+ // hollow or twist gaurantees concavity
+ return FALSE;
+ }
+
+ F32 profile_length = mProfileParams.getEnd() - mProfileParams.getBegin();
+ BOOL concave_profile = (profile_length < 1.0f) && (profile_length > 0.5f);
+ if (concave_profile)
+ {
+ // concave profile
+ return FALSE;
+ }
+
+ U8 path_type = mPathParams.getCurveType();
+ if ( LL_PCODE_PATH_LINE == path_type )
+ {
+ // straight paths with convex profile
+ return TRUE;
+ }
+
+ F32 path_length = mPathParams.getEnd() - mPathParams.getBegin();
+ BOOL concave_path = (path_length < 1.0f) && (path_length > 0.5f);
+ if (concave_path)
+ {
+ return FALSE;
+ }
+
+ // we're left with spheres, toroids and tubes
+ // only the spheres can be convex
+ U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
+ if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type )
+ {
+ return TRUE;
+ }
+
+ // it's a toroid or tube
+ return FALSE;
+}
+
+LLFaceID LLVolume::generateFaceMask()
+{
+ LLFaceID new_mask = 0x0000;
+
+ switch(mProfilep->mParams.getCurveType() & LL_PCODE_PROFILE_MASK)
+ {
+ case LL_PCODE_PROFILE_CIRCLE:
+ case LL_PCODE_PROFILE_CIRCLE_HALF:
+ new_mask |= LL_FACE_OUTER_SIDE_0;
+ break;
+ case LL_PCODE_PROFILE_SQUARE:
+ {
+ for(S32 side = (S32)(mProfilep->mParams.getBegin() * 4.f); side < llceil(mProfilep->mParams.getEnd() * 4.f); side++)
+ {
+ new_mask |= LL_FACE_OUTER_SIDE_0 << side;
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_ISOTRI:
+ case LL_PCODE_PROFILE_EQUALTRI:
+ case LL_PCODE_PROFILE_RIGHTTRI:
+ {
+ for(S32 side = (S32)(mProfilep->mParams.getBegin() * 3.f); side < llceil(mProfilep->mParams.getEnd() * 3.f); side++)
+ {
+ new_mask |= LL_FACE_OUTER_SIDE_0 << side;
+ }
+ }
+ break;
+ default:
+ llerrs << "Unknown profile!" << llendl
+ break;
+ }
+
+ // handle hollow objects
+ if (mProfilep->isHollow())
+ {
+ new_mask |= LL_FACE_INNER_SIDE;
+ }
+
+ // handle open profile curves
+ if (mProfilep->isOpen())
+ {
+ new_mask |= LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END;
+ }
+
+ // handle open path curves
+ if (mPathp->isOpen())
+ {
+ new_mask |= LL_FACE_PATH_BEGIN | LL_FACE_PATH_END;
+ }
+
+ return new_mask;
+}
+
+BOOL LLVolume::isFaceMaskValid(LLFaceID face_mask)
+{
+ LLFaceID test_mask = 0;
+ for(S32 i = 0; i < getNumFaces(); i++)
+ {
+ test_mask |= mProfilep->mFaces[i].mFaceID;
+ }
+
+ return test_mask == face_mask;
+}
+
+BOOL LLVolume::isConvex() const
+{
+ // mParams.isConvex() may return FALSE even though the final
+ // geometry is actually convex due to LOD approximations.
+ // TODO -- provide LLPath and LLProfile with isConvex() methods
+ // that correctly determine convexity. -- Leviathan
+ return mParams.isConvex();
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params)
+{
+ s << "{type=" << (U32) profile_params.mCurveType;
+ s << ", begin=" << profile_params.mBegin;
+ s << ", end=" << profile_params.mEnd;
+ s << ", hollow=" << profile_params.mHollow;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params)
+{
+ s << "{type=" << (U32) path_params.mCurveType;
+ s << ", begin=" << path_params.mBegin;
+ s << ", end=" << path_params.mEnd;
+ s << ", twist=" << path_params.mTwistEnd;
+ s << ", scale=" << path_params.mScale;
+ s << ", shear=" << path_params.mShear;
+ s << ", twist_begin=" << path_params.mTwistBegin;
+ s << ", radius_offset=" << path_params.mRadiusOffset;
+ s << ", taper=" << path_params.mTaper;
+ s << ", revolutions=" << path_params.mRevolutions;
+ s << ", skew=" << path_params.mSkew;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params)
+{
+ s << "{profileparams = " << volume_params.mProfileParams;
+ s << ", pathparams = " << volume_params.mPathParams;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLProfile &profile)
+{
+ s << " {open=" << (U32) profile.mOpen;
+ s << ", dirty=" << profile.mDirty;
+ s << ", totalout=" << profile.mTotalOut;
+ s << ", total=" << profile.mTotal;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLPath &path)
+{
+ s << "{open=" << (U32) path.mOpen;
+ s << ", dirty=" << path.mDirty;
+ s << ", step=" << path.mStep;
+ s << ", total=" << path.mTotal;
+ s << "}";
+ return s;
+}
+
+std::ostream& operator<<(std::ostream &s, const LLVolume &volume)
+{
+ s << "{params = " << volume.mParams;
+ s << ", path = " << *volume.mPathp;
+ s << ", profile = " << *volume.mProfilep;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLVolume *volumep)
+{
+ s << "{params = " << volumep->mParams;
+ s << ", path = " << *(volumep->mPathp);
+ s << ", profile = " << *(volumep->mProfilep);
+ s << "}";
+ return s;
+}
+
+
+LLVolumeFace::LLVolumeFace()
+{
+ mTypeMask = 0;
+ mID = 0;
+ mBeginS = 0;
+ mBeginT = 0;
+ mNumS = 0;
+ mNumT = 0;
+}
+
+
+BOOL LLVolumeFace::create()
+{
+ if (mTypeMask & CAP_MASK)
+ {
+ return createCap();
+ }
+ else if ((mTypeMask & END_MASK) || (mTypeMask & SIDE_MASK))
+ {
+ return createSide();
+ }
+ else
+ {
+ llerrs << "Unknown/uninitialized face type!" << llendl;
+ return FALSE;
+ }
+}
+
+void LerpPlanarVertex(LLVolumeFace::VertexData& v0,
+ LLVolumeFace::VertexData& v1,
+ LLVolumeFace::VertexData& v2,
+ LLVolumeFace::VertexData& vout,
+ F32 coef01,
+ F32 coef02)
+{
+ vout.mPosition = v0.mPosition + ((v1.mPosition-v0.mPosition)*coef01)+((v2.mPosition-v0.mPosition)*coef02);
+ vout.mTexCoord = v0.mTexCoord + ((v1.mTexCoord-v0.mTexCoord)*coef01)+((v2.mTexCoord-v0.mTexCoord)*coef02);
+ vout.mNormal = v0.mNormal;
+ vout.mBinormal = v0.mBinormal;
+}
+
+BOOL LLVolumeFace::createUnCutCubeCap()
+{
+ const std::vector<LLVolume::Point>& mesh = mVolumep->getMesh();
+ const std::vector<LLVector3>& profile = mVolumep->getProfile().mProfile;
+ S32 max_s = mVolumep->getProfile().getTotal();
+ S32 max_t = mVolumep->getPath().mPath.size();
+
+ // S32 i;
+ S32 num_vertices = 0, num_indices = 0;
+ S32 grid_size = (profile.size()-1)/4;
+ S32 quad_count = (grid_size * grid_size);
+
+ num_vertices = (grid_size+1)*(grid_size+1);
+ num_indices = quad_count * 4;
+
+ S32 offset = 0;
+ if (mTypeMask & TOP_MASK)
+ offset = (max_t-1) * max_s;
+ else
+ offset = mBeginS;
+
+ VertexData corners[4];
+ VertexData baseVert;
+ for(int t = 0; t < 4; t++){
+ corners[t].mPosition = mesh[offset + (grid_size*t)].mPos;
+ corners[t].mTexCoord.mV[0] = profile[grid_size*t].mV[0]+0.5f;
+ corners[t].mTexCoord.mV[1] = 0.5f - profile[grid_size*t].mV[1];
+ }
+ baseVert.mNormal =
+ ((corners[1].mPosition-corners[0].mPosition) %
+ (corners[2].mPosition-corners[1].mPosition));
+ baseVert.mNormal.normVec();
+ if(!(mTypeMask & TOP_MASK)){
+ baseVert.mNormal *= -1.0f;
+ }else{
+ //Swap the UVs on the U(X) axis for top face
+ LLVector2 swap;
+ swap = corners[0].mTexCoord;
+ corners[0].mTexCoord=corners[3].mTexCoord;
+ corners[3].mTexCoord=swap;
+ swap = corners[1].mTexCoord;
+ corners[1].mTexCoord=corners[2].mTexCoord;
+ corners[2].mTexCoord=swap;
+ }
+ baseVert.mBinormal = calc_binormal_from_triangle(
+ corners[0].mPosition, corners[0].mTexCoord,
+ corners[1].mPosition, corners[1].mTexCoord,
+ corners[2].mPosition, corners[2].mTexCoord);
+ for(int t = 0; t < 4; t++){
+ corners[t].mBinormal = baseVert.mBinormal;
+ corners[t].mNormal = baseVert.mNormal;
+ }
+
+ S32 vtop = mVertices.size();
+// S32 itop = mIndices.size();
+/// vector_append(mVertices,4);
+// vector_append(mIndices,4);
+// LLVector3 new_pt = lerp(pt1, pt2, t_fraction);
+#if 0
+ for(int t=0;t<4;t++){
+ VertexData vd;
+ vd.mPosition = corners[t].mPosition;
+ vd.mNormal =
+ ((corners[(t+1)%4].mPosition-corners[t].mPosition)%
+ (corners[(t+2)%4].mPosition-corners[(t+1)%4].mPosition));
+ vd.mNormal.normVec();
+
+ if (mTypeMask & TOP_MASK)
+ vd.mNormal *= -1.0f;
+ vd.mBinormal = vd.mNormal;
+ vd.mTexCoord = corners[t].mTexCoord;
+ mVertices.push_back(vd);
+ }
+ int idxs[] = {0,1,2,2,3,0};
+ if (mTypeMask & TOP_MASK){
+ for(int i=0;i<6;i++)mIndices.push_back(vtop+idxs[i]);
+ }else{
+ for(int i=5;i>=0;i--)mIndices.push_back(vtop+idxs[i]);
+ }
+#else
+ for(int gx = 0;gx<grid_size+1;gx++){
+ for(int gy = 0;gy<grid_size+1;gy++){
+ VertexData newVert;
+ LerpPlanarVertex(
+ corners[0],
+ corners[1],
+ corners[3],
+ newVert,
+ (F32)gx/(F32)grid_size,
+ (F32)gy/(F32)grid_size);
+ mVertices.push_back(newVert);
+ }
+ }
+ int idxs[] = {0,1,(grid_size+1)+1,(grid_size+1)+1,(grid_size+1),0};
+ for(int gx = 0;gx<grid_size;gx++){
+ for(int gy = 0;gy<grid_size;gy++){
+ if (mTypeMask & TOP_MASK){
+ for(int i=5;i>=0;i--)mIndices.push_back(vtop+(gy*(grid_size+1))+gx+idxs[i]);
+ }else{
+ for(int i=0;i<6;i++)mIndices.push_back(vtop+(gy*(grid_size+1))+gx+idxs[i]);
+ }
+ }
+ }
+#endif
+ return TRUE;
+}
+
+
+BOOL LLVolumeFace::createCap()
+{
+ if (!(mTypeMask & HOLLOW_MASK) &&
+ !(mTypeMask & OPEN_MASK) &&
+ ((this->mVolumep->getParams().getPathParams().getBegin()==0.0f)&&
+ (this->mVolumep->getParams().getPathParams().getEnd()==1.0f))&&
+ (mVolumep->getProfile().mParams.getCurveType()==LL_PCODE_PROFILE_SQUARE &&
+ mVolumep->getPath().mParams.getCurveType()==LL_PCODE_PATH_LINE)
+ ){
+ return createUnCutCubeCap();
+ }
+
+ S32 i;
+ S32 num_vertices = 0, num_indices = 0;
+
+ const std::vector<LLVolume::Point>& mesh = mVolumep->getMesh();
+ const std::vector<LLVector3>& profile = mVolumep->getProfile().mProfile;
+
+ // All types of caps have the same number of vertices and indices
+ num_vertices = profile.size();
+ num_indices = (profile.size() - 2)*3;
+ vector_append(mVertices,num_vertices);
+ vector_append(mIndices,num_indices);
+
+ S32 max_s = mVolumep->getProfile().getTotal();
+ S32 max_t = mVolumep->getPath().mPath.size();
+
+ mCenter.clearVec();
+
+ S32 offset = 0;
+ if (mTypeMask & TOP_MASK)
+ {
+ offset = (max_t-1) * max_s;
+ }
+ else
+ {
+ offset = mBeginS;
+ }
+
+ // Figure out the normal, assume all caps are flat faces.
+ // Cross product to get normals.
+
+ LLVector2 cuv = LLVector2(0,0);
+
+ // Copy the vertices into the array
+ for (i = 0; i < num_vertices; i++)
+ {
+
+ if (mTypeMask & TOP_MASK)
+ {
+ mVertices[i].mTexCoord.mV[0] = profile[i].mV[0]+0.5f;
+ mVertices[i].mTexCoord.mV[1] = profile[i].mV[1]+0.5f;
+ }
+ else
+ {
+ // Mirror for underside.
+ mVertices[i].mTexCoord.mV[0] = profile[i].mV[0]+0.5f;
+ mVertices[i].mTexCoord.mV[1] = 0.5f - profile[i].mV[1];
+ }
+
+ if(i){
+ //Dont include the first point of the profile in the average
+ cuv += mVertices[i].mTexCoord;
+ mCenter += mVertices[i].mPosition = mesh[i + offset].mPos;
+ }
+ else mVertices[i].mPosition = mesh[i + offset].mPos;
+ //mVertices[i].mNormal = normal;
+ }
+
+ mCenter /= (F32)(num_vertices-1);
+ cuv /= (F32)(num_vertices-1);
+
+ LLVector3 binormal = calc_binormal_from_triangle(
+ mCenter, cuv,
+ mVertices[0].mPosition, mVertices[0].mTexCoord,
+ mVertices[1].mPosition, mVertices[1].mTexCoord);
+ binormal.normVec();
+
+ LLVector3 d0;
+ LLVector3 d1;
+ LLVector3 normal;
+
+ d0 = mCenter-mVertices[0].mPosition;
+ d1 = mCenter-mVertices[1].mPosition;
+
+ normal = (mTypeMask & TOP_MASK) ? (d0%d1) : (d1%d0);
+ normal.normVec();
+
+ VertexData vd;
+ vd.mPosition = mCenter;
+ vd.mNormal = normal;
+ vd.mBinormal = binormal;
+ vd.mTexCoord = cuv;
+
+ if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK))
+ {
+ mVertices.push_back(vd);
+ num_vertices++;
+ vector_append(mIndices, 3);
+ }
+
+
+ for (i = 0; i < num_vertices; i++)
+ {
+ mVertices[i].mBinormal = binormal;
+ mVertices[i].mNormal = normal;
+ }
+
+ if (mTypeMask & HOLLOW_MASK)
+ {
+ if (mTypeMask & TOP_MASK)
+ {
+ // HOLLOW TOP
+ // Does it matter if it's open or closed? - djs
+
+ S32 pt1 = 0, pt2 = num_vertices - 1;
+ i = 0;
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ LLVector3 p1 = profile[pt1];
+ LLVector3 p2 = profile[pt2];
+ LLVector3 pa = profile[pt1+1];
+ LLVector3 pb = profile[pt2-1];
+
+ p1.mV[VZ] = 0.f;
+ p2.mV[VZ] = 0.f;
+ pa.mV[VZ] = 0.f;
+ pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
+ (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
+ (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
+
+ area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
+ (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
+
+ area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
+ (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
+ (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ BOOL use_tri1a2 = TRUE;
+ BOOL tri_1a2 = TRUE;
+ BOOL tri_21b = TRUE;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = FALSE;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = FALSE;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = FALSE;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = FALSE;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = FALSE;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ LLVector3 d1 = p1 - pa;
+ LLVector3 d2 = p2 - pb;
+
+ if (d1.magVecSquared() < d2.magVecSquared())
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ use_tri1a2 = FALSE;
+ }
+ }
+
+ if (use_tri1a2)
+ {
+ mIndices[i++] = pt1;
+ mIndices[i++] = pt1 + 1;
+ mIndices[i++] = pt2;
+ pt1++;
+ }
+ else
+ {
+ mIndices[i++] = pt1;
+ mIndices[i++] = pt2 - 1;
+ mIndices[i++] = pt2;
+ pt2--;
+ }
+ }
+ }
+ else
+ {
+ // HOLLOW BOTTOM
+ // Does it matter if it's open or closed? - djs
+
+ llassert(mTypeMask & BOTTOM_MASK);
+ S32 pt1 = 0, pt2 = num_vertices - 1;
+
+ i = 0;
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ LLVector3 p1 = profile[pt1];
+ LLVector3 p2 = profile[pt2];
+ LLVector3 pa = profile[pt1+1];
+ LLVector3 pb = profile[pt2-1];
+
+ p1.mV[VZ] = 0.f;
+ p2.mV[VZ] = 0.f;
+ pa.mV[VZ] = 0.f;
+ pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
+ (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
+ (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
+
+ area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
+ (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
+
+ area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
+ (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
+ (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
+ (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
+
+ BOOL use_tri1a2 = TRUE;
+ BOOL tri_1a2 = TRUE;
+ BOOL tri_21b = TRUE;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = FALSE;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = FALSE;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = FALSE;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = FALSE;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = FALSE;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ LLVector3 d1 = p1 - pa;
+ LLVector3 d2 = p2 - pb;
+
+ if (d1.magVecSquared() < d2.magVecSquared())
+ {
+ use_tri1a2 = TRUE;
+ }
+ else
+ {
+ use_tri1a2 = FALSE;
+ }
+ }
+
+ // Flipped backfacing from top
+ if (use_tri1a2)
+ {
+ mIndices[i++] = pt1;
+ mIndices[i++] = pt2;
+ mIndices[i++] = pt1 + 1;
+ pt1++;
+ }
+ else
+ {
+ mIndices[i++] = pt1;
+ mIndices[i++] = pt2;
+ mIndices[i++] = pt2 - 1;
+ pt2--;
+ }
+ }
+ }
+ }
+ else
+ {
+ // Not hollow, generate the triangle fan.
+ if (mTypeMask & TOP_MASK)
+ {
+ if (mTypeMask & OPEN_MASK)
+ {
+ // SOLID OPEN TOP
+ // Generate indices
+ // This is a tri-fan, so we reuse the same first point for all triangles.
+ for (i = 0; i < (num_vertices - 2); i++)
+ {
+ mIndices[3*i] = num_vertices - 1;
+ mIndices[3*i+1] = i;
+ mIndices[3*i+2] = i + 1;
+ }
+ }
+ else
+ {
+ // SOLID CLOSED TOP
+ for (i = 0; i < (num_vertices - 2); i++)
+ {
+ //MSMSM fix these caps but only for the un-cut case
+ mIndices[3*i] = num_vertices - 1;
+ mIndices[3*i+1] = i;
+ mIndices[3*i+2] = i + 1;
+ }
+ }
+ }
+ else
+ {
+ if (mTypeMask & OPEN_MASK)
+ {
+ // SOLID OPEN BOTTOM
+ // Generate indices
+ // This is a tri-fan, so we reuse the same first point for all triangles.
+ for (i = 0; i < (num_vertices - 2); i++)
+ {
+ mIndices[3*i] = num_vertices - 1;
+ mIndices[3*i+1] = i + 1;
+ mIndices[3*i+2] = i;
+ }
+ }
+ else
+ {
+ // SOLID CLOSED BOTTOM
+ for (i = 0; i < (num_vertices - 2); i++)
+ {
+ //MSMSM fix these caps but only for the un-cut case
+ mIndices[3*i] = num_vertices - 1;
+ mIndices[3*i+1] = i + 1;
+ mIndices[3*i+2] = i;
+ }
+ }
+ }
+ }
+ return TRUE;
+}
+
+
+BOOL LLVolumeFace::createSide()
+{
+ BOOL flat = mTypeMask & FLAT_MASK;
+ S32 num_vertices, num_indices;
+
+
+ const std::vector<LLVolume::Point>& mesh = mVolumep->getMesh();
+ const std::vector<LLVector3>& profile = mVolumep->getProfile().mProfile;
+ const std::vector<LLPath::PathPt>& path_data = mVolumep->getPath().mPath;
+
+ S32 max_s = mVolumep->getProfile().getTotal();
+
+ S32 s, t, i;
+ F32 ss, tt;
+
+ num_vertices = mNumS*mNumT;
+ num_indices = (mNumS-1)*(mNumT-1)*6;
+ vector_append(mVertices,num_vertices);
+ vector_append(mIndices,num_indices);
+ vector_append(mEdge, num_indices);
+
+ mCenter.clearVec();
+
+ S32 begin_stex = llfloor( profile[mBeginS].mV[2] );
+ S32 num_s = ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2) ? mNumS/2 : mNumS;
+
+ S32 cur_vertex = 0;
+ // Copy the vertices into the array
+ for (t = mBeginT; t < mBeginT + mNumT; t++)
+ {
+ tt = path_data[t].mTexT;
+ for (s = 0; s < num_s; s++)
+ {
+ if (mTypeMask & END_MASK)
+ {
+ if (s)
+ {
+ ss = 1.f;
+ }
+ else
+ {
+ ss = 0.f;
+ }
+ }
+ else
+ {
+ // Get s value for tex-coord.
+ if (!flat)
+ {
+ ss = profile[mBeginS + s].mV[2];
+ }
+ else
+ {
+ ss = profile[mBeginS + s].mV[2] - begin_stex;
+ }
+ }
+
+ // Check to see if this triangle wraps around the array.
+ if (mBeginS + s >= max_s)
+ {
+ // We're wrapping
+ i = mBeginS + s + max_s*(t-1);
+ }
+ else
+ {
+ i = mBeginS + s + max_s*t;
+ }
+
+ mCenter += mVertices[cur_vertex].mPosition = mesh[i].mPos;
+ mVertices[cur_vertex].mTexCoord = LLVector2(ss,tt);
+
+ mVertices[cur_vertex].mNormal = LLVector3(0,0,0);
+ mVertices[cur_vertex].mBinormal = LLVector3(0,0,0);
+
+ cur_vertex++;
+
+ if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2 && s > 0)
+ {
+ mCenter += mVertices[cur_vertex].mPosition = mesh[i].mPos;
+ mVertices[cur_vertex].mTexCoord = LLVector2(ss,tt);
+
+ mVertices[cur_vertex].mNormal = LLVector3(0,0,0);
+ mVertices[cur_vertex].mBinormal = LLVector3(0,0,0);
+ cur_vertex++;
+ }
+ }
+
+ if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2)
+ {
+ if (mTypeMask & OPEN_MASK)
+ {
+ s = num_s-1;
+ }
+ else
+ {
+ s = 0;
+ }
+
+ i = mBeginS + s + max_s*t;
+ ss = profile[mBeginS + s].mV[2] - begin_stex;
+ mCenter += mVertices[cur_vertex].mPosition = mesh[i].mPos;
+ mVertices[cur_vertex].mTexCoord = LLVector2(ss,tt);
+
+ mVertices[cur_vertex].mNormal = LLVector3(0,0,0);
+ mVertices[cur_vertex].mBinormal = LLVector3(0,0,0);
+ cur_vertex++;
+ }
+ }
+ mCenter /= (F32)num_vertices;
+
+ S32 cur_index = 0;
+ S32 cur_edge = 0;
+ BOOL flat_face = mTypeMask & FLAT_MASK;
+
+ // Now we generate the indices.
+ for (t = 0; t < (mNumT-1); t++)
+ {
+ for (s = 0; s < (mNumS-1); s++)
+ {
+ mIndices[cur_index++] = s + mNumS*t; //bottom left
+ mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right
+ mIndices[cur_index++] = s + mNumS*(t+1); //top left
+ mIndices[cur_index++] = s + mNumS*t; //bottom left
+ mIndices[cur_index++] = s+1 + mNumS*t; //bottom right
+ mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right
+
+ mEdge[cur_edge++] = (mNumS-1)*2*t+s*2+1; //bottom left/top right neighbor face
+ if (t < mNumT-2) { //top right/top left neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*(t+1)+s*2+1;
+ }
+ else if (mNumT <= 3 || mVolumep->getPath().isOpen() == TRUE) { //no neighbor
+ mEdge[cur_edge++] = -1;
+ }
+ else { //wrap on T
+ mEdge[cur_edge++] = s*2+1;
+ }
+ if (s > 0) { //top left/bottom left neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*t+s*2-1;
+ }
+ else if (flat_face || mVolumep->getProfile().isOpen() == TRUE) { //no neighbor
+ mEdge[cur_edge++] = -1;
+ }
+ else { //wrap on S
+ mEdge[cur_edge++] = (mNumS-1)*2*t+(mNumS-2)*2+1;
+ }
+
+ if (t > 0) { //bottom left/bottom right neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*(t-1)+s*2;
+ }
+ else if (mNumT <= 3 || mVolumep->getPath().isOpen() == TRUE) { //no neighbor
+ mEdge[cur_edge++] = -1;
+ }
+ else { //wrap on T
+ mEdge[cur_edge++] = (mNumS-1)*2*(mNumT-2)+s*2;
+ }
+ if (s < mNumS-2) { //bottom right/top right neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*t+(s+1)*2;
+ }
+ else if (flat_face || mVolumep->getProfile().isOpen() == TRUE) { //no neighbor
+ mEdge[cur_edge++] = -1;
+ }
+ else { //wrap on S
+ mEdge[cur_edge++] = (mNumS-1)*2*t;
+ }
+ mEdge[cur_edge++] = (mNumS-1)*2*t+s*2; //top right/bottom left neighbor face
+ }
+ }
+
+
+ //generate normals
+ for (U32 i = 0; i < mIndices.size()/3; i++) { //for each triangle
+ const VertexData& v0 = mVertices[mIndices[i*3+0]];
+ const VertexData& v1 = mVertices[mIndices[i*3+1]];
+ const VertexData& v2 = mVertices[mIndices[i*3+2]];
+
+ //calculate triangle normal
+ LLVector3 norm = (v0.mPosition-v1.mPosition)%
+ (v0.mPosition-v2.mPosition);
+
+ //calculate binormal
+ LLVector3 binorm = calc_binormal_from_triangle(v0.mPosition, v0.mTexCoord,
+ v1.mPosition, v1.mTexCoord,
+ v2.mPosition, v2.mTexCoord);
+
+ for (U32 j = 0; j < 3; j++) { //add triangle normal to vertices
+ mVertices[mIndices[i*3+j]].mNormal += norm; // * (weight_sum - d[j])/weight_sum;
+ mVertices[mIndices[i*3+j]].mBinormal += binorm; // * (weight_sum - d[j])/weight_sum;
+ }
+
+ //even out quad contributions
+ if (i % 2 == 0) {
+ mVertices[mIndices[i*3+2]].mNormal += norm;
+ mVertices[mIndices[i*3+2]].mBinormal += binorm;
+ }
+ else {
+ mVertices[mIndices[i*3+1]].mNormal += norm;
+ mVertices[mIndices[i*3+1]].mBinormal += binorm;
+ }
+ }
+
+ if (mVolumep->getPath().isOpen() == FALSE) { //wrap normals on T
+ for (S32 i = 0; i < mNumS; i++) {
+ LLVector3 norm = mVertices[i].mNormal + mVertices[mNumS*(mNumT-1)+i].mNormal;
+ mVertices[i].mNormal = norm;
+ mVertices[mNumS*(mNumT-1)+i].mNormal = norm;
+ }
+ }
+
+ if (mVolumep->getProfile().isOpen() == FALSE) { //wrap normals on S
+ for (S32 i = 0; i < mNumT; i++) {
+ LLVector3 norm = mVertices[mNumS*i].mNormal + mVertices[mNumS*i+mNumS-1].mNormal;
+ mVertices[mNumS * i].mNormal = norm;
+ mVertices[mNumS * i+mNumS-1].mNormal = norm;
+ }
+ }
+
+ if (mVolumep->getPathType() == LL_PCODE_PATH_CIRCLE && ((mVolumep->getProfileType() & LL_PCODE_PROFILE_MASK) == LL_PCODE_PROFILE_CIRCLE_HALF)) {
+ if ((mVertices[0].mPosition - mVertices[mNumS*(mNumT-2)].mPosition).magVecSquared() < 0.000001f)
+ { //all lower S have same normal
+ for (S32 i = 0; i < mNumT; i++) {
+ mVertices[mNumS*i].mNormal = LLVector3(1,0,0);
+ }
+ }
+
+ if ((mVertices[mNumS-1].mPosition - mVertices[mNumS*(mNumT-2)+mNumS-1].mPosition).magVecSquared() < 0.000001f)
+ { //all upper T have same normal
+ for (S32 i = 0; i < mNumT; i++) {
+ mVertices[mNumS*i+mNumS-1].mNormal = LLVector3(-1,0,0);
+ }
+ }
+ }
+
+ //this loop would LOVE OpenMP
+ LLVector3 min = mVolumep->mBounds[0] - mVolumep->mBounds[1];
+ LLVector3 max = mVolumep->mBounds[0] + mVolumep->mBounds[1];
+
+ if (min == max && min == LLVector3(512,512,512))
+ {
+ min = max = mVertices[0].mPosition;
+ }
+
+ for (U32 i = 0; i < mVertices.size(); i++) {
+ mVertices[i].mNormal.normVec();
+ mVertices[i].mBinormal.normVec();
+
+ for (U32 j = 0; j < 3; j++) {
+ if (mVertices[i].mPosition.mV[j] > max.mV[j]) {
+ max.mV[j] = mVertices[i].mPosition.mV[j];
+ }
+ if (mVertices[i].mPosition.mV[j] < min.mV[j]) {
+ min.mV[j] = mVertices[i].mPosition.mV[j];
+ }
+ }
+ }
+
+ mVolumep->mBounds[0] = (min + max) * 0.5f; //center
+ mVolumep->mBounds[1] = (max - min) * 0.5f; //half-height
+
+ return TRUE;
+}
+
+// Static
+BOOL LLVolumeFace::updateColors(LLColor4U *old_colors, const S32 num_old, const LLVolumeFace &old_vf,
+ LLStrider<LLColor4U> &new_colors, const S32 num_new, const LLVolumeFace &new_vf)
+{
+ if (new_vf.mTypeMask & CAP_MASK)
+ {
+ // These aren't interpolated correctly. Need to fix when shadows go in...
+ F32 ratio = (F32)num_old / (F32)num_new;
+ S32 v = 0;
+ for (v = 0; v < num_new; v++)
+ {
+ new_colors[v] = old_colors[(S32)(v*ratio)];
+ }
+ return FALSE;
+ }
+ else if (new_vf.mTypeMask & END_MASK)
+ {
+ // These aren't interpolated correctly. Need to fix when shadows go in...
+ F32 ratio = (F32)num_old / (F32)num_new;
+ S32 v = 0;
+ for (v = 0; v < num_new; v++)
+ {
+ new_colors[v] = old_colors[(S32)(v*ratio)];
+ }
+ return FALSE;
+ }
+ else if (new_vf.mTypeMask & SIDE_MASK)
+ {
+ S32 s, t;
+ F32 s_ratio = (F32)old_vf.mNumS / (F32)new_vf.mNumS;
+ F32 t_ratio = (F32)old_vf.mNumT / (F32)new_vf.mNumT;
+
+ S32 v = 0;
+ for (t = 0; t < new_vf.mNumT; t++)
+ {
+ F32 t_frac = t * t_ratio;
+ S32 old_t = (S32)t_frac;
+ S32 t_target = llmin(old_t + 1, (old_vf.mNumT - 1));
+ t_frac -= old_t;
+ for (s = 0; s < new_vf.mNumS; s++)
+ {
+ F32 s_frac = s * s_ratio;
+ S32 old_s = (S32)s_frac;
+ S32 s_target = llmin(old_s + 1, (old_vf.mNumS - 1));
+ s_frac -= old_s;
+
+ // Interpolate along s, then along t.
+ LLColor4U s_interp0 = old_colors[old_t * old_vf.mNumS + old_s].multAll(1.f - s_frac).addClampMax(old_colors[old_t * old_vf.mNumS + s_target].multAll(s_frac));
+ LLColor4U s_interp1 = old_colors[t_target * old_vf.mNumS + old_s].multAll(1.f - s_frac).addClampMax(old_colors[t_target * old_vf.mNumS + s_target].multAll(s_frac));
+ new_colors[v] = s_interp0.multAll(1.f - t_frac).addClampMax(s_interp1.multAll(t_frac));
+ v++;
+ }
+ }
+ }
+ else
+ {
+ llerrs << "Unknown/uninitialized face type!" << llendl;
+ return FALSE;
+ }
+ return TRUE;
+}
+
+
+// Finds binormal based on three vertices with texture coordinates.
+// Fills in dummy values if the triangle has degenerate texture coordinates.
+LLVector3 calc_binormal_from_triangle(
+ const LLVector3& pos0,
+ const LLVector2& tex0,
+ const LLVector3& pos1,
+ const LLVector2& tex1,
+ const LLVector3& pos2,
+ const LLVector2& tex2)
+{
+ LLVector3 rx0( pos0.mV[VX], tex0.mV[VX], tex0.mV[VY] );
+ LLVector3 rx1( pos1.mV[VX], tex1.mV[VX], tex1.mV[VY] );
+ LLVector3 rx2( pos2.mV[VX], tex2.mV[VX], tex2.mV[VY] );
+
+ LLVector3 ry0( pos0.mV[VY], tex0.mV[VX], tex0.mV[VY] );
+ LLVector3 ry1( pos1.mV[VY], tex1.mV[VX], tex1.mV[VY] );
+ LLVector3 ry2( pos2.mV[VY], tex2.mV[VX], tex2.mV[VY] );
+
+ LLVector3 rz0( pos0.mV[VZ], tex0.mV[VX], tex0.mV[VY] );
+ LLVector3 rz1( pos1.mV[VZ], tex1.mV[VX], tex1.mV[VY] );
+ LLVector3 rz2( pos2.mV[VZ], tex2.mV[VX], tex2.mV[VY] );
+
+ LLVector3 r0 = (rx0 - rx1) % (rx0 - rx2);
+ LLVector3 r1 = (ry0 - ry1) % (ry0 - ry2);
+ LLVector3 r2 = (rz0 - rz1) % (rz0 - rz2);
+
+ if( r0.mV[VX] && r1.mV[VX] && r2.mV[VX] )
+ {
+ LLVector3 binormal(
+ -r0.mV[VZ] / r0.mV[VX],
+ -r1.mV[VZ] / r1.mV[VX],
+ -r2.mV[VZ] / r2.mV[VX]);
+ //binormal.normVec();
+ return binormal;
+ }
+ else
+ {
+ return LLVector3( 0, 1 , 0 );
+ }
+}