diff options
Diffstat (limited to 'indra/llmath/llvolume.cpp')
-rw-r--r-- | indra/llmath/llvolume.cpp | 14617 |
1 files changed, 7304 insertions, 7313 deletions
diff --git a/indra/llmath/llvolume.cpp b/indra/llmath/llvolume.cpp index 9375a5dfca..f9f4aea77b 100644 --- a/indra/llmath/llvolume.cpp +++ b/indra/llmath/llvolume.cpp @@ -1,7313 +1,7304 @@ -/** - * @file llvolume.cpp - * - * $LicenseInfo:firstyear=2002&license=viewerlgpl$ - * Second Life Viewer Source Code - * Copyright (C) 2010, Linden Research, Inc. - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; - * version 2.1 of the License only. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - * - * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA - * $/LicenseInfo$ - */ - -#include "linden_common.h" -#include "llmemory.h" -#include "llmath.h" - -#include <set> -#if !LL_WINDOWS -#include <stdint.h> -#endif -#include <cmath> -#include <unordered_map> - -#include "llerror.h" - -#include "llvolumemgr.h" -#include "v2math.h" -#include "v3math.h" -#include "v4math.h" -#include "m4math.h" -#include "m3math.h" -#include "llmatrix3a.h" -#include "lloctree.h" -#include "llvolume.h" -#include "llvolumeoctree.h" -#include "llstl.h" -#include "llsdserialize.h" -#include "llvector4a.h" -#include "llmatrix4a.h" -#include "llmeshoptimizer.h" -#include "lltimer.h" - -#include "mikktspace/mikktspace.h" -#include "mikktspace/mikktspace.c" // insert mikktspace implementation into llvolume object file - -#include "meshoptimizer/meshoptimizer.h" - -#define DEBUG_SILHOUETTE_BINORMALS 0 -#define DEBUG_SILHOUETTE_NORMALS 0 // TomY: Use this to display normals using the silhouette -#define DEBUG_SILHOUETTE_EDGE_MAP 0 // DaveP: Use this to display edge map using the silhouette - -const F32 MIN_CUT_DELTA = 0.02f; - -const F32 HOLLOW_MIN = 0.f; -const F32 HOLLOW_MAX = 0.95f; -const F32 HOLLOW_MAX_SQUARE = 0.7f; - -const F32 TWIST_MIN = -1.f; -const F32 TWIST_MAX = 1.f; - -const F32 RATIO_MIN = 0.f; -const F32 RATIO_MAX = 2.f; // Tom Y: Inverted sense here: 0 = top taper, 2 = bottom taper - -const F32 HOLE_X_MIN= 0.05f; -const F32 HOLE_X_MAX= 1.0f; - -const F32 HOLE_Y_MIN= 0.05f; -const F32 HOLE_Y_MAX= 0.5f; - -const F32 SHEAR_MIN = -0.5f; -const F32 SHEAR_MAX = 0.5f; - -const F32 REV_MIN = 1.f; -const F32 REV_MAX = 4.f; - -const F32 TAPER_MIN = -1.f; -const F32 TAPER_MAX = 1.f; - -const F32 SKEW_MIN = -0.95f; -const F32 SKEW_MAX = 0.95f; - -const F32 SCULPT_MIN_AREA = 0.002f; -const S32 SCULPT_MIN_AREA_DETAIL = 1; - -BOOL gDebugGL = FALSE; // See settings.xml "RenderDebugGL" - -BOOL check_same_clock_dir( const LLVector3& pt1, const LLVector3& pt2, const LLVector3& pt3, const LLVector3& norm) -{ - LLVector3 test = (pt2-pt1)%(pt3-pt2); - - //answer - if(test * norm < 0) - { - return FALSE; - } - else - { - return TRUE; - } -} - -BOOL LLLineSegmentBoxIntersect(const LLVector3& start, const LLVector3& end, const LLVector3& center, const LLVector3& size) -{ - return LLLineSegmentBoxIntersect(start.mV, end.mV, center.mV, size.mV); -} - -BOOL LLLineSegmentBoxIntersect(const F32* start, const F32* end, const F32* center, const F32* size) -{ - F32 fAWdU[3]; - F32 dir[3]; - F32 diff[3]; - - for (U32 i = 0; i < 3; i++) - { - dir[i] = 0.5f * (end[i] - start[i]); - diff[i] = (0.5f * (end[i] + start[i])) - center[i]; - fAWdU[i] = fabsf(dir[i]); - if(fabsf(diff[i])>size[i] + fAWdU[i]) return false; - } - - float f; - f = dir[1] * diff[2] - dir[2] * diff[1]; if(fabsf(f)>size[1]*fAWdU[2] + size[2]*fAWdU[1]) return false; - f = dir[2] * diff[0] - dir[0] * diff[2]; if(fabsf(f)>size[0]*fAWdU[2] + size[2]*fAWdU[0]) return false; - f = dir[0] * diff[1] - dir[1] * diff[0]; if(fabsf(f)>size[0]*fAWdU[1] + size[1]*fAWdU[0]) return false; - - return true; -} - -// Finds tangent vec based on three vertices with texture coordinates. -// Fills in dummy values if the triangle has degenerate texture coordinates. -void calc_tangent_from_triangle( - LLVector4a& normal, - LLVector4a& tangent_out, - const LLVector4a& v1, - const LLVector2& w1, - const LLVector4a& v2, - const LLVector2& w2, - const LLVector4a& v3, - const LLVector2& w3) -{ - const F32* v1ptr = v1.getF32ptr(); - const F32* v2ptr = v2.getF32ptr(); - const F32* v3ptr = v3.getF32ptr(); - - float x1 = v2ptr[0] - v1ptr[0]; - float x2 = v3ptr[0] - v1ptr[0]; - float y1 = v2ptr[1] - v1ptr[1]; - float y2 = v3ptr[1] - v1ptr[1]; - float z1 = v2ptr[2] - v1ptr[2]; - float z2 = v3ptr[2] - v1ptr[2]; - - float s1 = w2.mV[0] - w1.mV[0]; - float s2 = w3.mV[0] - w1.mV[0]; - float t1 = w2.mV[1] - w1.mV[1]; - float t2 = w3.mV[1] - w1.mV[1]; - - F32 rd = s1*t2-s2*t1; - - float r = ((rd*rd) > FLT_EPSILON) ? (1.0f / rd) - : ((rd > 0.0f) ? 1024.f : -1024.f); //some made up large ratio for division by zero - - llassert(llfinite(r)); - llassert(!llisnan(r)); - - LLVector4a sdir( - (t2 * x1 - t1 * x2) * r, - (t2 * y1 - t1 * y2) * r, - (t2 * z1 - t1 * z2) * r); - - LLVector4a tdir( - (s1 * x2 - s2 * x1) * r, - (s1 * y2 - s2 * y1) * r, - (s1 * z2 - s2 * z1) * r); - - LLVector4a n = normal; - LLVector4a t = sdir; - - LLVector4a ncrosst; - ncrosst.setCross3(n,t); - - // Gram-Schmidt orthogonalize - n.mul(n.dot3(t).getF32()); - - LLVector4a tsubn; - tsubn.setSub(t,n); - - if (tsubn.dot3(tsubn).getF32() > F_APPROXIMATELY_ZERO) - { - tsubn.normalize3fast_checked(); - - // Calculate handedness - F32 handedness = ncrosst.dot3(tdir).getF32() < 0.f ? -1.f : 1.f; - - tsubn.getF32ptr()[3] = handedness; - - tangent_out = tsubn; - } - else - { - // degenerate, make up a value - // - tangent_out.set(0,0,1,1); - } - -} - - -// intersect test between triangle vert0, vert1, vert2 and a ray from orig in direction dir. -// returns TRUE if intersecting and returns barycentric coordinates in intersection_a, intersection_b, -// and returns the intersection point along dir in intersection_t. - -// Moller-Trumbore algorithm -BOOL LLTriangleRayIntersect(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir, - F32& intersection_a, F32& intersection_b, F32& intersection_t) -{ - - /* find vectors for two edges sharing vert0 */ - LLVector4a edge1; - edge1.setSub(vert1, vert0); - - LLVector4a edge2; - edge2.setSub(vert2, vert0); - - /* begin calculating determinant - also used to calculate U parameter */ - LLVector4a pvec; - pvec.setCross3(dir, edge2); - - /* if determinant is near zero, ray lies in plane of triangle */ - LLVector4a det; - det.setAllDot3(edge1, pvec); - - if (det.greaterEqual(LLVector4a::getEpsilon()).getGatheredBits() & 0x7) - { - /* calculate distance from vert0 to ray origin */ - LLVector4a tvec; - tvec.setSub(orig, vert0); - - /* calculate U parameter and test bounds */ - LLVector4a u; - u.setAllDot3(tvec,pvec); - - if ((u.greaterEqual(LLVector4a::getZero()).getGatheredBits() & 0x7) && - (u.lessEqual(det).getGatheredBits() & 0x7)) - { - /* prepare to test V parameter */ - LLVector4a qvec; - qvec.setCross3(tvec, edge1); - - /* calculate V parameter and test bounds */ - LLVector4a v; - v.setAllDot3(dir, qvec); - - - //if (!(v < 0.f || u + v > det)) - - LLVector4a sum_uv; - sum_uv.setAdd(u, v); - - S32 v_gequal = v.greaterEqual(LLVector4a::getZero()).getGatheredBits() & 0x7; - S32 sum_lequal = sum_uv.lessEqual(det).getGatheredBits() & 0x7; - - if (v_gequal && sum_lequal) - { - /* calculate t, scale parameters, ray intersects triangle */ - LLVector4a t; - t.setAllDot3(edge2,qvec); - - t.div(det); - u.div(det); - v.div(det); - - intersection_a = u[0]; - intersection_b = v[0]; - intersection_t = t[0]; - return TRUE; - } - } - } - - return FALSE; -} - -BOOL LLTriangleRayIntersectTwoSided(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir, - F32& intersection_a, F32& intersection_b, F32& intersection_t) -{ - F32 u, v, t; - - /* find vectors for two edges sharing vert0 */ - LLVector4a edge1; - edge1.setSub(vert1, vert0); - - - LLVector4a edge2; - edge2.setSub(vert2, vert0); - - /* begin calculating determinant - also used to calculate U parameter */ - LLVector4a pvec; - pvec.setCross3(dir, edge2); - - /* if determinant is near zero, ray lies in plane of triangle */ - F32 det = edge1.dot3(pvec).getF32(); - - - if (det > -F_APPROXIMATELY_ZERO && det < F_APPROXIMATELY_ZERO) - { - return FALSE; - } - - F32 inv_det = 1.f / det; - - /* calculate distance from vert0 to ray origin */ - LLVector4a tvec; - tvec.setSub(orig, vert0); - - /* calculate U parameter and test bounds */ - u = (tvec.dot3(pvec).getF32()) * inv_det; - if (u < 0.f || u > 1.f) - { - return FALSE; - } - - /* prepare to test V parameter */ - tvec.sub(edge1); - - /* calculate V parameter and test bounds */ - v = (dir.dot3(tvec).getF32()) * inv_det; - - if (v < 0.f || u + v > 1.f) - { - return FALSE; - } - - /* calculate t, ray intersects triangle */ - t = (edge2.dot3(tvec).getF32()) * inv_det; - - intersection_a = u; - intersection_b = v; - intersection_t = t; - - - return TRUE; -} - -//helper for non-aligned vectors -BOOL LLTriangleRayIntersect(const LLVector3& vert0, const LLVector3& vert1, const LLVector3& vert2, const LLVector3& orig, const LLVector3& dir, - F32& intersection_a, F32& intersection_b, F32& intersection_t, BOOL two_sided) -{ - LLVector4a vert0a, vert1a, vert2a, origa, dira; - vert0a.load3(vert0.mV); - vert1a.load3(vert1.mV); - vert2a.load3(vert2.mV); - origa.load3(orig.mV); - dira.load3(dir.mV); - - if (two_sided) - { - return LLTriangleRayIntersectTwoSided(vert0a, vert1a, vert2a, origa, dira, - intersection_a, intersection_b, intersection_t); - } - else - { - return LLTriangleRayIntersect(vert0a, vert1a, vert2a, origa, dira, - intersection_a, intersection_b, intersection_t); - } -} - -class LLVolumeOctreeRebound : public LLOctreeTravelerDepthFirst<LLVolumeTriangle, LLVolumeTriangle*> -{ -public: - const LLVolumeFace* mFace; - - LLVolumeOctreeRebound(const LLVolumeFace* face) - { - mFace = face; - } - - virtual void visit(const LLOctreeNode<LLVolumeTriangle, LLVolumeTriangle*>* branch) - { //this is a depth first traversal, so it's safe to assum all children have complete - //bounding data - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME - - LLVolumeOctreeListener* node = (LLVolumeOctreeListener*) branch->getListener(0); - - LLVector4a& min = node->mExtents[0]; - LLVector4a& max = node->mExtents[1]; - - if (!branch->isEmpty()) - { //node has data, find AABB that binds data set - const LLVolumeTriangle* tri = *(branch->getDataBegin()); - - //initialize min/max to first available vertex - min = *(tri->mV[0]); - max = *(tri->mV[0]); - - for (LLOctreeNode<LLVolumeTriangle, LLVolumeTriangle*>::const_element_iter iter = branch->getDataBegin(); iter != branch->getDataEnd(); ++iter) - { //for each triangle in node - - //stretch by triangles in node - tri = *iter; - - min.setMin(min, *tri->mV[0]); - min.setMin(min, *tri->mV[1]); - min.setMin(min, *tri->mV[2]); - - max.setMax(max, *tri->mV[0]); - max.setMax(max, *tri->mV[1]); - max.setMax(max, *tri->mV[2]); - } - } - else if (branch->getChildCount() > 0) - { //no data, but child nodes exist - LLVolumeOctreeListener* child = (LLVolumeOctreeListener*) branch->getChild(0)->getListener(0); - - //initialize min/max to extents of first child - min = child->mExtents[0]; - max = child->mExtents[1]; - } - else - { - llassert(!branch->isLeaf()); // Empty leaf - } - - for (S32 i = 0; i < branch->getChildCount(); ++i) - { //stretch by child extents - LLVolumeOctreeListener* child = (LLVolumeOctreeListener*) branch->getChild(i)->getListener(0); - min.setMin(min, child->mExtents[0]); - max.setMax(max, child->mExtents[1]); - } - - node->mBounds[0].setAdd(min, max); - node->mBounds[0].mul(0.5f); - - node->mBounds[1].setSub(max,min); - node->mBounds[1].mul(0.5f); - } -}; - -//------------------------------------------------------------------- -// statics -//------------------------------------------------------------------- - - -//---------------------------------------------------- - -LLProfile::Face* LLProfile::addCap(S16 faceID) -{ - Face *face = vector_append(mFaces, 1); - - face->mIndex = 0; - face->mCount = mTotal; - face->mScaleU= 1.0f; - face->mCap = TRUE; - face->mFaceID = faceID; - return face; -} - -LLProfile::Face* LLProfile::addFace(S32 i, S32 count, F32 scaleU, S16 faceID, BOOL flat) -{ - Face *face = vector_append(mFaces, 1); - - face->mIndex = i; - face->mCount = count; - face->mScaleU= scaleU; - - face->mFlat = flat; - face->mCap = FALSE; - face->mFaceID = faceID; - return face; -} - -//static -S32 LLProfile::getNumNGonPoints(const LLProfileParams& params, S32 sides, F32 offset, F32 bevel, F32 ang_scale, S32 split) -{ // this is basically LLProfile::genNGon stripped down to only the operations that influence the number of points - S32 np = 0; - - // Generate an n-sided "circular" path. - // 0 is (1,0), and we go counter-clockwise along a circular path from there. - F32 t, t_step, t_first, t_fraction; - - F32 begin = params.getBegin(); - F32 end = params.getEnd(); - - t_step = 1.0f / sides; - - t_first = floor(begin * sides) / (F32)sides; - - // pt1 is the first point on the fractional face. - // Starting t and ang values for the first face - t = t_first; - - // Increment to the next point. - // pt2 is the end point on the fractional face - t += t_step; - - t_fraction = (begin - t_first)*sides; - - // Only use if it's not almost exactly on an edge. - if (t_fraction < 0.9999f) - { - np++; - } - - // There's lots of potential here for floating point error to generate unneeded extra points - DJS 04/05/02 - while (t < end) - { - // Iterate through all the integer steps of t. - np++; - - t += t_step; - } - - t_fraction = (end - (t - t_step))*sides; - - // Find the fraction that we need to add to the end point. - t_fraction = (end - (t - t_step))*sides; - if (t_fraction > 0.0001f) - { - np++; - } - - // If we're sliced, the profile is open. - if ((end - begin)*ang_scale < 0.99f) - { - if (params.getHollow() <= 0) - { - // put center point if not hollow. - np++; - } - } - - return np; -} - -// What is the bevel parameter used for? - DJS 04/05/02 -// Bevel parameter is currently unused but presumedly would support -// filleted and chamfered corners -void LLProfile::genNGon(const LLProfileParams& params, S32 sides, F32 offset, F32 bevel, F32 ang_scale, S32 split) -{ - // Generate an n-sided "circular" path. - // 0 is (1,0), and we go counter-clockwise along a circular path from there. - static const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f }; - F32 scale = 0.5f; - F32 t, t_step, t_first, t_fraction, ang, ang_step; - LLVector4a pt1,pt2; - - F32 begin = params.getBegin(); - F32 end = params.getEnd(); - - t_step = 1.0f / sides; - ang_step = 2.0f*F_PI*t_step*ang_scale; - - // Scale to have size "match" scale. Compensates to get object to generally fill bounding box. - - S32 total_sides = ll_round(sides / ang_scale); // Total number of sides all around - - if (total_sides < 8) - { - scale = tableScale[total_sides]; - } - - t_first = floor(begin * sides) / (F32)sides; - - // pt1 is the first point on the fractional face. - // Starting t and ang values for the first face - t = t_first; - ang = 2.0f*F_PI*(t*ang_scale + offset); - pt1.set(cos(ang)*scale,sin(ang)*scale, t); - - // Increment to the next point. - // pt2 is the end point on the fractional face - t += t_step; - ang += ang_step; - pt2.set(cos(ang)*scale,sin(ang)*scale,t); - - t_fraction = (begin - t_first)*sides; - - // Only use if it's not almost exactly on an edge. - if (t_fraction < 0.9999f) - { - LLVector4a new_pt; - new_pt.setLerp(pt1, pt2, t_fraction); - mProfile.push_back(new_pt); - } - - // There's lots of potential here for floating point error to generate unneeded extra points - DJS 04/05/02 - while (t < end) - { - // Iterate through all the integer steps of t. - pt1.set(cos(ang)*scale,sin(ang)*scale,t); - - if (mProfile.size() > 0) { - LLVector4a p = mProfile[mProfile.size()-1]; - for (S32 i = 0; i < split && mProfile.size() > 0; i++) { - //mProfile.push_back(p+(pt1-p) * 1.0f/(float)(split+1) * (float)(i+1)); - LLVector4a new_pt; - new_pt.setSub(pt1, p); - new_pt.mul(1.0f/(float)(split+1) * (float)(i+1)); - new_pt.add(p); - mProfile.push_back(new_pt); - } - } - mProfile.push_back(pt1); - - t += t_step; - ang += ang_step; - } - - t_fraction = (end - (t - t_step))*sides; - - // pt1 is the first point on the fractional face - // pt2 is the end point on the fractional face - pt2.set(cos(ang)*scale,sin(ang)*scale,t); - - // Find the fraction that we need to add to the end point. - t_fraction = (end - (t - t_step))*sides; - if (t_fraction > 0.0001f) - { - LLVector4a new_pt; - new_pt.setLerp(pt1, pt2, t_fraction); - - if (mProfile.size() > 0) { - LLVector4a p = mProfile[mProfile.size()-1]; - for (S32 i = 0; i < split && mProfile.size() > 0; i++) { - //mProfile.push_back(p+(new_pt-p) * 1.0f/(float)(split+1) * (float)(i+1)); - - LLVector4a pt1; - pt1.setSub(new_pt, p); - pt1.mul(1.0f/(float)(split+1) * (float)(i+1)); - pt1.add(p); - mProfile.push_back(pt1); - } - } - mProfile.push_back(new_pt); - } - - // If we're sliced, the profile is open. - if ((end - begin)*ang_scale < 0.99f) - { - if ((end - begin)*ang_scale > 0.5f) - { - mConcave = TRUE; - } - else - { - mConcave = FALSE; - } - mOpen = TRUE; - if (params.getHollow() <= 0) - { - // put center point if not hollow. - mProfile.push_back(LLVector4a(0,0,0)); - } - } - else - { - // The profile isn't open. - mOpen = FALSE; - mConcave = FALSE; - } - - mTotal = mProfile.size(); -} - -// Hollow is percent of the original bounding box, not of this particular -// profile's geometry. Thus, a swept triangle needs lower hollow values than -// a swept square. -LLProfile::Face* LLProfile::addHole(const LLProfileParams& params, BOOL flat, F32 sides, F32 offset, F32 box_hollow, F32 ang_scale, S32 split) -{ - // Note that addHole will NOT work for non-"circular" profiles, if we ever decide to use them. - - // Total add has number of vertices on outside. - mTotalOut = mTotal; - - // Why is the "bevel" parameter -1? DJS 04/05/02 - genNGon(params, llfloor(sides),offset,-1, ang_scale, split); - - Face *face = addFace(mTotalOut, mTotal-mTotalOut,0,LL_FACE_INNER_SIDE, flat); - - static thread_local LLAlignedArray<LLVector4a,64> pt; - pt.resize(mTotal) ; - - for (S32 i=mTotalOut;i<mTotal;i++) - { - pt[i] = mProfile[i]; - pt[i].mul(box_hollow); - } - - S32 j=mTotal-1; - for (S32 i=mTotalOut;i<mTotal;i++) - { - mProfile[i] = pt[j--]; - } - - for (S32 i=0;i<(S32)mFaces.size();i++) - { - if (mFaces[i].mCap) - { - mFaces[i].mCount *= 2; - } - } - - return face; -} - -//static -S32 LLProfile::getNumPoints(const LLProfileParams& params, BOOL path_open,F32 detail, S32 split, - BOOL is_sculpted, S32 sculpt_size) -{ // this is basically LLProfile::generate stripped down to only operations that influence the number of points - if (detail < MIN_LOD) - { - detail = MIN_LOD; - } - - // Generate the face data - F32 hollow = params.getHollow(); - - S32 np = 0; - - switch (params.getCurveType() & LL_PCODE_PROFILE_MASK) - { - case LL_PCODE_PROFILE_SQUARE: - { - np = getNumNGonPoints(params, 4,-0.375, 0, 1, split); - - if (hollow) - { - np *= 2; - } - } - break; - case LL_PCODE_PROFILE_ISOTRI: - case LL_PCODE_PROFILE_RIGHTTRI: - case LL_PCODE_PROFILE_EQUALTRI: - { - np = getNumNGonPoints(params, 3,0, 0, 1, split); - - if (hollow) - { - np *= 2; - } - } - break; - case LL_PCODE_PROFILE_CIRCLE: - { - // If this has a square hollow, we should adjust the - // number of faces a bit so that the geometry lines up. - U8 hole_type=0; - F32 circle_detail = MIN_DETAIL_FACES * detail; - if (hollow) - { - hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK; - if (hole_type == LL_PCODE_HOLE_SQUARE) - { - // Snap to the next multiple of four sides, - // so that corners line up. - circle_detail = llceil(circle_detail / 4.0f) * 4.0f; - } - } - - S32 sides = (S32)circle_detail; - - if (is_sculpted) - sides = sculpt_size; - - np = getNumNGonPoints(params, sides); - - if (hollow) - { - np *= 2; - } - } - break; - case LL_PCODE_PROFILE_CIRCLE_HALF: - { - // If this has a square hollow, we should adjust the - // number of faces a bit so that the geometry lines up. - U8 hole_type=0; - // Number of faces is cut in half because it's only a half-circle. - F32 circle_detail = MIN_DETAIL_FACES * detail * 0.5f; - if (hollow) - { - hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK; - if (hole_type == LL_PCODE_HOLE_SQUARE) - { - // Snap to the next multiple of four sides (div 2), - // so that corners line up. - circle_detail = llceil(circle_detail / 2.0f) * 2.0f; - } - } - np = getNumNGonPoints(params, llfloor(circle_detail), 0.5f, 0.f, 0.5f); - - if (hollow) - { - np *= 2; - } - - // Special case for openness of sphere - if ((params.getEnd() - params.getBegin()) < 1.f) - { - } - else if (!hollow) - { - np++; - } - } - break; - default: - break; - }; - - - return np; -} - - -BOOL LLProfile::generate(const LLProfileParams& params, BOOL path_open,F32 detail, S32 split, - BOOL is_sculpted, S32 sculpt_size) -{ - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME - - if ((!mDirty) && (!is_sculpted)) - { - return FALSE; - } - mDirty = FALSE; - - if (detail < MIN_LOD) - { - LL_INFOS() << "Generating profile with LOD < MIN_LOD. CLAMPING" << LL_ENDL; - detail = MIN_LOD; - } - - mProfile.resize(0); - mFaces.resize(0); - - // Generate the face data - S32 i; - F32 begin = params.getBegin(); - F32 end = params.getEnd(); - F32 hollow = params.getHollow(); - - // Quick validation to eliminate some server crashes. - if (begin > end - 0.01f) - { - LL_WARNS() << "LLProfile::generate() assertion failed (begin >= end)" << LL_ENDL; - return FALSE; - } - - S32 face_num = 0; - - switch (params.getCurveType() & LL_PCODE_PROFILE_MASK) - { - case LL_PCODE_PROFILE_SQUARE: - { - genNGon(params, 4,-0.375, 0, 1, split); - if (path_open) - { - addCap (LL_FACE_PATH_BEGIN); - } - - for (i = llfloor(begin * 4.f); i < llfloor(end * 4.f + .999f); i++) - { - addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE); - } - - LLVector4a scale(1,1,4,1); - - for (i = 0; i <(S32) mProfile.size(); i++) - { - // Scale by 4 to generate proper tex coords. - mProfile[i].mul(scale); - llassert(mProfile[i].isFinite3()); - } - - if (hollow) - { - switch (params.getCurveType() & LL_PCODE_HOLE_MASK) - { - case LL_PCODE_HOLE_TRIANGLE: - // This offset is not correct, but we can't change it now... DK 11/17/04 - addHole(params, TRUE, 3, -0.375f, hollow, 1.f, split); - break; - case LL_PCODE_HOLE_CIRCLE: - // TODO: Compute actual detail levels for cubes - addHole(params, FALSE, MIN_DETAIL_FACES * detail, -0.375f, hollow, 1.f); - break; - case LL_PCODE_HOLE_SAME: - case LL_PCODE_HOLE_SQUARE: - default: - addHole(params, TRUE, 4, -0.375f, hollow, 1.f, split); - break; - } - } - - if (path_open) { - mFaces[0].mCount = mTotal; - } - } - break; - case LL_PCODE_PROFILE_ISOTRI: - case LL_PCODE_PROFILE_RIGHTTRI: - case LL_PCODE_PROFILE_EQUALTRI: - { - genNGon(params, 3,0, 0, 1, split); - LLVector4a scale(1,1,3,1); - for (i = 0; i <(S32) mProfile.size(); i++) - { - // Scale by 3 to generate proper tex coords. - mProfile[i].mul(scale); - llassert(mProfile[i].isFinite3()); - } - - if (path_open) - { - addCap(LL_FACE_PATH_BEGIN); - } - - for (i = llfloor(begin * 3.f); i < llfloor(end * 3.f + .999f); i++) - { - addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE); - } - if (hollow) - { - // Swept triangles need smaller hollowness values, - // because the triangle doesn't fill the bounding box. - F32 triangle_hollow = hollow / 2.f; - - switch (params.getCurveType() & LL_PCODE_HOLE_MASK) - { - case LL_PCODE_HOLE_CIRCLE: - // TODO: Actually generate level of detail for triangles - addHole(params, FALSE, MIN_DETAIL_FACES * detail, 0, triangle_hollow, 1.f); - break; - case LL_PCODE_HOLE_SQUARE: - addHole(params, TRUE, 4, 0, triangle_hollow, 1.f, split); - break; - case LL_PCODE_HOLE_SAME: - case LL_PCODE_HOLE_TRIANGLE: - default: - addHole(params, TRUE, 3, 0, triangle_hollow, 1.f, split); - break; - } - } - } - break; - case LL_PCODE_PROFILE_CIRCLE: - { - // If this has a square hollow, we should adjust the - // number of faces a bit so that the geometry lines up. - U8 hole_type=0; - F32 circle_detail = MIN_DETAIL_FACES * detail; - if (hollow) - { - hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK; - if (hole_type == LL_PCODE_HOLE_SQUARE) - { - // Snap to the next multiple of four sides, - // so that corners line up. - circle_detail = llceil(circle_detail / 4.0f) * 4.0f; - } - } - - S32 sides = (S32)circle_detail; - - if (is_sculpted) - sides = sculpt_size; - - genNGon(params, sides); - - if (path_open) - { - addCap (LL_FACE_PATH_BEGIN); - } - - if (mOpen && !hollow) - { - addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, FALSE); - } - else - { - addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, FALSE); - } - - if (hollow) - { - switch (hole_type) - { - case LL_PCODE_HOLE_SQUARE: - addHole(params, TRUE, 4, 0, hollow, 1.f, split); - break; - case LL_PCODE_HOLE_TRIANGLE: - addHole(params, TRUE, 3, 0, hollow, 1.f, split); - break; - case LL_PCODE_HOLE_CIRCLE: - case LL_PCODE_HOLE_SAME: - default: - addHole(params, FALSE, circle_detail, 0, hollow, 1.f); - break; - } - } - } - break; - case LL_PCODE_PROFILE_CIRCLE_HALF: - { - // If this has a square hollow, we should adjust the - // number of faces a bit so that the geometry lines up. - U8 hole_type=0; - // Number of faces is cut in half because it's only a half-circle. - F32 circle_detail = MIN_DETAIL_FACES * detail * 0.5f; - if (hollow) - { - hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK; - if (hole_type == LL_PCODE_HOLE_SQUARE) - { - // Snap to the next multiple of four sides (div 2), - // so that corners line up. - circle_detail = llceil(circle_detail / 2.0f) * 2.0f; - } - } - genNGon(params, llfloor(circle_detail), 0.5f, 0.f, 0.5f); - if (path_open) - { - addCap(LL_FACE_PATH_BEGIN); - } - if (mOpen && !params.getHollow()) - { - addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, FALSE); - } - else - { - addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, FALSE); - } - - if (hollow) - { - switch (hole_type) - { - case LL_PCODE_HOLE_SQUARE: - addHole(params, TRUE, 2, 0.5f, hollow, 0.5f, split); - break; - case LL_PCODE_HOLE_TRIANGLE: - addHole(params, TRUE, 3, 0.5f, hollow, 0.5f, split); - break; - case LL_PCODE_HOLE_CIRCLE: - case LL_PCODE_HOLE_SAME: - default: - addHole(params, FALSE, circle_detail, 0.5f, hollow, 0.5f); - break; - } - } - - // Special case for openness of sphere - if ((params.getEnd() - params.getBegin()) < 1.f) - { - mOpen = TRUE; - } - else if (!hollow) - { - mOpen = FALSE; - mProfile.push_back(mProfile[0]); - mTotal++; - } - } - break; - default: - LL_ERRS() << "Unknown profile: getCurveType()=" << params.getCurveType() << LL_ENDL; - break; - }; - - if (path_open) - { - addCap(LL_FACE_PATH_END); // bottom - } - - if ( mOpen) // interior edge caps - { - addFace(mTotal-1, 2,0.5,LL_FACE_PROFILE_BEGIN, TRUE); - - if (hollow) - { - addFace(mTotalOut-1, 2,0.5,LL_FACE_PROFILE_END, TRUE); - } - else - { - addFace(mTotal-2, 2,0.5,LL_FACE_PROFILE_END, TRUE); - } - } - - return TRUE; -} - - - -BOOL LLProfileParams::importFile(LLFILE *fp) -{ - const S32 BUFSIZE = 16384; - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - // *NOTE: changing the size or type of these buffers will require - // changing the sscanf below. - char keyword[256]; /* Flawfinder: ignore */ - char valuestr[256]; /* Flawfinder: ignore */ - keyword[0] = 0; - valuestr[0] = 0; - F32 tempF32; - U32 tempU32; - - while (!feof(fp)) - { - if (fgets(buffer, BUFSIZE, fp) == NULL) - { - buffer[0] = '\0'; - } - - sscanf( /* Flawfinder: ignore */ - buffer, - " %255s %255s", - keyword, valuestr); - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("curve", keyword)) - { - sscanf(valuestr,"%d",&tempU32); - setCurveType((U8) tempU32); - } - else if (!strcmp("begin",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setBegin(tempF32); - } - else if (!strcmp("end",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setEnd(tempF32); - } - else if (!strcmp("hollow",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setHollow(tempF32); - } - else - { - LL_WARNS() << "unknown keyword " << keyword << " in profile import" << LL_ENDL; - } - } - - return TRUE; -} - - -BOOL LLProfileParams::exportFile(LLFILE *fp) const -{ - fprintf(fp,"\t\tprofile 0\n"); - fprintf(fp,"\t\t{\n"); - fprintf(fp,"\t\t\tcurve\t%d\n", getCurveType()); - fprintf(fp,"\t\t\tbegin\t%g\n", getBegin()); - fprintf(fp,"\t\t\tend\t%g\n", getEnd()); - fprintf(fp,"\t\t\thollow\t%g\n", getHollow()); - fprintf(fp, "\t\t}\n"); - return TRUE; -} - - -BOOL LLProfileParams::importLegacyStream(std::istream& input_stream) -{ - const S32 BUFSIZE = 16384; - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - // *NOTE: changing the size or type of these buffers will require - // changing the sscanf below. - char keyword[256]; /* Flawfinder: ignore */ - char valuestr[256]; /* Flawfinder: ignore */ - keyword[0] = 0; - valuestr[0] = 0; - F32 tempF32; - U32 tempU32; - - while (input_stream.good()) - { - input_stream.getline(buffer, BUFSIZE); - sscanf( /* Flawfinder: ignore */ - buffer, - " %255s %255s", - keyword, - valuestr); - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("curve", keyword)) - { - sscanf(valuestr,"%d",&tempU32); - setCurveType((U8) tempU32); - } - else if (!strcmp("begin",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setBegin(tempF32); - } - else if (!strcmp("end",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setEnd(tempF32); - } - else if (!strcmp("hollow",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setHollow(tempF32); - } - else - { - LL_WARNS() << "unknown keyword " << keyword << " in profile import" << LL_ENDL; - } - } - - return TRUE; -} - - -BOOL LLProfileParams::exportLegacyStream(std::ostream& output_stream) const -{ - output_stream <<"\t\tprofile 0\n"; - output_stream <<"\t\t{\n"; - output_stream <<"\t\t\tcurve\t" << (S32) getCurveType() << "\n"; - output_stream <<"\t\t\tbegin\t" << getBegin() << "\n"; - output_stream <<"\t\t\tend\t" << getEnd() << "\n"; - output_stream <<"\t\t\thollow\t" << getHollow() << "\n"; - output_stream << "\t\t}\n"; - return TRUE; -} - -LLSD LLProfileParams::asLLSD() const -{ - LLSD sd; - - sd["curve"] = getCurveType(); - sd["begin"] = getBegin(); - sd["end"] = getEnd(); - sd["hollow"] = getHollow(); - return sd; -} - -bool LLProfileParams::fromLLSD(LLSD& sd) -{ - setCurveType(sd["curve"].asInteger()); - setBegin((F32)sd["begin"].asReal()); - setEnd((F32)sd["end"].asReal()); - setHollow((F32)sd["hollow"].asReal()); - return true; -} - -void LLProfileParams::copyParams(const LLProfileParams ¶ms) -{ - setCurveType(params.getCurveType()); - setBegin(params.getBegin()); - setEnd(params.getEnd()); - setHollow(params.getHollow()); -} - - -LLPath::~LLPath() -{ -} - -S32 LLPath::getNumNGonPoints(const LLPathParams& params, S32 sides, F32 startOff, F32 end_scale, F32 twist_scale) -{ //this is basically LLPath::genNGon stripped down to only operations that influence the number of points added - S32 ret = 0; - - F32 step= 1.0f / sides; - F32 t = params.getBegin(); - ret = 1; - - t+=step; - - // Snap to a quantized parameter, so that cut does not - // affect most sample points. - t = ((S32)(t * sides)) / (F32)sides; - - // Run through the non-cut dependent points. - while (t < params.getEnd()) - { - ret++; - t+=step; - } - - ret++; - - return ret; -} - -void LLPath::genNGon(const LLPathParams& params, S32 sides, F32 startOff, F32 end_scale, F32 twist_scale) -{ - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME - - // Generates a circular path, starting at (1, 0, 0), counterclockwise along the xz plane. - static const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f }; - - F32 revolutions = params.getRevolutions(); - F32 skew = params.getSkew(); - F32 skew_mag = fabs(skew); - F32 hole_x = params.getScaleX() * (1.0f - skew_mag); - F32 hole_y = params.getScaleY(); - - // Calculate taper begin/end for x,y (Negative means taper the beginning) - F32 taper_x_begin = 1.0f; - F32 taper_x_end = 1.0f - params.getTaperX(); - F32 taper_y_begin = 1.0f; - F32 taper_y_end = 1.0f - params.getTaperY(); - - if ( taper_x_end > 1.0f ) - { - // Flip tapering. - taper_x_begin = 2.0f - taper_x_end; - taper_x_end = 1.0f; - } - if ( taper_y_end > 1.0f ) - { - // Flip tapering. - taper_y_begin = 2.0f - taper_y_end; - taper_y_end = 1.0f; - } - - // For spheres, the radius is usually zero. - F32 radius_start = 0.5f; - if (sides < 8) - { - radius_start = tableScale[sides]; - } - - // Scale the radius to take the hole size into account. - radius_start *= 1.0f - hole_y; - - // Now check the radius offset to calculate the start,end radius. (Negative means - // decrease the start radius instead). - F32 radius_end = radius_start; - F32 radius_offset = params.getRadiusOffset(); - if (radius_offset < 0.f) - { - radius_start *= 1.f + radius_offset; - } - else - { - radius_end *= 1.f - radius_offset; - } - - // Is the path NOT a closed loop? - mOpen = ( (params.getEnd()*end_scale - params.getBegin() < 1.0f) || - (skew_mag > 0.001f) || - (fabs(taper_x_end - taper_x_begin) > 0.001f) || - (fabs(taper_y_end - taper_y_begin) > 0.001f) || - (fabs(radius_end - radius_start) > 0.001f) ); - - F32 ang, c, s; - LLQuaternion twist, qang; - PathPt *pt; - LLVector3 path_axis (1.f, 0.f, 0.f); - //LLVector3 twist_axis(0.f, 0.f, 1.f); - F32 twist_begin = params.getTwistBegin() * twist_scale; - F32 twist_end = params.getTwist() * twist_scale; - - // We run through this once before the main loop, to make sure - // the path begins at the correct cut. - F32 step= 1.0f / sides; - F32 t = params.getBegin(); - pt = mPath.append(1); - ang = 2.0f*F_PI*revolutions * t; - s = sin(ang)*lerp(radius_start, radius_end, t); - c = cos(ang)*lerp(radius_start, radius_end, t); - - - pt->mPos.set(0 + lerp(0,params.getShear().mV[0],s) - + lerp(-skew ,skew, t) * 0.5f, - c + lerp(0,params.getShear().mV[1],s), - s); - pt->mScale.set(hole_x * lerp(taper_x_begin, taper_x_end, t), - hole_y * lerp(taper_y_begin, taper_y_end, t), - 0,1); - pt->mTexT = t; - - // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02 - twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1); - // Rotate the point around the circle's center. - qang.setQuat (ang,path_axis); - - LLMatrix3 rot(twist * qang); - - pt->mRot.loadu(rot); - - t+=step; - - // Snap to a quantized parameter, so that cut does not - // affect most sample points. - t = ((S32)(t * sides)) / (F32)sides; - - // Run through the non-cut dependent points. - while (t < params.getEnd()) - { - pt = mPath.append(1); - - ang = 2.0f*F_PI*revolutions * t; - c = cos(ang)*lerp(radius_start, radius_end, t); - s = sin(ang)*lerp(radius_start, radius_end, t); - - pt->mPos.set(0 + lerp(0,params.getShear().mV[0],s) - + lerp(-skew ,skew, t) * 0.5f, - c + lerp(0,params.getShear().mV[1],s), - s); - - pt->mScale.set(hole_x * lerp(taper_x_begin, taper_x_end, t), - hole_y * lerp(taper_y_begin, taper_y_end, t), - 0,1); - pt->mTexT = t; - - // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02 - twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1); - // Rotate the point around the circle's center. - qang.setQuat (ang,path_axis); - LLMatrix3 tmp(twist*qang); - pt->mRot.loadu(tmp); - - t+=step; - } - - // Make one final pass for the end cut. - t = params.getEnd(); - pt = mPath.append(1); - ang = 2.0f*F_PI*revolutions * t; - c = cos(ang)*lerp(radius_start, radius_end, t); - s = sin(ang)*lerp(radius_start, radius_end, t); - - pt->mPos.set(0 + lerp(0,params.getShear().mV[0],s) - + lerp(-skew ,skew, t) * 0.5f, - c + lerp(0,params.getShear().mV[1],s), - s); - pt->mScale.set(hole_x * lerp(taper_x_begin, taper_x_end, t), - hole_y * lerp(taper_y_begin, taper_y_end, t), - 0,1); - pt->mTexT = t; - - // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02 - twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1); - // Rotate the point around the circle's center. - qang.setQuat (ang,path_axis); - LLMatrix3 tmp(twist*qang); - pt->mRot.loadu(tmp); - - mTotal = mPath.size(); -} - -const LLVector2 LLPathParams::getBeginScale() const -{ - LLVector2 begin_scale(1.f, 1.f); - if (getScaleX() > 1) - { - begin_scale.mV[0] = 2-getScaleX(); - } - if (getScaleY() > 1) - { - begin_scale.mV[1] = 2-getScaleY(); - } - return begin_scale; -} - -const LLVector2 LLPathParams::getEndScale() const -{ - LLVector2 end_scale(1.f, 1.f); - if (getScaleX() < 1) - { - end_scale.mV[0] = getScaleX(); - } - if (getScaleY() < 1) - { - end_scale.mV[1] = getScaleY(); - } - return end_scale; -} - -S32 LLPath::getNumPoints(const LLPathParams& params, F32 detail) -{ // this is basically LLPath::generate stripped down to only the operations that influence the number of points - if (detail < MIN_LOD) - { - detail = MIN_LOD; - } - - S32 np = 2; // hardcode for line - - // Is this 0xf0 mask really necessary? DK 03/02/05 - - switch (params.getCurveType() & 0xf0) - { - default: - case LL_PCODE_PATH_LINE: - { - // Take the begin/end twist into account for detail. - np = llfloor(fabs(params.getTwistBegin() - params.getTwist()) * 3.5f * (detail-0.5f)) + 2; - } - break; - - case LL_PCODE_PATH_CIRCLE: - { - // Increase the detail as the revolutions and twist increase. - F32 twist_mag = fabs(params.getTwistBegin() - params.getTwist()); - - S32 sides = (S32)llfloor(llfloor((MIN_DETAIL_FACES * detail + twist_mag * 3.5f * (detail-0.5f))) * params.getRevolutions()); - - np = sides; - } - break; - - case LL_PCODE_PATH_CIRCLE2: - { - //genNGon(params, llfloor(MIN_DETAIL_FACES * detail), 4.f, 0.f); - np = getNumNGonPoints(params, llfloor(MIN_DETAIL_FACES * detail)); - } - break; - - case LL_PCODE_PATH_TEST: - - np = 5; - break; - }; - - return np; -} - -BOOL LLPath::generate(const LLPathParams& params, F32 detail, S32 split, - BOOL is_sculpted, S32 sculpt_size) -{ - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME - - if ((!mDirty) && (!is_sculpted)) - { - return FALSE; - } - - if (detail < MIN_LOD) - { - LL_INFOS() << "Generating path with LOD < MIN! Clamping to 1" << LL_ENDL; - detail = MIN_LOD; - } - - mDirty = FALSE; - S32 np = 2; // hardcode for line - - mPath.resize(0); - mOpen = TRUE; - - // Is this 0xf0 mask really necessary? DK 03/02/05 - switch (params.getCurveType() & 0xf0) - { - default: - case LL_PCODE_PATH_LINE: - { - // Take the begin/end twist into account for detail. - np = llfloor(fabs(params.getTwistBegin() - params.getTwist()) * 3.5f * (detail-0.5f)) + 2; - if (np < split+2) - { - np = split+2; - } - - mStep = 1.0f / (np-1); - - mPath.resize(np); - - LLVector2 start_scale = params.getBeginScale(); - LLVector2 end_scale = params.getEndScale(); - - for (S32 i=0;i<np;i++) - { - F32 t = lerp(params.getBegin(),params.getEnd(),(F32)i * mStep); - mPath[i].mPos.set(lerp(0,params.getShear().mV[0],t), - lerp(0,params.getShear().mV[1],t), - t - 0.5f); - LLQuaternion quat; - quat.setQuat(lerp(F_PI * params.getTwistBegin(),F_PI * params.getTwist(),t),0,0,1); - LLMatrix3 tmp(quat); - mPath[i].mRot.loadu(tmp); - mPath[i].mScale.set(lerp(start_scale.mV[0],end_scale.mV[0],t), - lerp(start_scale.mV[1],end_scale.mV[1],t), - 0,1); - mPath[i].mTexT = t; - } - } - break; - - case LL_PCODE_PATH_CIRCLE: - { - // Increase the detail as the revolutions and twist increase. - F32 twist_mag = fabs(params.getTwistBegin() - params.getTwist()); - - S32 sides = (S32)llfloor(llfloor((MIN_DETAIL_FACES * detail + twist_mag * 3.5f * (detail-0.5f))) * params.getRevolutions()); - - if (is_sculpted) - sides = llmax(sculpt_size, 1); - - if (0 < sides) - genNGon(params, sides); - } - break; - - case LL_PCODE_PATH_CIRCLE2: - { - if (params.getEnd() - params.getBegin() >= 0.99f && - params.getScaleX() >= .99f) - { - mOpen = FALSE; - } - - //genNGon(params, llfloor(MIN_DETAIL_FACES * detail), 4.f, 0.f); - genNGon(params, llfloor(MIN_DETAIL_FACES * detail)); - - F32 toggle = 0.5f; - for (S32 i=0;i<(S32)mPath.size();i++) - { - mPath[i].mPos.getF32ptr()[0] = toggle; - if (toggle == 0.5f) - toggle = -0.5f; - else - toggle = 0.5f; - } - } - - break; - - case LL_PCODE_PATH_TEST: - - np = 5; - mStep = 1.0f / (np-1); - - mPath.resize(np); - - for (S32 i=0;i<np;i++) - { - F32 t = (F32)i * mStep; - mPath[i].mPos.set(0, - lerp(0, -sin(F_PI*params.getTwist()*t)*0.5f,t), - lerp(-0.5f, cos(F_PI*params.getTwist()*t)*0.5f,t)); - mPath[i].mScale.set(lerp(1,params.getScale().mV[0],t), - lerp(1,params.getScale().mV[1],t), 0,1); - mPath[i].mTexT = t; - LLQuaternion quat; - quat.setQuat(F_PI * params.getTwist() * t,1,0,0); - LLMatrix3 tmp(quat); - mPath[i].mRot.loadu(tmp); - } - - break; - }; - - if (params.getTwist() != params.getTwistBegin()) mOpen = TRUE; - - //if ((int(fabsf(params.getTwist() - params.getTwistBegin())*100))%100 != 0) { - // mOpen = TRUE; - //} - - return TRUE; -} - -BOOL LLDynamicPath::generate(const LLPathParams& params, F32 detail, S32 split, - BOOL is_sculpted, S32 sculpt_size) -{ - mOpen = TRUE; // Draw end caps - if (getPathLength() == 0) - { - // Path hasn't been generated yet. - // Some algorithms later assume at least TWO path points. - resizePath(2); - LLQuaternion quat; - quat.setQuat(0,0,0); - LLMatrix3 tmp(quat); - - for (U32 i = 0; i < 2; i++) - { - mPath[i].mPos.set(0, 0, 0); - mPath[i].mRot.loadu(tmp); - mPath[i].mScale.set(1, 1, 0, 1); - mPath[i].mTexT = 0; - } - } - - return TRUE; -} - - -BOOL LLPathParams::importFile(LLFILE *fp) -{ - const S32 BUFSIZE = 16384; - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - // *NOTE: changing the size or type of these buffers will require - // changing the sscanf below. - char keyword[256]; /* Flawfinder: ignore */ - char valuestr[256]; /* Flawfinder: ignore */ - keyword[0] = 0; - valuestr[0] = 0; - - F32 tempF32; - F32 x, y; - U32 tempU32; - - while (!feof(fp)) - { - if (fgets(buffer, BUFSIZE, fp) == NULL) - { - buffer[0] = '\0'; - } - - sscanf( /* Flawfinder: ignore */ - buffer, - " %255s %255s", - keyword, valuestr); - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("curve", keyword)) - { - sscanf(valuestr,"%d",&tempU32); - setCurveType((U8) tempU32); - } - else if (!strcmp("begin",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setBegin(tempF32); - } - else if (!strcmp("end",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setEnd(tempF32); - } - else if (!strcmp("scale",keyword)) - { - // Legacy for one dimensional scale per path - sscanf(valuestr,"%g",&tempF32); - setScale(tempF32, tempF32); - } - else if (!strcmp("scale_x", keyword)) - { - sscanf(valuestr, "%g", &x); - setScaleX(x); - } - else if (!strcmp("scale_y", keyword)) - { - sscanf(valuestr, "%g", &y); - setScaleY(y); - } - else if (!strcmp("shear_x", keyword)) - { - sscanf(valuestr, "%g", &x); - setShearX(x); - } - else if (!strcmp("shear_y", keyword)) - { - sscanf(valuestr, "%g", &y); - setShearY(y); - } - else if (!strcmp("twist",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setTwist(tempF32); - } - else if (!strcmp("twist_begin", keyword)) - { - sscanf(valuestr, "%g", &y); - setTwistBegin(y); - } - else if (!strcmp("radius_offset", keyword)) - { - sscanf(valuestr, "%g", &y); - setRadiusOffset(y); - } - else if (!strcmp("taper_x", keyword)) - { - sscanf(valuestr, "%g", &y); - setTaperX(y); - } - else if (!strcmp("taper_y", keyword)) - { - sscanf(valuestr, "%g", &y); - setTaperY(y); - } - else if (!strcmp("revolutions", keyword)) - { - sscanf(valuestr, "%g", &y); - setRevolutions(y); - } - else if (!strcmp("skew", keyword)) - { - sscanf(valuestr, "%g", &y); - setSkew(y); - } - else - { - LL_WARNS() << "unknown keyword " << " in path import" << LL_ENDL; - } - } - return TRUE; -} - - -BOOL LLPathParams::exportFile(LLFILE *fp) const -{ - fprintf(fp, "\t\tpath 0\n"); - fprintf(fp, "\t\t{\n"); - fprintf(fp, "\t\t\tcurve\t%d\n", getCurveType()); - fprintf(fp, "\t\t\tbegin\t%g\n", getBegin()); - fprintf(fp, "\t\t\tend\t%g\n", getEnd()); - fprintf(fp, "\t\t\tscale_x\t%g\n", getScaleX() ); - fprintf(fp, "\t\t\tscale_y\t%g\n", getScaleY() ); - fprintf(fp, "\t\t\tshear_x\t%g\n", getShearX() ); - fprintf(fp, "\t\t\tshear_y\t%g\n", getShearY() ); - fprintf(fp,"\t\t\ttwist\t%g\n", getTwist()); - - fprintf(fp,"\t\t\ttwist_begin\t%g\n", getTwistBegin()); - fprintf(fp,"\t\t\tradius_offset\t%g\n", getRadiusOffset()); - fprintf(fp,"\t\t\ttaper_x\t%g\n", getTaperX()); - fprintf(fp,"\t\t\ttaper_y\t%g\n", getTaperY()); - fprintf(fp,"\t\t\trevolutions\t%g\n", getRevolutions()); - fprintf(fp,"\t\t\tskew\t%g\n", getSkew()); - - fprintf(fp, "\t\t}\n"); - return TRUE; -} - - -BOOL LLPathParams::importLegacyStream(std::istream& input_stream) -{ - const S32 BUFSIZE = 16384; - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - // *NOTE: changing the size or type of these buffers will require - // changing the sscanf below. - char keyword[256]; /* Flawfinder: ignore */ - char valuestr[256]; /* Flawfinder: ignore */ - keyword[0] = 0; - valuestr[0] = 0; - - F32 tempF32; - F32 x, y; - U32 tempU32; - - while (input_stream.good()) - { - input_stream.getline(buffer, BUFSIZE); - sscanf( /* Flawfinder: ignore */ - buffer, - " %255s %255s", - keyword, valuestr); - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("curve", keyword)) - { - sscanf(valuestr,"%d",&tempU32); - setCurveType((U8) tempU32); - } - else if (!strcmp("begin",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setBegin(tempF32); - } - else if (!strcmp("end",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setEnd(tempF32); - } - else if (!strcmp("scale",keyword)) - { - // Legacy for one dimensional scale per path - sscanf(valuestr,"%g",&tempF32); - setScale(tempF32, tempF32); - } - else if (!strcmp("scale_x", keyword)) - { - sscanf(valuestr, "%g", &x); - setScaleX(x); - } - else if (!strcmp("scale_y", keyword)) - { - sscanf(valuestr, "%g", &y); - setScaleY(y); - } - else if (!strcmp("shear_x", keyword)) - { - sscanf(valuestr, "%g", &x); - setShearX(x); - } - else if (!strcmp("shear_y", keyword)) - { - sscanf(valuestr, "%g", &y); - setShearY(y); - } - else if (!strcmp("twist",keyword)) - { - sscanf(valuestr,"%g",&tempF32); - setTwist(tempF32); - } - else if (!strcmp("twist_begin", keyword)) - { - sscanf(valuestr, "%g", &y); - setTwistBegin(y); - } - else if (!strcmp("radius_offset", keyword)) - { - sscanf(valuestr, "%g", &y); - setRadiusOffset(y); - } - else if (!strcmp("taper_x", keyword)) - { - sscanf(valuestr, "%g", &y); - setTaperX(y); - } - else if (!strcmp("taper_y", keyword)) - { - sscanf(valuestr, "%g", &y); - setTaperY(y); - } - else if (!strcmp("revolutions", keyword)) - { - sscanf(valuestr, "%g", &y); - setRevolutions(y); - } - else if (!strcmp("skew", keyword)) - { - sscanf(valuestr, "%g", &y); - setSkew(y); - } - else - { - LL_WARNS() << "unknown keyword " << " in path import" << LL_ENDL; - } - } - return TRUE; -} - - -BOOL LLPathParams::exportLegacyStream(std::ostream& output_stream) const -{ - output_stream << "\t\tpath 0\n"; - output_stream << "\t\t{\n"; - output_stream << "\t\t\tcurve\t" << (S32) getCurveType() << "\n"; - output_stream << "\t\t\tbegin\t" << getBegin() << "\n"; - output_stream << "\t\t\tend\t" << getEnd() << "\n"; - output_stream << "\t\t\tscale_x\t" << getScaleX() << "\n"; - output_stream << "\t\t\tscale_y\t" << getScaleY() << "\n"; - output_stream << "\t\t\tshear_x\t" << getShearX() << "\n"; - output_stream << "\t\t\tshear_y\t" << getShearY() << "\n"; - output_stream <<"\t\t\ttwist\t" << getTwist() << "\n"; - - output_stream <<"\t\t\ttwist_begin\t" << getTwistBegin() << "\n"; - output_stream <<"\t\t\tradius_offset\t" << getRadiusOffset() << "\n"; - output_stream <<"\t\t\ttaper_x\t" << getTaperX() << "\n"; - output_stream <<"\t\t\ttaper_y\t" << getTaperY() << "\n"; - output_stream <<"\t\t\trevolutions\t" << getRevolutions() << "\n"; - output_stream <<"\t\t\tskew\t" << getSkew() << "\n"; - - output_stream << "\t\t}\n"; - return TRUE; -} - -LLSD LLPathParams::asLLSD() const -{ - LLSD sd = LLSD(); - sd["curve"] = getCurveType(); - sd["begin"] = getBegin(); - sd["end"] = getEnd(); - sd["scale_x"] = getScaleX(); - sd["scale_y"] = getScaleY(); - sd["shear_x"] = getShearX(); - sd["shear_y"] = getShearY(); - sd["twist"] = getTwist(); - sd["twist_begin"] = getTwistBegin(); - sd["radius_offset"] = getRadiusOffset(); - sd["taper_x"] = getTaperX(); - sd["taper_y"] = getTaperY(); - sd["revolutions"] = getRevolutions(); - sd["skew"] = getSkew(); - - return sd; -} - -bool LLPathParams::fromLLSD(LLSD& sd) -{ - setCurveType(sd["curve"].asInteger()); - setBegin((F32)sd["begin"].asReal()); - setEnd((F32)sd["end"].asReal()); - setScaleX((F32)sd["scale_x"].asReal()); - setScaleY((F32)sd["scale_y"].asReal()); - setShearX((F32)sd["shear_x"].asReal()); - setShearY((F32)sd["shear_y"].asReal()); - setTwist((F32)sd["twist"].asReal()); - setTwistBegin((F32)sd["twist_begin"].asReal()); - setRadiusOffset((F32)sd["radius_offset"].asReal()); - setTaperX((F32)sd["taper_x"].asReal()); - setTaperY((F32)sd["taper_y"].asReal()); - setRevolutions((F32)sd["revolutions"].asReal()); - setSkew((F32)sd["skew"].asReal()); - return true; -} - -void LLPathParams::copyParams(const LLPathParams ¶ms) -{ - setCurveType(params.getCurveType()); - setBegin(params.getBegin()); - setEnd(params.getEnd()); - setScale(params.getScaleX(), params.getScaleY() ); - setShear(params.getShearX(), params.getShearY() ); - setTwist(params.getTwist()); - setTwistBegin(params.getTwistBegin()); - setRadiusOffset(params.getRadiusOffset()); - setTaper( params.getTaperX(), params.getTaperY() ); - setRevolutions(params.getRevolutions()); - setSkew(params.getSkew()); -} - -LLProfile::~LLProfile() -{ -} - - -S32 LLVolume::sNumMeshPoints = 0; - -LLVolume::LLVolume(const LLVolumeParams ¶ms, const F32 detail, const BOOL generate_single_face, const BOOL is_unique) - : mParams(params) -{ - mUnique = is_unique; - mFaceMask = 0x0; - mDetail = detail; - mSculptLevel = -2; - mSurfaceArea = 1.f; //only calculated for sculpts, defaults to 1 for all other prims - mIsMeshAssetLoaded = false; - mIsMeshAssetUnavaliable = false; - mLODScaleBias.setVec(1,1,1); - mHullPoints = NULL; - mHullIndices = NULL; - mNumHullPoints = 0; - mNumHullIndices = 0; - - // set defaults - if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_FLEXIBLE) - { - mPathp = new LLDynamicPath(); - } - else - { - mPathp = new LLPath(); - } - mProfilep = new LLProfile(); - - mGenerateSingleFace = generate_single_face; - - generate(); - - if ((mParams.getSculptID().isNull() && mParams.getSculptType() == LL_SCULPT_TYPE_NONE) || mParams.getSculptType() == LL_SCULPT_TYPE_MESH) - { - createVolumeFaces(); - } -} - -void LLVolume::resizePath(S32 length) -{ - mPathp->resizePath(length); - mVolumeFaces.clear(); - setDirty(); -} - -void LLVolume::regen() -{ - generate(); - createVolumeFaces(); -} - -void LLVolume::genTangents(S32 face) -{ - // generate legacy tangents for the specified face - llassert(!isMeshAssetLoaded() || mVolumeFaces[face].mTangents != nullptr); // if this is a complete mesh asset, we should already have tangents - mVolumeFaces[face].createTangents(); -} - -LLVolume::~LLVolume() -{ - sNumMeshPoints -= mMesh.size(); - delete mPathp; - - delete mProfilep; - - mPathp = NULL; - mProfilep = NULL; - mVolumeFaces.clear(); - - ll_aligned_free_16(mHullPoints); - mHullPoints = NULL; - ll_aligned_free_16(mHullIndices); - mHullIndices = NULL; -} - -BOOL LLVolume::generate() -{ - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME - - LL_CHECK_MEMORY - llassert_always(mProfilep); - - //Added 10.03.05 Dave Parks - // Split is a parameter to LLProfile::generate that tesselates edges on the profile - // to prevent lighting and texture interpolation errors on triangles that are - // stretched due to twisting or scaling on the path. - S32 split = (S32) ((mDetail)*0.66f); - - if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_LINE && - (mParams.getPathParams().getScale().mV[0] != 1.0f || - mParams.getPathParams().getScale().mV[1] != 1.0f) && - (mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_SQUARE || - mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_ISOTRI || - mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_EQUALTRI || - mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_RIGHTTRI)) - { - split = 0; - } - - mLODScaleBias.setVec(0.5f, 0.5f, 0.5f); - - F32 profile_detail = mDetail; - F32 path_detail = mDetail; - - if ((mParams.getSculptType() & LL_SCULPT_TYPE_MASK) != LL_SCULPT_TYPE_MESH) - { - U8 path_type = mParams.getPathParams().getCurveType(); - U8 profile_type = mParams.getProfileParams().getCurveType(); - if (path_type == LL_PCODE_PATH_LINE && profile_type == LL_PCODE_PROFILE_CIRCLE) - { - //cylinders don't care about Z-Axis - mLODScaleBias.setVec(0.6f, 0.6f, 0.0f); - } - else if (path_type == LL_PCODE_PATH_CIRCLE) - { - mLODScaleBias.setVec(0.6f, 0.6f, 0.6f); - } - } - - BOOL regenPath = mPathp->generate(mParams.getPathParams(), path_detail, split); - BOOL regenProf = mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(),profile_detail, split); - - if (regenPath || regenProf ) - { - S32 sizeS = mPathp->mPath.size(); - S32 sizeT = mProfilep->mProfile.size(); - - sNumMeshPoints -= mMesh.size(); - mMesh.resize(sizeT * sizeS); - sNumMeshPoints += mMesh.size(); - - //generate vertex positions - - // Run along the path. - LLVector4a* dst = mMesh.mArray; - - for (S32 s = 0; s < sizeS; ++s) - { - F32* scale = mPathp->mPath[s].mScale.getF32ptr(); - - F32 sc [] = - { scale[0], 0, 0, 0, - 0, scale[1], 0, 0, - 0, 0, scale[2], 0, - 0, 0, 0, 1 }; - - LLMatrix4 rot((F32*) mPathp->mPath[s].mRot.mMatrix); - LLMatrix4 scale_mat(sc); - - scale_mat *= rot; - - LLMatrix4a rot_mat; - rot_mat.loadu(scale_mat); - - LLVector4a* profile = mProfilep->mProfile.mArray; - LLVector4a* end_profile = profile+sizeT; - LLVector4a offset = mPathp->mPath[s].mPos; - - // hack to work around MAINT-5660 for debug until we can suss out - // what is wrong with the path generated that inserts NaNs... - if (!offset.isFinite3()) - { - offset.clear(); - } - - LLVector4a tmp; - - // Run along the profile. - while (profile < end_profile) - { - rot_mat.rotate(*profile++, tmp); - dst->setAdd(tmp,offset); - ++dst; - } - } - - for (std::vector<LLProfile::Face>::iterator iter = mProfilep->mFaces.begin(); - iter != mProfilep->mFaces.end(); ++iter) - { - LLFaceID id = iter->mFaceID; - mFaceMask |= id; - } - LL_CHECK_MEMORY - return TRUE; - } - - LL_CHECK_MEMORY - return FALSE; -} - -void LLVolumeFace::VertexData::init() -{ - if (!mData) - { - mData = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*2); - } -} - -LLVolumeFace::VertexData::VertexData() -{ - mData = NULL; - init(); -} - -LLVolumeFace::VertexData::VertexData(const VertexData& rhs) -{ - mData = NULL; - *this = rhs; -} - -const LLVolumeFace::VertexData& LLVolumeFace::VertexData::operator=(const LLVolumeFace::VertexData& rhs) -{ - if (this != &rhs) - { - init(); - LLVector4a::memcpyNonAliased16((F32*) mData, (F32*) rhs.mData, 2*sizeof(LLVector4a)); - mTexCoord = rhs.mTexCoord; - } - return *this; -} - -LLVolumeFace::VertexData::~VertexData() -{ - ll_aligned_free_16(mData); - mData = NULL; -} - -LLVector4a& LLVolumeFace::VertexData::getPosition() -{ - return mData[POSITION]; -} - -LLVector4a& LLVolumeFace::VertexData::getNormal() -{ - return mData[NORMAL]; -} - -const LLVector4a& LLVolumeFace::VertexData::getPosition() const -{ - return mData[POSITION]; -} - -const LLVector4a& LLVolumeFace::VertexData::getNormal() const -{ - return mData[NORMAL]; -} - - -void LLVolumeFace::VertexData::setPosition(const LLVector4a& pos) -{ - mData[POSITION] = pos; -} - -void LLVolumeFace::VertexData::setNormal(const LLVector4a& norm) -{ - mData[NORMAL] = norm; -} - -bool LLVolumeFace::VertexData::operator<(const LLVolumeFace::VertexData& rhs)const -{ - const F32* lp = this->getPosition().getF32ptr(); - const F32* rp = rhs.getPosition().getF32ptr(); - - if (lp[0] != rp[0]) - { - return lp[0] < rp[0]; - } - - if (rp[1] != lp[1]) - { - return lp[1] < rp[1]; - } - - if (rp[2] != lp[2]) - { - return lp[2] < rp[2]; - } - - lp = getNormal().getF32ptr(); - rp = rhs.getNormal().getF32ptr(); - - if (lp[0] != rp[0]) - { - return lp[0] < rp[0]; - } - - if (rp[1] != lp[1]) - { - return lp[1] < rp[1]; - } - - if (rp[2] != lp[2]) - { - return lp[2] < rp[2]; - } - - if (mTexCoord.mV[0] != rhs.mTexCoord.mV[0]) - { - return mTexCoord.mV[0] < rhs.mTexCoord.mV[0]; - } - - return mTexCoord.mV[1] < rhs.mTexCoord.mV[1]; -} - -bool LLVolumeFace::VertexData::operator==(const LLVolumeFace::VertexData& rhs)const -{ - return mData[POSITION].equals3(rhs.getPosition()) && - mData[NORMAL].equals3(rhs.getNormal()) && - mTexCoord == rhs.mTexCoord; -} - -bool LLVolumeFace::VertexData::compareNormal(const LLVolumeFace::VertexData& rhs, F32 angle_cutoff) const -{ - bool retval = false; - - const F32 epsilon = 0.00001f; - - if (rhs.mData[POSITION].equals3(mData[POSITION], epsilon) && - fabs(rhs.mTexCoord[0]-mTexCoord[0]) < epsilon && - fabs(rhs.mTexCoord[1]-mTexCoord[1]) < epsilon) - { - if (angle_cutoff > 1.f) - { - retval = (mData[NORMAL].equals3(rhs.mData[NORMAL], epsilon)); - } - else - { - F32 cur_angle = rhs.mData[NORMAL].dot3(mData[NORMAL]).getF32(); - retval = cur_angle > angle_cutoff; - } - } - - return retval; -} - -bool LLVolume::unpackVolumeFaces(std::istream& is, S32 size) -{ - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME - - //input stream is now pointing at a zlib compressed block of LLSD - //decompress block - LLSD mdl; - U32 uzip_result = LLUZipHelper::unzip_llsd(mdl, is, size); - if (uzip_result != LLUZipHelper::ZR_OK) - { - LL_DEBUGS("MeshStreaming") << "Failed to unzip LLSD blob for LoD with code " << uzip_result << " , will probably fetch from sim again." << LL_ENDL; - return false; - } - return unpackVolumeFacesInternal(mdl); -} - -bool LLVolume::unpackVolumeFaces(U8* in_data, S32 size) -{ - //input data is now pointing at a zlib compressed block of LLSD - //decompress block - LLSD mdl; - U32 uzip_result = LLUZipHelper::unzip_llsd(mdl, in_data, size); - if (uzip_result != LLUZipHelper::ZR_OK) - { - LL_DEBUGS("MeshStreaming") << "Failed to unzip LLSD blob for LoD with code " << uzip_result << " , will probably fetch from sim again." << LL_ENDL; - return false; - } - return unpackVolumeFacesInternal(mdl); -} - -bool LLVolume::unpackVolumeFacesInternal(const LLSD& mdl) -{ - { - U32 face_count = mdl.size(); - - if (face_count == 0) - { //no faces unpacked, treat as failed decode - LL_WARNS() << "found no faces!" << LL_ENDL; - return false; - } - - mVolumeFaces.resize(face_count); - - for (size_t i = 0; i < face_count; ++i) - { - LLVolumeFace& face = mVolumeFaces[i]; - - if (mdl[i].has("NoGeometry")) - { //face has no geometry, continue - face.resizeIndices(3); - face.resizeVertices(1); - face.mPositions->clear(); - face.mNormals->clear(); - face.mTexCoords->setZero(); - memset(face.mIndices, 0, sizeof(U16)*3); - continue; - } - - LLSD::Binary pos = mdl[i]["Position"]; - LLSD::Binary norm = mdl[i]["Normal"]; - LLSD::Binary tangent = mdl[i]["Tangent"]; - LLSD::Binary tc = mdl[i]["TexCoord0"]; - LLSD::Binary idx = mdl[i]["TriangleList"]; - - //copy out indices - S32 num_indices = idx.size() / 2; - const S32 indices_to_discard = num_indices % 3; - if (indices_to_discard > 0) - { - // Invalid number of triangle indices - LL_WARNS() << "Incomplete triangle discarded from face! Indices count " << num_indices << " was not divisible by 3. face index: " << i << " Total: " << face_count << LL_ENDL; - num_indices -= indices_to_discard; - } - face.resizeIndices(num_indices); - - if (num_indices > 2 && !face.mIndices) - { - LL_WARNS() << "Failed to allocate " << num_indices << " indices for face index: " << i << " Total: " << face_count << LL_ENDL; - continue; - } - - if (idx.empty() || face.mNumIndices < 3) - { //why is there an empty index list? - LL_WARNS() << "Empty face present! Face index: " << i << " Total: " << face_count << LL_ENDL; - continue; - } - - U16* indices = (U16*) &(idx[0]); - for (U32 j = 0; j < num_indices; ++j) - { - face.mIndices[j] = indices[j]; - } - - //copy out vertices - U32 num_verts = pos.size()/(3*2); - face.resizeVertices(num_verts); - - if (num_verts > 0 && !face.mPositions) - { - LL_WARNS() << "Failed to allocate " << num_verts << " vertices for face index: " << i << " Total: " << face_count << LL_ENDL; - face.resizeIndices(0); - continue; - } - - LLVector3 minp; - LLVector3 maxp; - LLVector2 min_tc; - LLVector2 max_tc; - - minp.setValue(mdl[i]["PositionDomain"]["Min"]); - maxp.setValue(mdl[i]["PositionDomain"]["Max"]); - LLVector4a min_pos, max_pos; - min_pos.load3(minp.mV); - max_pos.load3(maxp.mV); - - min_tc.setValue(mdl[i]["TexCoord0Domain"]["Min"]); - max_tc.setValue(mdl[i]["TexCoord0Domain"]["Max"]); - - //unpack normalized scale/translation - if (mdl[i].has("NormalizedScale")) - { - face.mNormalizedScale.setValue(mdl[i]["NormalizedScale"]); - } - else - { - face.mNormalizedScale.set(1, 1, 1); - } - - LLVector4a pos_range; - pos_range.setSub(max_pos, min_pos); - LLVector2 tc_range2 = max_tc - min_tc; - - LLVector4a tc_range; - tc_range.set(tc_range2[0], tc_range2[1], tc_range2[0], tc_range2[1]); - LLVector4a min_tc4(min_tc[0], min_tc[1], min_tc[0], min_tc[1]); - - LLVector4a* pos_out = face.mPositions; - LLVector4a* norm_out = face.mNormals; - LLVector4a* tc_out = (LLVector4a*) face.mTexCoords; - - { - U16* v = (U16*) &(pos[0]); - for (U32 j = 0; j < num_verts; ++j) - { - pos_out->set((F32) v[0], (F32) v[1], (F32) v[2]); - pos_out->div(65535.f); - pos_out->mul(pos_range); - pos_out->add(min_pos); - pos_out++; - v += 3; - } - - } - - { - if (!norm.empty()) - { - U16* n = (U16*) &(norm[0]); - for (U32 j = 0; j < num_verts; ++j) - { - norm_out->set((F32) n[0], (F32) n[1], (F32) n[2]); - norm_out->div(65535.f); - norm_out->mul(2.f); - norm_out->sub(1.f); - norm_out++; - n += 3; - } - } - else - { - for (U32 j = 0; j < num_verts; ++j) - { - norm_out->clear(); - norm_out++; // or just norm_out[j].clear(); - } - } - } - -#if 0 // keep this code for now in case we decide to add support for on-the-wire tangents - { - if (!tangent.empty()) - { - face.allocateTangents(face.mNumVertices); - U16* t = (U16*)&(tangent[0]); - - // NOTE: tangents coming from the asset may not be mikkt space, but they should always be used by the GLTF shaders to - // maintain compliance with the GLTF spec - LLVector4a* t_out = face.mTangents; - - for (U32 j = 0; j < num_verts; ++j) - { - t_out->set((F32)t[0], (F32)t[1], (F32)t[2], (F32) t[3]); - t_out->div(65535.f); - t_out->mul(2.f); - t_out->sub(1.f); - - F32* tp = t_out->getF32ptr(); - tp[3] = tp[3] < 0.f ? -1.f : 1.f; - - t_out++; - t += 4; - } - } - } -#endif - - { - if (!tc.empty()) - { - U16* t = (U16*) &(tc[0]); - for (U32 j = 0; j < num_verts; j+=2) - { - if (j < num_verts-1) - { - tc_out->set((F32) t[0], (F32) t[1], (F32) t[2], (F32) t[3]); - } - else - { - tc_out->set((F32) t[0], (F32) t[1], 0.f, 0.f); - } - - t += 4; - - tc_out->div(65535.f); - tc_out->mul(tc_range); - tc_out->add(min_tc4); - - tc_out++; - } - } - else - { - for (U32 j = 0; j < num_verts; j += 2) - { - tc_out->clear(); - tc_out++; - } - } - } - - if (mdl[i].has("Weights")) - { - face.allocateWeights(num_verts); - if (!face.mWeights && num_verts) - { - LL_WARNS() << "Failed to allocate " << num_verts << " weights for face index: " << i << " Total: " << face_count << LL_ENDL; - face.resizeIndices(0); - face.resizeVertices(0); - continue; - } - - LLSD::Binary weights = mdl[i]["Weights"]; - - U32 idx = 0; - - U32 cur_vertex = 0; - while (idx < weights.size() && cur_vertex < num_verts) - { - const U8 END_INFLUENCES = 0xFF; - U8 joint = weights[idx++]; - - U32 cur_influence = 0; - LLVector4 wght(0,0,0,0); - U32 joints[4] = {0,0,0,0}; - LLVector4 joints_with_weights(0,0,0,0); - - while (joint != END_INFLUENCES && idx < weights.size()) - { - U16 influence = weights[idx++]; - influence |= ((U16) weights[idx++] << 8); - - F32 w = llclamp((F32) influence / 65535.f, 0.001f, 0.999f); - wght.mV[cur_influence] = w; - joints[cur_influence] = joint; - cur_influence++; - - if (cur_influence >= 4) - { - joint = END_INFLUENCES; - } - else - { - joint = weights[idx++]; - } - } - F32 wsum = wght.mV[VX] + wght.mV[VY] + wght.mV[VZ] + wght.mV[VW]; - if (wsum <= 0.f) - { - wght = LLVector4(0.999f,0.f,0.f,0.f); - } - for (U32 k=0; k<4; k++) - { - F32 f_combined = (F32) joints[k] + wght[k]; - joints_with_weights[k] = f_combined; - // Any weights we added above should wind up non-zero and applied to a specific bone. - // A failure here would indicate a floating point precision error in the math. - llassert((k >= cur_influence) || (f_combined - S32(f_combined) > 0.0f)); - } - face.mWeights[cur_vertex].loadua(joints_with_weights.mV); - - cur_vertex++; - } - - if (cur_vertex != num_verts || idx != weights.size()) - { - LL_WARNS() << "Vertex weight count does not match vertex count!" << LL_ENDL; - } - - } - - // modifier flags? - bool do_mirror = (mParams.getSculptType() & LL_SCULPT_FLAG_MIRROR); - bool do_invert = (mParams.getSculptType() &LL_SCULPT_FLAG_INVERT); - - - // translate to actions: - bool do_reflect_x = false; - bool do_reverse_triangles = false; - bool do_invert_normals = false; - - if (do_mirror) - { - do_reflect_x = true; - do_reverse_triangles = !do_reverse_triangles; - } - - if (do_invert) - { - do_invert_normals = true; - do_reverse_triangles = !do_reverse_triangles; - } - - // now do the work - - if (do_reflect_x) - { - LLVector4a* p = (LLVector4a*) face.mPositions; - LLVector4a* n = (LLVector4a*) face.mNormals; - - for (S32 i = 0; i < face.mNumVertices; i++) - { - p[i].mul(-1.0f); - n[i].mul(-1.0f); - } - } - - if (do_invert_normals) - { - LLVector4a* n = (LLVector4a*) face.mNormals; - - for (S32 i = 0; i < face.mNumVertices; i++) - { - n[i].mul(-1.0f); - } - } - - if (do_reverse_triangles) - { - for (U32 j = 0; j < face.mNumIndices; j += 3) - { - // swap the 2nd and 3rd index - S32 swap = face.mIndices[j+1]; - face.mIndices[j+1] = face.mIndices[j+2]; - face.mIndices[j+2] = swap; - } - } - - //calculate bounding box - // VFExtents change - LLVector4a& min = face.mExtents[0]; - LLVector4a& max = face.mExtents[1]; - - if (face.mNumVertices < 3) - { //empty face, use a dummy 1cm (at 1m scale) bounding box - min.splat(-0.005f); - max.splat(0.005f); - } - else - { - min = max = face.mPositions[0]; - - for (S32 i = 1; i < face.mNumVertices; ++i) - { - min.setMin(min, face.mPositions[i]); - max.setMax(max, face.mPositions[i]); - } - - if (face.mTexCoords) - { - LLVector2& min_tc = face.mTexCoordExtents[0]; - LLVector2& max_tc = face.mTexCoordExtents[1]; - - min_tc = face.mTexCoords[0]; - max_tc = face.mTexCoords[0]; - - for (U32 j = 1; j < face.mNumVertices; ++j) - { - update_min_max(min_tc, max_tc, face.mTexCoords[j]); - } - } - else - { - face.mTexCoordExtents[0].set(0,0); - face.mTexCoordExtents[1].set(1,1); - } - } - } - } - - if (!cacheOptimize(true)) - { - // Out of memory? - LL_WARNS() << "Failed to optimize!" << LL_ENDL; - mVolumeFaces.clear(); - return false; - } - - mSculptLevel = 0; // success! - - return true; -} - - -bool LLVolume::isMeshAssetLoaded() -{ - return mIsMeshAssetLoaded; -} - -void LLVolume::setMeshAssetLoaded(bool loaded) -{ - mIsMeshAssetLoaded = loaded; - if (loaded) - { - mIsMeshAssetUnavaliable = false; - } -} - -void LLVolume::setMeshAssetUnavaliable(bool unavaliable) -{ - // Don't set it if at least one lod loaded - if (!mIsMeshAssetLoaded) - { - mIsMeshAssetUnavaliable = unavaliable; - } -} - -bool LLVolume::isMeshAssetUnavaliable() -{ - return mIsMeshAssetUnavaliable; -} - -void LLVolume::copyFacesTo(std::vector<LLVolumeFace> &faces) const -{ - faces = mVolumeFaces; -} - -void LLVolume::copyFacesFrom(const std::vector<LLVolumeFace> &faces) -{ - mVolumeFaces = faces; - mSculptLevel = 0; -} - -void LLVolume::copyVolumeFaces(const LLVolume* volume) -{ - mVolumeFaces = volume->mVolumeFaces; - mSculptLevel = 0; -} - -bool LLVolume::cacheOptimize(bool gen_tangents) -{ - for (S32 i = 0; i < mVolumeFaces.size(); ++i) - { - if (!mVolumeFaces[i].cacheOptimize(gen_tangents)) - { - return false; - } - } - return true; -} - - -S32 LLVolume::getNumFaces() const -{ - return mIsMeshAssetLoaded ? getNumVolumeFaces() : (S32)mProfilep->mFaces.size(); -} - - -void LLVolume::createVolumeFaces() -{ - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME - - if (mGenerateSingleFace) - { - // do nothing - } - else - { - S32 num_faces = getNumFaces(); - BOOL partial_build = TRUE; - if (num_faces != mVolumeFaces.size()) - { - partial_build = FALSE; - mVolumeFaces.resize(num_faces); - } - // Initialize volume faces with parameter data - for (S32 i = 0; i < (S32)mVolumeFaces.size(); i++) - { - LLVolumeFace& vf = mVolumeFaces[i]; - LLProfile::Face& face = mProfilep->mFaces[i]; - vf.mBeginS = face.mIndex; - vf.mNumS = face.mCount; - if (vf.mNumS < 0) - { - LL_ERRS() << "Volume face corruption detected." << LL_ENDL; - } - - vf.mBeginT = 0; - vf.mNumT= getPath().mPath.size(); - vf.mID = i; - - // Set the type mask bits correctly - if (mParams.getProfileParams().getHollow() > 0) - { - vf.mTypeMask |= LLVolumeFace::HOLLOW_MASK; - } - if (mProfilep->isOpen()) - { - vf.mTypeMask |= LLVolumeFace::OPEN_MASK; - } - if (face.mCap) - { - vf.mTypeMask |= LLVolumeFace::CAP_MASK; - if (face.mFaceID == LL_FACE_PATH_BEGIN) - { - vf.mTypeMask |= LLVolumeFace::TOP_MASK; - } - else - { - llassert(face.mFaceID == LL_FACE_PATH_END); - vf.mTypeMask |= LLVolumeFace::BOTTOM_MASK; - } - } - else if (face.mFaceID & (LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END)) - { - vf.mTypeMask |= LLVolumeFace::FLAT_MASK | LLVolumeFace::END_MASK; - } - else - { - vf.mTypeMask |= LLVolumeFace::SIDE_MASK; - if (face.mFlat) - { - vf.mTypeMask |= LLVolumeFace::FLAT_MASK; - } - if (face.mFaceID & LL_FACE_INNER_SIDE) - { - vf.mTypeMask |= LLVolumeFace::INNER_MASK; - if (face.mFlat && vf.mNumS > 2) - { //flat inner faces have to copy vert normals - vf.mNumS = vf.mNumS*2; - if (vf.mNumS < 0) - { - LL_ERRS() << "Volume face corruption detected." << LL_ENDL; - } - } - } - else - { - vf.mTypeMask |= LLVolumeFace::OUTER_MASK; - } - } - } - - for (face_list_t::iterator iter = mVolumeFaces.begin(); - iter != mVolumeFaces.end(); ++iter) - { - (*iter).create(this, partial_build); - } - } -} - - -inline LLVector4a sculpt_rgb_to_vector(U8 r, U8 g, U8 b) -{ - // maps RGB values to vector values [0..255] -> [-0.5..0.5] - LLVector4a value; - LLVector4a sub(0.5f, 0.5f, 0.5f); - - value.set(r,g,b); - value.mul(1.f/255.f); - value.sub(sub); - - return value; -} - -inline U32 sculpt_xy_to_index(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components) -{ - U32 index = (x + y * sculpt_width) * sculpt_components; - return index; -} - - -inline U32 sculpt_st_to_index(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components) -{ - U32 x = (U32) ((F32)s/(size_s) * (F32) sculpt_width); - U32 y = (U32) ((F32)t/(size_t) * (F32) sculpt_height); - - return sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components); -} - - -inline LLVector4a sculpt_index_to_vector(U32 index, const U8* sculpt_data) -{ - LLVector4a v = sculpt_rgb_to_vector(sculpt_data[index], sculpt_data[index+1], sculpt_data[index+2]); - - return v; -} - -inline LLVector4a sculpt_st_to_vector(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data) -{ - U32 index = sculpt_st_to_index(s, t, size_s, size_t, sculpt_width, sculpt_height, sculpt_components); - - return sculpt_index_to_vector(index, sculpt_data); -} - -inline LLVector4a sculpt_xy_to_vector(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data) -{ - U32 index = sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components); - - return sculpt_index_to_vector(index, sculpt_data); -} - - -F32 LLVolume::sculptGetSurfaceArea() -{ - // test to see if image has enough variation to create non-degenerate geometry - - F32 area = 0; - - S32 sizeS = mPathp->mPath.size(); - S32 sizeT = mProfilep->mProfile.size(); - - for (S32 s = 0; s < sizeS-1; s++) - { - for (S32 t = 0; t < sizeT-1; t++) - { - // get four corners of quad - LLVector4a& p1 = mMesh[(s )*sizeT + (t )]; - LLVector4a& p2 = mMesh[(s+1)*sizeT + (t )]; - LLVector4a& p3 = mMesh[(s )*sizeT + (t+1)]; - LLVector4a& p4 = mMesh[(s+1)*sizeT + (t+1)]; - - // compute the area of the quad by taking the length of the cross product of the two triangles - LLVector4a v0,v1,v2,v3; - v0.setSub(p1,p2); - v1.setSub(p1,p3); - v2.setSub(p4,p2); - v3.setSub(p4,p3); - - LLVector4a cross1, cross2; - cross1.setCross3(v0,v1); - cross2.setCross3(v2,v3); - - //LLVector3 cross1 = (p1 - p2) % (p1 - p3); - //LLVector3 cross2 = (p4 - p2) % (p4 - p3); - - area += (cross1.getLength3() + cross2.getLength3()).getF32() / 2.f; - } - } - - return area; -} - -// create empty placeholder shape -void LLVolume::sculptGenerateEmptyPlaceholder() -{ - S32 sizeS = mPathp->mPath.size(); - S32 sizeT = mProfilep->mProfile.size(); - - S32 line = 0; - - for (S32 s = 0; s < sizeS; s++) - { - for (S32 t = 0; t < sizeT; t++) - { - S32 i = t + line; - LLVector4a& pt = mMesh[i]; - - F32* p = pt.getF32ptr(); - - p[0] = 0; - p[1] = 0; - p[2] = 0; - - llassert(pt.isFinite3()); - } - line += sizeT; - } -} - -// create sphere placeholder shape -void LLVolume::sculptGenerateSpherePlaceholder() -{ - S32 sizeS = mPathp->mPath.size(); - S32 sizeT = mProfilep->mProfile.size(); - - S32 line = 0; - - for (S32 s = 0; s < sizeS; s++) - { - for (S32 t = 0; t < sizeT; t++) - { - S32 i = t + line; - LLVector4a& pt = mMesh[i]; - - - F32 u = (F32)s / (sizeS - 1); - F32 v = (F32)t / (sizeT - 1); - - const F32 RADIUS = (F32) 0.3; - - F32* p = pt.getF32ptr(); - - p[0] = (F32)(sin(F_PI * v) * cos(2.0 * F_PI * u) * RADIUS); - p[1] = (F32)(sin(F_PI * v) * sin(2.0 * F_PI * u) * RADIUS); - p[2] = (F32)(cos(F_PI * v) * RADIUS); - - llassert(pt.isFinite3()); - } - line += sizeT; - } -} - -// create the vertices from the map -void LLVolume::sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, U8 sculpt_type) -{ - U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK; - BOOL sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT; - BOOL sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR; - BOOL reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror); // XOR - - S32 sizeS = mPathp->mPath.size(); - S32 sizeT = mProfilep->mProfile.size(); - - S32 line = 0; - for (S32 s = 0; s < sizeS; s++) - { - // Run along the profile. - for (S32 t = 0; t < sizeT; t++) - { - S32 i = t + line; - LLVector4a& pt = mMesh[i]; - - S32 reversed_t = t; - - if (reverse_horizontal) - { - reversed_t = sizeT - t - 1; - } - - U32 x = (U32) ((F32)reversed_t/(sizeT-1) * (F32) sculpt_width); - U32 y = (U32) ((F32)s/(sizeS-1) * (F32) sculpt_height); - - - if (y == 0) // top row stitching - { - // pinch? - if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE) - { - x = sculpt_width / 2; - } - } - - if (y == sculpt_height) // bottom row stitching - { - // wrap? - if (sculpt_stitching == LL_SCULPT_TYPE_TORUS) - { - y = 0; - } - else - { - y = sculpt_height - 1; - } - - // pinch? - if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE) - { - x = sculpt_width / 2; - } - } - - if (x == sculpt_width) // side stitching - { - // wrap? - if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) || - (sculpt_stitching == LL_SCULPT_TYPE_TORUS) || - (sculpt_stitching == LL_SCULPT_TYPE_CYLINDER)) - { - x = 0; - } - - else - { - x = sculpt_width - 1; - } - } - - pt = sculpt_xy_to_vector(x, y, sculpt_width, sculpt_height, sculpt_components, sculpt_data); - - if (sculpt_mirror) - { - LLVector4a scale(-1.f,1,1,1); - pt.mul(scale); - } - - llassert(pt.isFinite3()); - } - - line += sizeT; - } -} - - -const S32 SCULPT_REZ_1 = 6; // changed from 4 to 6 - 6 looks round whereas 4 looks square -const S32 SCULPT_REZ_2 = 8; -const S32 SCULPT_REZ_3 = 16; -const S32 SCULPT_REZ_4 = 32; - -S32 sculpt_sides(F32 detail) -{ - - // detail is usually one of: 1, 1.5, 2.5, 4.0. - - if (detail <= 1.0) - { - return SCULPT_REZ_1; - } - if (detail <= 2.0) - { - return SCULPT_REZ_2; - } - if (detail <= 3.0) - { - return SCULPT_REZ_3; - } - else - { - return SCULPT_REZ_4; - } -} - - - -// determine the number of vertices in both s and t direction for this sculpt -void sculpt_calc_mesh_resolution(U16 width, U16 height, U8 type, F32 detail, S32& s, S32& t) -{ - // this code has the following properties: - // 1) the aspect ratio of the mesh is as close as possible to the ratio of the map - // while still using all available verts - // 2) the mesh cannot have more verts than is allowed by LOD - // 3) the mesh cannot have more verts than is allowed by the map - - S32 max_vertices_lod = (S32)pow((double)sculpt_sides(detail), 2.0); - S32 max_vertices_map = width * height / 4; - - S32 vertices; - if (max_vertices_map > 0) - vertices = llmin(max_vertices_lod, max_vertices_map); - else - vertices = max_vertices_lod; - - - F32 ratio; - if ((width == 0) || (height == 0)) - ratio = 1.f; - else - ratio = (F32) width / (F32) height; - - - s = (S32)(F32) sqrt(((F32)vertices / ratio)); - - s = llmax(s, 4); // no degenerate sizes, please - t = vertices / s; - - t = llmax(t, 4); // no degenerate sizes, please - s = vertices / t; -} - -// sculpt replaces generate() for sculpted surfaces -void LLVolume::sculpt(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, S32 sculpt_level, bool visible_placeholder) -{ - U8 sculpt_type = mParams.getSculptType(); - - BOOL data_is_empty = FALSE; - - if (sculpt_width == 0 || sculpt_height == 0 || sculpt_components < 3 || sculpt_data == NULL) - { - sculpt_level = -1; - data_is_empty = TRUE; - } - - S32 requested_sizeS = 0; - S32 requested_sizeT = 0; - - sculpt_calc_mesh_resolution(sculpt_width, sculpt_height, sculpt_type, mDetail, requested_sizeS, requested_sizeT); - - mPathp->generate(mParams.getPathParams(), mDetail, 0, TRUE, requested_sizeS); - mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(), mDetail, 0, TRUE, requested_sizeT); - - S32 sizeS = mPathp->mPath.size(); // we requested a specific size, now see what we really got - S32 sizeT = mProfilep->mProfile.size(); // we requested a specific size, now see what we really got - - // weird crash bug - DEV-11158 - trying to collect more data: - if ((sizeS == 0) || (sizeT == 0)) - { - LL_WARNS() << "sculpt bad mesh size " << sizeS << " " << sizeT << LL_ENDL; - } - - sNumMeshPoints -= mMesh.size(); - mMesh.resize(sizeS * sizeT); - sNumMeshPoints += mMesh.size(); - - //generate vertex positions - if (!data_is_empty) - { - sculptGenerateMapVertices(sculpt_width, sculpt_height, sculpt_components, sculpt_data, sculpt_type); - - // don't test lowest LOD to support legacy content DEV-33670 - if (mDetail > SCULPT_MIN_AREA_DETAIL) - { - F32 area = sculptGetSurfaceArea(); - - mSurfaceArea = area; - - const F32 SCULPT_MAX_AREA = 384.f; - - if (area < SCULPT_MIN_AREA || area > SCULPT_MAX_AREA) - { - data_is_empty = TRUE; - visible_placeholder = true; - } - } - } - - if (data_is_empty) - { - if (visible_placeholder) - { - // Object should be visible since there will be nothing else to display - sculptGenerateSpherePlaceholder(); - } - else - { - sculptGenerateEmptyPlaceholder(); - } - } - - - - for (S32 i = 0; i < (S32)mProfilep->mFaces.size(); i++) - { - mFaceMask |= mProfilep->mFaces[i].mFaceID; - } - - mSculptLevel = sculpt_level; - - // Delete any existing faces so that they get regenerated - mVolumeFaces.clear(); - - createVolumeFaces(); -} - - - - -BOOL LLVolume::isCap(S32 face) -{ - return mProfilep->mFaces[face].mCap; -} - -BOOL LLVolume::isFlat(S32 face) -{ - return mProfilep->mFaces[face].mFlat; -} - - -bool LLVolumeParams::isSculpt() const -{ - return (mSculptType & LL_SCULPT_TYPE_MASK) != LL_SCULPT_TYPE_NONE; -} - -bool LLVolumeParams::isMeshSculpt() const -{ - return (mSculptType & LL_SCULPT_TYPE_MASK) == LL_SCULPT_TYPE_MESH; -} - -bool LLVolumeParams::operator==(const LLVolumeParams ¶ms) const -{ - return ( (getPathParams() == params.getPathParams()) && - (getProfileParams() == params.getProfileParams()) && - (mSculptID == params.mSculptID) && - (mSculptType == params.mSculptType) ); -} - -bool LLVolumeParams::operator!=(const LLVolumeParams ¶ms) const -{ - return ( (getPathParams() != params.getPathParams()) || - (getProfileParams() != params.getProfileParams()) || - (mSculptID != params.mSculptID) || - (mSculptType != params.mSculptType) ); -} - -bool LLVolumeParams::operator<(const LLVolumeParams ¶ms) const -{ - if( getPathParams() != params.getPathParams() ) - { - return getPathParams() < params.getPathParams(); - } - - if (getProfileParams() != params.getProfileParams()) - { - return getProfileParams() < params.getProfileParams(); - } - - if (mSculptID != params.mSculptID) - { - return mSculptID < params.mSculptID; - } - - return mSculptType < params.mSculptType; - - -} - -void LLVolumeParams::copyParams(const LLVolumeParams ¶ms) -{ - mProfileParams.copyParams(params.mProfileParams); - mPathParams.copyParams(params.mPathParams); - mSculptID = params.getSculptID(); - mSculptType = params.getSculptType(); -} - -// Less restricitve approx 0 for volumes -const F32 APPROXIMATELY_ZERO = 0.001f; -bool approx_zero( F32 f, F32 tolerance = APPROXIMATELY_ZERO) -{ - return (f >= -tolerance) && (f <= tolerance); -} - -// return true if in range (or nearly so) -static bool limit_range(F32& v, F32 min, F32 max, F32 tolerance = APPROXIMATELY_ZERO) -{ - F32 min_delta = v - min; - if (min_delta < 0.f) - { - v = min; - if (!approx_zero(min_delta, tolerance)) - return false; - } - F32 max_delta = max - v; - if (max_delta < 0.f) - { - v = max; - if (!approx_zero(max_delta, tolerance)) - return false; - } - return true; -} - -bool LLVolumeParams::setBeginAndEndS(const F32 b, const F32 e) -{ - bool valid = true; - - // First, clamp to valid ranges. - F32 begin = b; - valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA); - - F32 end = e; - if (end >= .0149f && end < MIN_CUT_DELTA) end = MIN_CUT_DELTA; // eliminate warning for common rounding error - valid &= limit_range(end, MIN_CUT_DELTA, 1.f); - - valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f); - - // Now set them. - mProfileParams.setBegin(begin); - mProfileParams.setEnd(end); - - return valid; -} - -bool LLVolumeParams::setBeginAndEndT(const F32 b, const F32 e) -{ - bool valid = true; - - // First, clamp to valid ranges. - F32 begin = b; - valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA); - - F32 end = e; - valid &= limit_range(end, MIN_CUT_DELTA, 1.f); - - valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f); - - // Now set them. - mPathParams.setBegin(begin); - mPathParams.setEnd(end); - - return valid; -} - -bool LLVolumeParams::setHollow(const F32 h) -{ - // Validate the hollow based on path and profile. - U8 profile = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; - U8 hole_type = mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK; - - F32 max_hollow = HOLLOW_MAX; - - // Only square holes have trouble. - if (LL_PCODE_HOLE_SQUARE == hole_type) - { - switch(profile) - { - case LL_PCODE_PROFILE_CIRCLE: - case LL_PCODE_PROFILE_CIRCLE_HALF: - case LL_PCODE_PROFILE_EQUALTRI: - max_hollow = HOLLOW_MAX_SQUARE; - } - } - - F32 hollow = h; - bool valid = limit_range(hollow, HOLLOW_MIN, max_hollow); - mProfileParams.setHollow(hollow); - - return valid; -} - -bool LLVolumeParams::setTwistBegin(const F32 b) -{ - F32 twist_begin = b; - bool valid = limit_range(twist_begin, TWIST_MIN, TWIST_MAX); - mPathParams.setTwistBegin(twist_begin); - return valid; -} - -bool LLVolumeParams::setTwistEnd(const F32 e) -{ - F32 twist_end = e; - bool valid = limit_range(twist_end, TWIST_MIN, TWIST_MAX); - mPathParams.setTwistEnd(twist_end); - return valid; -} - -bool LLVolumeParams::setRatio(const F32 x, const F32 y) -{ - F32 min_x = RATIO_MIN; - F32 max_x = RATIO_MAX; - F32 min_y = RATIO_MIN; - F32 max_y = RATIO_MAX; - // If this is a circular path (and not a sphere) then 'ratio' is actually hole size. - U8 path_type = mPathParams.getCurveType(); - U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; - if ( LL_PCODE_PATH_CIRCLE == path_type && - LL_PCODE_PROFILE_CIRCLE_HALF != profile_type) - { - // Holes are more restricted... - min_x = HOLE_X_MIN; - max_x = HOLE_X_MAX; - min_y = HOLE_Y_MIN; - max_y = HOLE_Y_MAX; - } - - F32 ratio_x = x; - bool valid = limit_range(ratio_x, min_x, max_x); - F32 ratio_y = y; - valid &= limit_range(ratio_y, min_y, max_y); - - mPathParams.setScale(ratio_x, ratio_y); - - return valid; -} - -bool LLVolumeParams::setShear(const F32 x, const F32 y) -{ - F32 shear_x = x; - bool valid = limit_range(shear_x, SHEAR_MIN, SHEAR_MAX); - F32 shear_y = y; - valid &= limit_range(shear_y, SHEAR_MIN, SHEAR_MAX); - mPathParams.setShear(shear_x, shear_y); - return valid; -} - -bool LLVolumeParams::setTaperX(const F32 v) -{ - F32 taper = v; - bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX); - mPathParams.setTaperX(taper); - return valid; -} - -bool LLVolumeParams::setTaperY(const F32 v) -{ - F32 taper = v; - bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX); - mPathParams.setTaperY(taper); - return valid; -} - -bool LLVolumeParams::setRevolutions(const F32 r) -{ - F32 revolutions = r; - bool valid = limit_range(revolutions, REV_MIN, REV_MAX); - mPathParams.setRevolutions(revolutions); - return valid; -} - -bool LLVolumeParams::setRadiusOffset(const F32 offset) -{ - bool valid = true; - - // If this is a sphere, just set it to 0 and get out. - U8 path_type = mPathParams.getCurveType(); - U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; - if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type || - LL_PCODE_PATH_CIRCLE != path_type ) - { - mPathParams.setRadiusOffset(0.f); - return true; - } - - // Limit radius offset, based on taper and hole size y. - F32 radius_offset = offset; - F32 taper_y = getTaperY(); - F32 radius_mag = fabs(radius_offset); - F32 hole_y_mag = fabs(getRatioY()); - F32 taper_y_mag = fabs(taper_y); - // Check to see if the taper effects us. - if ( (radius_offset > 0.f && taper_y < 0.f) || - (radius_offset < 0.f && taper_y > 0.f) ) - { - // The taper does not help increase the radius offset range. - taper_y_mag = 0.f; - } - F32 max_radius_mag = 1.f - hole_y_mag * (1.f - taper_y_mag) / (1.f - hole_y_mag); - - // Enforce the maximum magnitude. - F32 delta = max_radius_mag - radius_mag; - if (delta < 0.f) - { - // Check radius offset sign. - if (radius_offset < 0.f) - { - radius_offset = -max_radius_mag; - } - else - { - radius_offset = max_radius_mag; - } - valid = approx_zero(delta, .1f); - } - - mPathParams.setRadiusOffset(radius_offset); - return valid; -} - -bool LLVolumeParams::setSkew(const F32 skew_value) -{ - bool valid = true; - - // Check the skew value against the revolutions. - F32 skew = llclamp(skew_value, SKEW_MIN, SKEW_MAX); - F32 skew_mag = fabs(skew); - F32 revolutions = getRevolutions(); - F32 scale_x = getRatioX(); - F32 min_skew_mag = 1.0f - 1.0f / (revolutions * scale_x + 1.0f); - // Discontinuity; A revolution of 1 allows skews below 0.5. - if ( fabs(revolutions - 1.0f) < 0.001) - min_skew_mag = 0.0f; - - // Clip skew. - F32 delta = skew_mag - min_skew_mag; - if (delta < 0.f) - { - // Check skew sign. - if (skew < 0.0f) - { - skew = -min_skew_mag; - } - else - { - skew = min_skew_mag; - } - valid = approx_zero(delta, .01f); - } - - mPathParams.setSkew(skew); - return valid; -} - -bool LLVolumeParams::setSculptID(const LLUUID sculpt_id, U8 sculpt_type) -{ - mSculptID = sculpt_id; - mSculptType = sculpt_type; - return true; -} - -bool LLVolumeParams::setType(U8 profile, U8 path) -{ - bool result = true; - // First, check profile and path for validity. - U8 profile_type = profile & LL_PCODE_PROFILE_MASK; - U8 hole_type = (profile & LL_PCODE_HOLE_MASK) >> 4; - U8 path_type = path >> 4; - - if (profile_type > LL_PCODE_PROFILE_MAX) - { - // Bad profile. Make it square. - profile = LL_PCODE_PROFILE_SQUARE; - result = false; - LL_WARNS() << "LLVolumeParams::setType changing bad profile type (" << profile_type - << ") to be LL_PCODE_PROFILE_SQUARE" << LL_ENDL; - } - else if (hole_type > LL_PCODE_HOLE_MAX) - { - // Bad hole. Make it the same. - profile = profile_type; - result = false; - LL_WARNS() << "LLVolumeParams::setType changing bad hole type (" << hole_type - << ") to be LL_PCODE_HOLE_SAME" << LL_ENDL; - } - - if (path_type < LL_PCODE_PATH_MIN || - path_type > LL_PCODE_PATH_MAX) - { - // Bad path. Make it linear. - result = false; - LL_WARNS() << "LLVolumeParams::setType changing bad path (" << path - << ") to be LL_PCODE_PATH_LINE" << LL_ENDL; - path = LL_PCODE_PATH_LINE; - } - - mProfileParams.setCurveType(profile); - mPathParams.setCurveType(path); - return result; -} - -// static -bool LLVolumeParams::validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow, - U8 path_curve, F32 path_begin, F32 path_end, - F32 scx, F32 scy, F32 shx, F32 shy, - F32 twistend, F32 twistbegin, F32 radiusoffset, - F32 tx, F32 ty, F32 revolutions, F32 skew) -{ - LLVolumeParams test_params; - if (!test_params.setType (prof_curve, path_curve)) - { - return false; - } - if (!test_params.setBeginAndEndS (prof_begin, prof_end)) - { - return false; - } - if (!test_params.setBeginAndEndT (path_begin, path_end)) - { - return false; - } - if (!test_params.setHollow (hollow)) - { - return false; - } - if (!test_params.setTwistBegin (twistbegin)) - { - return false; - } - if (!test_params.setTwistEnd (twistend)) - { - return false; - } - if (!test_params.setRatio (scx, scy)) - { - return false; - } - if (!test_params.setShear (shx, shy)) - { - return false; - } - if (!test_params.setTaper (tx, ty)) - { - return false; - } - if (!test_params.setRevolutions (revolutions)) - { - return false; - } - if (!test_params.setRadiusOffset (radiusoffset)) - { - return false; - } - if (!test_params.setSkew (skew)) - { - return false; - } - return true; -} - -void LLVolume::getLoDTriangleCounts(const LLVolumeParams& params, S32* counts) -{ //attempt to approximate the number of triangles that will result from generating a volume LoD set for the - //supplied LLVolumeParams -- inaccurate, but a close enough approximation for determining streaming cost - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME; - F32 detail[] = {1.f, 1.5f, 2.5f, 4.f}; - for (S32 i = 0; i < 4; i++) - { - S32 count = 0; - S32 path_points = LLPath::getNumPoints(params.getPathParams(), detail[i]); - S32 profile_points = LLProfile::getNumPoints(params.getProfileParams(), false, detail[i]); - - count = (profile_points-1)*2*(path_points-1); - count += profile_points*2; - - counts[i] = count; - } -} - - -S32 LLVolume::getNumTriangles(S32* vcount) const -{ - U32 triangle_count = 0; - U32 vertex_count = 0; - - for (S32 i = 0; i < getNumVolumeFaces(); ++i) - { - const LLVolumeFace& face = getVolumeFace(i); - triangle_count += face.mNumIndices/3; - - vertex_count += face.mNumVertices; - } - - - if (vcount) - { - *vcount = vertex_count; - } - - return triangle_count; -} - - -//----------------------------------------------------------------------------- -// generateSilhouetteVertices() -//----------------------------------------------------------------------------- -void LLVolume::generateSilhouetteVertices(std::vector<LLVector3> &vertices, - std::vector<LLVector3> &normals, - const LLVector3& obj_cam_vec_in, - const LLMatrix4& mat_in, - const LLMatrix3& norm_mat_in, - S32 face_mask) -{ - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME - - LLMatrix4a mat; - mat.loadu(mat_in); - - LLMatrix4a norm_mat; - norm_mat.loadu(norm_mat_in); - - LLVector4a obj_cam_vec; - obj_cam_vec.load3(obj_cam_vec_in.mV); - - vertices.clear(); - normals.clear(); - - if ((mParams.getSculptType() & LL_SCULPT_TYPE_MASK) == LL_SCULPT_TYPE_MESH) - { - return; - } - - S32 cur_index = 0; - //for each face - for (face_list_t::iterator iter = mVolumeFaces.begin(); - iter != mVolumeFaces.end(); ++iter) - { - LLVolumeFace& face = *iter; - - if (!(face_mask & (0x1 << cur_index++)) || - face.mNumIndices == 0 || face.mEdge.empty()) - { - continue; - } - - if (face.mTypeMask & (LLVolumeFace::CAP_MASK)) - { - LLVector4a* v = (LLVector4a*)face.mPositions; - LLVector4a* n = (LLVector4a*)face.mNormals; - - for (U32 j = 0; j < face.mNumIndices / 3; j++) - { - for (S32 k = 0; k < 3; k++) - { - S32 index = face.mEdge[j * 3 + k]; - - if (index == -1) - { - // silhouette edge, currently only cubes, so no other conditions - - S32 v1 = face.mIndices[j * 3 + k]; - S32 v2 = face.mIndices[j * 3 + ((k + 1) % 3)]; - - LLVector4a t; - mat.affineTransform(v[v1], t); - vertices.push_back(LLVector3(t[0], t[1], t[2])); - - norm_mat.rotate(n[v1], t); - - t.normalize3fast(); - normals.push_back(LLVector3(t[0], t[1], t[2])); - - mat.affineTransform(v[v2], t); - vertices.push_back(LLVector3(t[0], t[1], t[2])); - - norm_mat.rotate(n[v2], t); - t.normalize3fast(); - normals.push_back(LLVector3(t[0], t[1], t[2])); - } - } - } - - } - else - { - - //============================================== - //DEBUG draw edge map instead of silhouette edge - //============================================== - -#if DEBUG_SILHOUETTE_EDGE_MAP - - //for each triangle - U32 tri_count = face.mNumIndices / 3; - for (U32 j = 0; j < tri_count; j++) { - //get vertices - S32 v1 = face.mIndices[j*3+0]; - S32 v2 = face.mIndices[j*3+1]; - S32 v3 = face.mIndices[j*3+2]; - - //get current face center - LLVector3 cCenter = (face.mVertices[v1].getPosition() + - face.mVertices[v2].getPosition() + - face.mVertices[v3].getPosition()) / 3.0f; - - //for each edge - for (S32 k = 0; k < 3; k++) { - S32 nIndex = face.mEdge[j*3+k]; - if (nIndex <= -1) { - continue; - } - - if (nIndex >= (S32)tri_count) { - continue; - } - //get neighbor vertices - v1 = face.mIndices[nIndex*3+0]; - v2 = face.mIndices[nIndex*3+1]; - v3 = face.mIndices[nIndex*3+2]; - - //get neighbor face center - LLVector3 nCenter = (face.mVertices[v1].getPosition() + - face.mVertices[v2].getPosition() + - face.mVertices[v3].getPosition()) / 3.0f; - - //draw line - vertices.push_back(cCenter); - vertices.push_back(nCenter); - normals.push_back(LLVector3(1,1,1)); - normals.push_back(LLVector3(1,1,1)); - segments.push_back(vertices.size()); - } - } - - continue; - - //============================================== - //DEBUG - //============================================== - - //============================================== - //DEBUG draw normals instead of silhouette edge - //============================================== -#elif DEBUG_SILHOUETTE_NORMALS - - //for each vertex - for (U32 j = 0; j < face.mNumVertices; j++) { - vertices.push_back(face.mVertices[j].getPosition()); - vertices.push_back(face.mVertices[j].getPosition() + face.mVertices[j].getNormal()*0.1f); - normals.push_back(LLVector3(0,0,1)); - normals.push_back(LLVector3(0,0,1)); - segments.push_back(vertices.size()); -#if DEBUG_SILHOUETTE_BINORMALS - vertices.push_back(face.mVertices[j].getPosition()); - vertices.push_back(face.mVertices[j].getPosition() + face.mVertices[j].mTangent*0.1f); - normals.push_back(LLVector3(0,0,1)); - normals.push_back(LLVector3(0,0,1)); - segments.push_back(vertices.size()); -#endif - } - - continue; -#else - //============================================== - //DEBUG - //============================================== - - static const U8 AWAY = 0x01, - TOWARDS = 0x02; - - //for each triangle - std::vector<U8> fFacing; - vector_append(fFacing, face.mNumIndices/3); - - LLVector4a* v = (LLVector4a*) face.mPositions; - LLVector4a* n = (LLVector4a*) face.mNormals; - - for (U32 j = 0; j < face.mNumIndices/3; j++) - { - //approximate normal - S32 v1 = face.mIndices[j*3+0]; - S32 v2 = face.mIndices[j*3+1]; - S32 v3 = face.mIndices[j*3+2]; - - LLVector4a c1,c2; - c1.setSub(v[v1], v[v2]); - c2.setSub(v[v2], v[v3]); - - LLVector4a norm; - - norm.setCross3(c1, c2); - - if (norm.dot3(norm) < 0.00000001f) - { - fFacing[j] = AWAY | TOWARDS; - } - else - { - //get view vector - LLVector4a view; - view.setSub(obj_cam_vec, v[v1]); - bool away = view.dot3(norm) > 0.0f; - if (away) - { - fFacing[j] = AWAY; - } - else - { - fFacing[j] = TOWARDS; - } - } - } - - //for each triangle - for (U32 j = 0; j < face.mNumIndices/3; j++) - { - if (fFacing[j] == (AWAY | TOWARDS)) - { //this is a degenerate triangle - //take neighbor facing (degenerate faces get facing of one of their neighbors) - // *FIX IF NEEDED: this does not deal with neighboring degenerate faces - for (S32 k = 0; k < 3; k++) - { - S32 index = face.mEdge[j*3+k]; - if (index != -1) - { - fFacing[j] = fFacing[index]; - break; - } - } - continue; //skip degenerate face - } - - //for each edge - for (S32 k = 0; k < 3; k++) { - S32 index = face.mEdge[j*3+k]; - if (index != -1 && fFacing[index] == (AWAY | TOWARDS)) { - //our neighbor is degenerate, make him face our direction - fFacing[face.mEdge[j*3+k]] = fFacing[j]; - continue; - } - - if (index == -1 || //edge has no neighbor, MUST be a silhouette edge - (fFacing[index] & fFacing[j]) == 0) { //we found a silhouette edge - - S32 v1 = face.mIndices[j*3+k]; - S32 v2 = face.mIndices[j*3+((k+1)%3)]; - - LLVector4a t; - mat.affineTransform(v[v1], t); - vertices.push_back(LLVector3(t[0], t[1], t[2])); - - norm_mat.rotate(n[v1], t); - - t.normalize3fast(); - normals.push_back(LLVector3(t[0], t[1], t[2])); - - mat.affineTransform(v[v2], t); - vertices.push_back(LLVector3(t[0], t[1], t[2])); - - norm_mat.rotate(n[v2], t); - t.normalize3fast(); - normals.push_back(LLVector3(t[0], t[1], t[2])); - } - } - } -#endif - } - } -} - -S32 LLVolume::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end, - S32 face, - LLVector4a* intersection,LLVector2* tex_coord, LLVector4a* normal, LLVector4a* tangent_out) -{ - S32 hit_face = -1; - - S32 start_face; - S32 end_face; - - if (face == -1) // ALL_SIDES - { - start_face = 0; - end_face = getNumVolumeFaces() - 1; - } - else - { - start_face = face; - end_face = face; - } - - LLVector4a dir; - dir.setSub(end, start); - - F32 closest_t = 2.f; // must be larger than 1 - - end_face = llmin(end_face, getNumVolumeFaces()-1); - - for (S32 i = start_face; i <= end_face; i++) - { - LLVolumeFace &face = mVolumeFaces[i]; - - LLVector4a box_center; - box_center.setAdd(face.mExtents[0], face.mExtents[1]); - box_center.mul(0.5f); - - LLVector4a box_size; - box_size.setSub(face.mExtents[1], face.mExtents[0]); - - if (LLLineSegmentBoxIntersect(start, end, box_center, box_size)) - { - if (tangent_out != NULL) // if the caller wants tangents, we may need to generate them - { - genTangents(i); - } - - if (isUnique()) - { //don't bother with an octree for flexi volumes - U32 tri_count = face.mNumIndices/3; - - for (U32 j = 0; j < tri_count; ++j) - { - U16 idx0 = face.mIndices[j*3+0]; - U16 idx1 = face.mIndices[j*3+1]; - U16 idx2 = face.mIndices[j*3+2]; - - const LLVector4a& v0 = face.mPositions[idx0]; - const LLVector4a& v1 = face.mPositions[idx1]; - const LLVector4a& v2 = face.mPositions[idx2]; - - F32 a,b,t; - - if (LLTriangleRayIntersect(v0, v1, v2, - start, dir, a, b, t)) - { - if ((t >= 0.f) && // if hit is after start - (t <= 1.f) && // and before end - (t < closest_t)) // and this hit is closer - { - closest_t = t; - hit_face = i; - - if (intersection != NULL) - { - LLVector4a intersect = dir; - intersect.mul(closest_t); - intersect.add(start); - *intersection = intersect; - } - - - if (tex_coord != NULL) - { - LLVector2* tc = (LLVector2*) face.mTexCoords; - *tex_coord = ((1.f - a - b) * tc[idx0] + - a * tc[idx1] + - b * tc[idx2]); - - } - - if (normal!= NULL) - { - LLVector4a* norm = face.mNormals; - - LLVector4a n1,n2,n3; - n1 = norm[idx0]; - n1.mul(1.f-a-b); - - n2 = norm[idx1]; - n2.mul(a); - - n3 = norm[idx2]; - n3.mul(b); - - n1.add(n2); - n1.add(n3); - - *normal = n1; - } - - if (tangent_out != NULL) - { - LLVector4a* tangents = face.mTangents; - - LLVector4a t1,t2,t3; - t1 = tangents[idx0]; - t1.mul(1.f-a-b); - - t2 = tangents[idx1]; - t2.mul(a); - - t3 = tangents[idx2]; - t3.mul(b); - - t1.add(t2); - t1.add(t3); - - *tangent_out = t1; - } - } - } - } - } - else - { - if (!face.getOctree()) - { - face.createOctree(); - } - - LLOctreeTriangleRayIntersect intersect(start, dir, &face, &closest_t, intersection, tex_coord, normal, tangent_out); - intersect.traverse(face.getOctree()); - if (intersect.mHitFace) - { - hit_face = i; - } - } - } - } - - - return hit_face; -} - -class LLVertexIndexPair -{ -public: - LLVertexIndexPair(const LLVector3 &vertex, const S32 index); - - LLVector3 mVertex; - S32 mIndex; -}; - -LLVertexIndexPair::LLVertexIndexPair(const LLVector3 &vertex, const S32 index) -{ - mVertex = vertex; - mIndex = index; -} - -const F32 VERTEX_SLOP = 0.00001f; - -struct lessVertex -{ - bool operator()(const LLVertexIndexPair *a, const LLVertexIndexPair *b) - { - const F32 slop = VERTEX_SLOP; - - if (a->mVertex.mV[0] + slop < b->mVertex.mV[0]) - { - return TRUE; - } - else if (a->mVertex.mV[0] - slop > b->mVertex.mV[0]) - { - return FALSE; - } - - if (a->mVertex.mV[1] + slop < b->mVertex.mV[1]) - { - return TRUE; - } - else if (a->mVertex.mV[1] - slop > b->mVertex.mV[1]) - { - return FALSE; - } - - if (a->mVertex.mV[2] + slop < b->mVertex.mV[2]) - { - return TRUE; - } - else if (a->mVertex.mV[2] - slop > b->mVertex.mV[2]) - { - return FALSE; - } - - return FALSE; - } -}; - -struct lessTriangle -{ - bool operator()(const S32 *a, const S32 *b) - { - if (*a < *b) - { - return TRUE; - } - else if (*a > *b) - { - return FALSE; - } - - if (*(a+1) < *(b+1)) - { - return TRUE; - } - else if (*(a+1) > *(b+1)) - { - return FALSE; - } - - if (*(a+2) < *(b+2)) - { - return TRUE; - } - else if (*(a+2) > *(b+2)) - { - return FALSE; - } - - return FALSE; - } -}; - -BOOL equalTriangle(const S32 *a, const S32 *b) -{ - if ((*a == *b) && (*(a+1) == *(b+1)) && (*(a+2) == *(b+2))) - { - return TRUE; - } - return FALSE; -} - -BOOL LLVolumeParams::importFile(LLFILE *fp) -{ - //LL_INFOS() << "importing volume" << LL_ENDL; - const S32 BUFSIZE = 16384; - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - // *NOTE: changing the size or type of this buffer will require - // changing the sscanf below. - char keyword[256]; /* Flawfinder: ignore */ - keyword[0] = 0; - - while (!feof(fp)) - { - if (fgets(buffer, BUFSIZE, fp) == NULL) - { - buffer[0] = '\0'; - } - - sscanf(buffer, " %255s", keyword); /* Flawfinder: ignore */ - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("profile", keyword)) - { - mProfileParams.importFile(fp); - } - else if (!strcmp("path",keyword)) - { - mPathParams.importFile(fp); - } - else - { - LL_WARNS() << "unknown keyword " << keyword << " in volume import" << LL_ENDL; - } - } - - return TRUE; -} - -BOOL LLVolumeParams::exportFile(LLFILE *fp) const -{ - fprintf(fp,"\tshape 0\n"); - fprintf(fp,"\t{\n"); - mPathParams.exportFile(fp); - mProfileParams.exportFile(fp); - fprintf(fp, "\t}\n"); - return TRUE; -} - - -BOOL LLVolumeParams::importLegacyStream(std::istream& input_stream) -{ - //LL_INFOS() << "importing volume" << LL_ENDL; - const S32 BUFSIZE = 16384; - // *NOTE: changing the size or type of this buffer will require - // changing the sscanf below. - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - char keyword[256]; /* Flawfinder: ignore */ - keyword[0] = 0; - - while (input_stream.good()) - { - input_stream.getline(buffer, BUFSIZE); - sscanf(buffer, " %255s", keyword); - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("profile", keyword)) - { - mProfileParams.importLegacyStream(input_stream); - } - else if (!strcmp("path",keyword)) - { - mPathParams.importLegacyStream(input_stream); - } - else - { - LL_WARNS() << "unknown keyword " << keyword << " in volume import" << LL_ENDL; - } - } - - return TRUE; -} - -BOOL LLVolumeParams::exportLegacyStream(std::ostream& output_stream) const -{ - output_stream <<"\tshape 0\n"; - output_stream <<"\t{\n"; - mPathParams.exportLegacyStream(output_stream); - mProfileParams.exportLegacyStream(output_stream); - output_stream << "\t}\n"; - return TRUE; -} - -LLSD LLVolumeParams::sculptAsLLSD() const -{ - LLSD sd = LLSD(); - sd["id"] = getSculptID(); - sd["type"] = getSculptType(); - - return sd; -} - -bool LLVolumeParams::sculptFromLLSD(LLSD& sd) -{ - setSculptID(sd["id"].asUUID(), (U8)sd["type"].asInteger()); - return true; -} - -LLSD LLVolumeParams::asLLSD() const -{ - LLSD sd = LLSD(); - sd["path"] = mPathParams; - sd["profile"] = mProfileParams; - sd["sculpt"] = sculptAsLLSD(); - - return sd; -} - -bool LLVolumeParams::fromLLSD(LLSD& sd) -{ - mPathParams.fromLLSD(sd["path"]); - mProfileParams.fromLLSD(sd["profile"]); - sculptFromLLSD(sd["sculpt"]); - - return true; -} - -void LLVolumeParams::reduceS(F32 begin, F32 end) -{ - begin = llclampf(begin); - end = llclampf(end); - if (begin > end) - { - F32 temp = begin; - begin = end; - end = temp; - } - F32 a = mProfileParams.getBegin(); - F32 b = mProfileParams.getEnd(); - mProfileParams.setBegin(a + begin * (b - a)); - mProfileParams.setEnd(a + end * (b - a)); -} - -void LLVolumeParams::reduceT(F32 begin, F32 end) -{ - begin = llclampf(begin); - end = llclampf(end); - if (begin > end) - { - F32 temp = begin; - begin = end; - end = temp; - } - F32 a = mPathParams.getBegin(); - F32 b = mPathParams.getEnd(); - mPathParams.setBegin(a + begin * (b - a)); - mPathParams.setEnd(a + end * (b - a)); -} - -const F32 MIN_CONCAVE_PROFILE_WEDGE = 0.125f; // 1/8 unity -const F32 MIN_CONCAVE_PATH_WEDGE = 0.111111f; // 1/9 unity - -// returns TRUE if the shape can be approximated with a convex shape -// for collison purposes -BOOL LLVolumeParams::isConvex() const -{ - if (!getSculptID().isNull()) - { - // can't determine, be safe and say no: - return FALSE; - } - - F32 path_length = mPathParams.getEnd() - mPathParams.getBegin(); - F32 hollow = mProfileParams.getHollow(); - - U8 path_type = mPathParams.getCurveType(); - if ( path_length > MIN_CONCAVE_PATH_WEDGE - && ( mPathParams.getTwist() != mPathParams.getTwistBegin() - || (hollow > 0.f - && LL_PCODE_PATH_LINE != path_type) ) ) - { - // twist along a "not too short" path is concave - return FALSE; - } - - F32 profile_length = mProfileParams.getEnd() - mProfileParams.getBegin(); - BOOL same_hole = hollow == 0.f - || (mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK) == LL_PCODE_HOLE_SAME; - - F32 min_profile_wedge = MIN_CONCAVE_PROFILE_WEDGE; - U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; - if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ) - { - // it is a sphere and spheres get twice the minimum profile wedge - min_profile_wedge = 2.f * MIN_CONCAVE_PROFILE_WEDGE; - } - - BOOL convex_profile = ( ( profile_length == 1.f - || profile_length <= 0.5f ) - && hollow == 0.f ) // trivially convex - || ( profile_length <= min_profile_wedge - && same_hole ); // effectvely convex (even when hollow) - - if (!convex_profile) - { - // profile is concave - return FALSE; - } - - if ( LL_PCODE_PATH_LINE == path_type ) - { - // straight paths with convex profile - return TRUE; - } - - BOOL concave_path = (path_length < 1.0f) && (path_length > 0.5f); - if (concave_path) - { - return FALSE; - } - - // we're left with spheres, toroids and tubes - if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ) - { - // at this stage all spheres must be convex - return TRUE; - } - - // it's a toroid or tube - if ( path_length <= MIN_CONCAVE_PATH_WEDGE ) - { - // effectively convex - return TRUE; - } - - return FALSE; -} - -// debug -void LLVolumeParams::setCube() -{ - mProfileParams.setCurveType(LL_PCODE_PROFILE_SQUARE); - mProfileParams.setBegin(0.f); - mProfileParams.setEnd(1.f); - mProfileParams.setHollow(0.f); - - mPathParams.setBegin(0.f); - mPathParams.setEnd(1.f); - mPathParams.setScale(1.f, 1.f); - mPathParams.setShear(0.f, 0.f); - mPathParams.setCurveType(LL_PCODE_PATH_LINE); - mPathParams.setTwistBegin(0.f); - mPathParams.setTwistEnd(0.f); - mPathParams.setRadiusOffset(0.f); - mPathParams.setTaper(0.f, 0.f); - mPathParams.setRevolutions(0.f); - mPathParams.setSkew(0.f); -} - -LLFaceID LLVolume::generateFaceMask() -{ - LLFaceID new_mask = 0x0000; - - switch(mParams.getProfileParams().getCurveType() & LL_PCODE_PROFILE_MASK) - { - case LL_PCODE_PROFILE_CIRCLE: - case LL_PCODE_PROFILE_CIRCLE_HALF: - new_mask |= LL_FACE_OUTER_SIDE_0; - break; - case LL_PCODE_PROFILE_SQUARE: - { - for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 4.f); side < llceil(mParams.getProfileParams().getEnd() * 4.f); side++) - { - new_mask |= LL_FACE_OUTER_SIDE_0 << side; - } - } - break; - case LL_PCODE_PROFILE_ISOTRI: - case LL_PCODE_PROFILE_EQUALTRI: - case LL_PCODE_PROFILE_RIGHTTRI: - { - for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 3.f); side < llceil(mParams.getProfileParams().getEnd() * 3.f); side++) - { - new_mask |= LL_FACE_OUTER_SIDE_0 << side; - } - } - break; - default: - LL_ERRS() << "Unknown profile!" << LL_ENDL; - break; - } - - // handle hollow objects - if (mParams.getProfileParams().getHollow() > 0) - { - new_mask |= LL_FACE_INNER_SIDE; - } - - // handle open profile curves - if (mProfilep->isOpen()) - { - new_mask |= LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END; - } - - // handle open path curves - if (mPathp->isOpen()) - { - new_mask |= LL_FACE_PATH_BEGIN | LL_FACE_PATH_END; - } - - return new_mask; -} - -BOOL LLVolume::isFaceMaskValid(LLFaceID face_mask) -{ - LLFaceID test_mask = 0; - for(S32 i = 0; i < getNumFaces(); i++) - { - test_mask |= mProfilep->mFaces[i].mFaceID; - } - - return test_mask == face_mask; -} - -BOOL LLVolume::isConvex() const -{ - // mParams.isConvex() may return FALSE even though the final - // geometry is actually convex due to LOD approximations. - // TODO -- provide LLPath and LLProfile with isConvex() methods - // that correctly determine convexity. -- Leviathan - return mParams.isConvex(); -} - - -std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params) -{ - s << "{type=" << (U32) profile_params.mCurveType; - s << ", begin=" << profile_params.mBegin; - s << ", end=" << profile_params.mEnd; - s << ", hollow=" << profile_params.mHollow; - s << "}"; - return s; -} - - -std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params) -{ - s << "{type=" << (U32) path_params.mCurveType; - s << ", begin=" << path_params.mBegin; - s << ", end=" << path_params.mEnd; - s << ", twist=" << path_params.mTwistEnd; - s << ", scale=" << path_params.mScale; - s << ", shear=" << path_params.mShear; - s << ", twist_begin=" << path_params.mTwistBegin; - s << ", radius_offset=" << path_params.mRadiusOffset; - s << ", taper=" << path_params.mTaper; - s << ", revolutions=" << path_params.mRevolutions; - s << ", skew=" << path_params.mSkew; - s << "}"; - return s; -} - - -std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params) -{ - s << "{profileparams = " << volume_params.mProfileParams; - s << ", pathparams = " << volume_params.mPathParams; - s << "}"; - return s; -} - - -std::ostream& operator<<(std::ostream &s, const LLProfile &profile) -{ - s << " {open=" << (U32) profile.mOpen; - s << ", dirty=" << profile.mDirty; - s << ", totalout=" << profile.mTotalOut; - s << ", total=" << profile.mTotal; - s << "}"; - return s; -} - - -std::ostream& operator<<(std::ostream &s, const LLPath &path) -{ - s << "{open=" << (U32) path.mOpen; - s << ", dirty=" << path.mDirty; - s << ", step=" << path.mStep; - s << ", total=" << path.mTotal; - s << "}"; - return s; -} - -std::ostream& operator<<(std::ostream &s, const LLVolume &volume) -{ - s << "{params = " << volume.getParams(); - s << ", path = " << *volume.mPathp; - s << ", profile = " << *volume.mProfilep; - s << "}"; - return s; -} - - -std::ostream& operator<<(std::ostream &s, const LLVolume *volumep) -{ - s << "{params = " << volumep->getParams(); - s << ", path = " << *(volumep->mPathp); - s << ", profile = " << *(volumep->mProfilep); - s << "}"; - return s; -} - -LLVolumeFace::LLVolumeFace() : - mID(0), - mTypeMask(0), - mBeginS(0), - mBeginT(0), - mNumS(0), - mNumT(0), - mNumVertices(0), - mNumAllocatedVertices(0), - mNumIndices(0), - mPositions(NULL), - mNormals(NULL), - mTangents(NULL), - mTexCoords(NULL), - mIndices(NULL), - mWeights(NULL), -#if USE_SEPARATE_JOINT_INDICES_AND_WEIGHTS - mJustWeights(NULL), - mJointIndices(NULL), -#endif - mWeightsScrubbed(FALSE), - mOctree(NULL), - mOctreeTriangles(NULL), - mOptimized(FALSE) -{ - mExtents = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*3); - mExtents[0].splat(-0.5f); - mExtents[1].splat(0.5f); - mCenter = mExtents+2; -} - -LLVolumeFace::LLVolumeFace(const LLVolumeFace& src) -: mID(0), - mTypeMask(0), - mBeginS(0), - mBeginT(0), - mNumS(0), - mNumT(0), - mNumVertices(0), - mNumAllocatedVertices(0), - mNumIndices(0), - mPositions(NULL), - mNormals(NULL), - mTangents(NULL), - mTexCoords(NULL), - mIndices(NULL), - mWeights(NULL), -#if USE_SEPARATE_JOINT_INDICES_AND_WEIGHTS - mJustWeights(NULL), - mJointIndices(NULL), -#endif - mWeightsScrubbed(FALSE), - mOctree(NULL), - mOctreeTriangles(NULL) -{ - mExtents = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*3); - mCenter = mExtents+2; - *this = src; -} - -LLVolumeFace& LLVolumeFace::operator=(const LLVolumeFace& src) -{ - if (&src == this) - { //self assignment, do nothing - return *this; - } - - mID = src.mID; - mTypeMask = src.mTypeMask; - mBeginS = src.mBeginS; - mBeginT = src.mBeginT; - mNumS = src.mNumS; - mNumT = src.mNumT; - - mExtents[0] = src.mExtents[0]; - mExtents[1] = src.mExtents[1]; - *mCenter = *src.mCenter; - - mNumVertices = 0; - mNumIndices = 0; - - freeData(); - - resizeVertices(src.mNumVertices); - resizeIndices(src.mNumIndices); - - if (mNumVertices) - { - S32 vert_size = mNumVertices*sizeof(LLVector4a); - S32 tc_size = (mNumVertices*sizeof(LLVector2)+0xF) & ~0xF; - - LLVector4a::memcpyNonAliased16((F32*) mPositions, (F32*) src.mPositions, vert_size); - - if (src.mNormals) - { - LLVector4a::memcpyNonAliased16((F32*) mNormals, (F32*) src.mNormals, vert_size); - } - - if(src.mTexCoords) - { - LLVector4a::memcpyNonAliased16((F32*) mTexCoords, (F32*) src.mTexCoords, tc_size); - } - - if (src.mTangents) - { - allocateTangents(src.mNumVertices); - LLVector4a::memcpyNonAliased16((F32*) mTangents, (F32*) src.mTangents, vert_size); - } - else - { - ll_aligned_free_16(mTangents); - mTangents = NULL; - } - - if (src.mWeights) - { - llassert(!mWeights); // don't orphan an old alloc here accidentally - allocateWeights(src.mNumVertices); - LLVector4a::memcpyNonAliased16((F32*) mWeights, (F32*) src.mWeights, vert_size); - mWeightsScrubbed = src.mWeightsScrubbed; - } - else - { - ll_aligned_free_16(mWeights); - mWeights = NULL; - mWeightsScrubbed = FALSE; - } - - #if USE_SEPARATE_JOINT_INDICES_AND_WEIGHTS - if (src.mJointIndices) - { - llassert(!mJointIndices); // don't orphan an old alloc here accidentally - allocateJointIndices(src.mNumVertices); - LLVector4a::memcpyNonAliased16((F32*) mJointIndices, (F32*) src.mJointIndices, src.mNumVertices * sizeof(U8) * 4); - } - else*/ - { - ll_aligned_free_16(mJointIndices); - mJointIndices = NULL; - } - #endif - - } - - if (mNumIndices) - { - S32 idx_size = (mNumIndices*sizeof(U16)+0xF) & ~0xF; - - LLVector4a::memcpyNonAliased16((F32*) mIndices, (F32*) src.mIndices, idx_size); - } - else - { - ll_aligned_free_16(mIndices); - mIndices = NULL; - } - - mOptimized = src.mOptimized; - mNormalizedScale = src.mNormalizedScale; - - //delete - return *this; -} - -LLVolumeFace::~LLVolumeFace() -{ - ll_aligned_free_16(mExtents); - mExtents = NULL; - mCenter = NULL; - - freeData(); -} - -void LLVolumeFace::freeData() -{ - ll_aligned_free<64>(mPositions); - mPositions = NULL; - - //normals and texture coordinates are part of the same buffer as mPositions, do not free them separately - mNormals = NULL; - mTexCoords = NULL; - - ll_aligned_free_16(mIndices); - mIndices = NULL; - ll_aligned_free_16(mTangents); - mTangents = NULL; - ll_aligned_free_16(mWeights); - mWeights = NULL; - -#if USE_SEPARATE_JOINT_INDICES_AND_WEIGHTS - ll_aligned_free_16(mJointIndices); - mJointIndices = NULL; - ll_aligned_free_16(mJustWeights); - mJustWeights = NULL; -#endif - - destroyOctree(); -} - -BOOL LLVolumeFace::create(LLVolume* volume, BOOL partial_build) -{ - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME - - //tree for this face is no longer valid - destroyOctree(); - - LL_CHECK_MEMORY - BOOL ret = FALSE ; - if (mTypeMask & CAP_MASK) - { - ret = createCap(volume, partial_build); - LL_CHECK_MEMORY - } - else if ((mTypeMask & END_MASK) || (mTypeMask & SIDE_MASK)) - { - ret = createSide(volume, partial_build); - LL_CHECK_MEMORY - } - else - { - LL_ERRS() << "Unknown/uninitialized face type!" << LL_ENDL; - } - - return ret ; -} - -void LLVolumeFace::getVertexData(U16 index, LLVolumeFace::VertexData& cv) -{ - cv.setPosition(mPositions[index]); - if (mNormals) - { - cv.setNormal(mNormals[index]); - } - else - { - cv.getNormal().clear(); - } - - if (mTexCoords) - { - cv.mTexCoord = mTexCoords[index]; - } - else - { - cv.mTexCoord.clear(); - } -} - -bool LLVolumeFace::VertexMapData::operator==(const LLVolumeFace::VertexData& rhs) const -{ - return getPosition().equals3(rhs.getPosition()) && - mTexCoord == rhs.mTexCoord && - getNormal().equals3(rhs.getNormal()); -} - -bool LLVolumeFace::VertexMapData::ComparePosition::operator()(const LLVector3& a, const LLVector3& b) const -{ - if (a.mV[0] != b.mV[0]) - { - return a.mV[0] < b.mV[0]; - } - - if (a.mV[1] != b.mV[1]) - { - return a.mV[1] < b.mV[1]; - } - - return a.mV[2] < b.mV[2]; -} - -void LLVolumeFace::remap() -{ - // Generate a remap buffer - std::vector<unsigned int> remap(mNumVertices); - S32 remap_vertices_count = LLMeshOptimizer::generateRemapMultiU16(&remap[0], - mIndices, - mNumIndices, - mPositions, - mNormals, - mTexCoords, - mNumVertices); - - // Allocate new buffers - S32 size = ((mNumIndices * sizeof(U16)) + 0xF) & ~0xF; - U16* remap_indices = (U16*)ll_aligned_malloc_16(size); - - S32 tc_bytes_size = ((remap_vertices_count * sizeof(LLVector2)) + 0xF) & ~0xF; - LLVector4a* remap_positions = (LLVector4a*)ll_aligned_malloc<64>(sizeof(LLVector4a) * 2 * remap_vertices_count + tc_bytes_size); - LLVector4a* remap_normals = remap_positions + remap_vertices_count; - LLVector2* remap_tex_coords = (LLVector2*)(remap_normals + remap_vertices_count); - - // Fill the buffers - LLMeshOptimizer::remapIndexBufferU16(remap_indices, mIndices, mNumIndices, &remap[0]); - LLMeshOptimizer::remapPositionsBuffer(remap_positions, mPositions, mNumVertices, &remap[0]); - LLMeshOptimizer::remapNormalsBuffer(remap_normals, mNormals, mNumVertices, &remap[0]); - LLMeshOptimizer::remapUVBuffer(remap_tex_coords, mTexCoords, mNumVertices, &remap[0]); - - // Free unused buffers - ll_aligned_free_16(mIndices); - ll_aligned_free<64>(mPositions); - - // Tangets are now invalid - ll_aligned_free_16(mTangents); - mTangents = NULL; - - // Assign new values - mIndices = remap_indices; - mPositions = remap_positions; - mNormals = remap_normals; - mTexCoords = remap_tex_coords; - mNumVertices = remap_vertices_count; - mNumAllocatedVertices = remap_vertices_count; -} - -void LLVolumeFace::optimize(F32 angle_cutoff) -{ - LLVolumeFace new_face; - - //map of points to vector of vertices at that point - std::map<U64, std::vector<VertexMapData> > point_map; - - LLVector4a range; - range.setSub(mExtents[1],mExtents[0]); - - //remove redundant vertices - for (U32 i = 0; i < mNumIndices; ++i) - { - U16 index = mIndices[i]; - - if (index >= mNumVertices) - { - // invalid index - // replace with a valid index to avoid crashes - index = mNumVertices - 1; - mIndices[i] = index; - - // Needs better logging - LL_DEBUGS_ONCE("LLVOLUME") << "Invalid index, substituting" << LL_ENDL; - } - - LLVolumeFace::VertexData cv; - getVertexData(index, cv); - - BOOL found = FALSE; - - LLVector4a pos; - pos.setSub(mPositions[index], mExtents[0]); - pos.div(range); - - U64 pos64 = 0; - - pos64 = (U16) (pos[0]*65535); - pos64 = pos64 | (((U64) (pos[1]*65535)) << 16); - pos64 = pos64 | (((U64) (pos[2]*65535)) << 32); - - std::map<U64, std::vector<VertexMapData> >::iterator point_iter = point_map.find(pos64); - - if (point_iter != point_map.end()) - { //duplicate point might exist - for (U32 j = 0; j < point_iter->second.size(); ++j) - { - LLVolumeFace::VertexData& tv = (point_iter->second)[j]; - if (tv.compareNormal(cv, angle_cutoff)) - { - found = TRUE; - new_face.pushIndex((point_iter->second)[j].mIndex); - break; - } - } - } - - if (!found) - { - new_face.pushVertex(cv); - U16 index = (U16) new_face.mNumVertices-1; - new_face.pushIndex(index); - - VertexMapData d; - d.setPosition(cv.getPosition()); - d.mTexCoord = cv.mTexCoord; - d.setNormal(cv.getNormal()); - d.mIndex = index; - if (point_iter != point_map.end()) - { - point_iter->second.push_back(d); - } - else - { - point_map[pos64].push_back(d); - } - } - } - - - if (angle_cutoff > 1.f && !mNormals) - { - // Now alloc'd with positions - //ll_aligned_free_16(new_face.mNormals); - new_face.mNormals = NULL; - } - - if (!mTexCoords) - { - // Now alloc'd with positions - //ll_aligned_free_16(new_face.mTexCoords); - new_face.mTexCoords = NULL; - } - - // Only swap data if we've actually optimized the mesh - // - if (new_face.mNumVertices <= mNumVertices) - { - llassert(new_face.mNumIndices == mNumIndices); - swapData(new_face); - } - -} - -class LLVCacheTriangleData; - -class LLVCacheVertexData -{ -public: - S32 mIdx; - S32 mCacheTag; - F64 mScore; - U32 mActiveTriangles; - std::vector<LLVCacheTriangleData*> mTriangles; - - LLVCacheVertexData() - { - mCacheTag = -1; - mScore = 0.0; - mActiveTriangles = 0; - mIdx = -1; - } -}; - -class LLVCacheTriangleData -{ -public: - bool mActive; - F64 mScore; - LLVCacheVertexData* mVertex[3]; - - LLVCacheTriangleData() - { - mActive = true; - mScore = 0.0; - mVertex[0] = mVertex[1] = mVertex[2] = NULL; - } - - void complete() - { - mActive = false; - for (S32 i = 0; i < 3; ++i) - { - if (mVertex[i]) - { - llassert(mVertex[i]->mActiveTriangles > 0); - mVertex[i]->mActiveTriangles--; - } - } - } - - bool operator<(const LLVCacheTriangleData& rhs) const - { //highest score first - return rhs.mScore < mScore; - } -}; - -const F64 FindVertexScore_CacheDecayPower = 1.5; -const F64 FindVertexScore_LastTriScore = 0.75; -const F64 FindVertexScore_ValenceBoostScale = 2.0; -const F64 FindVertexScore_ValenceBoostPower = 0.5; -const U32 MaxSizeVertexCache = 32; -const F64 FindVertexScore_Scaler = 1.0/(MaxSizeVertexCache-3); - -F64 find_vertex_score(LLVCacheVertexData& data) -{ - F64 score = -1.0; - - score = 0.0; - - S32 cache_idx = data.mCacheTag; - - if (cache_idx < 0) - { - //not in cache - } - else - { - if (cache_idx < 3) - { //vertex was in the last triangle - score = FindVertexScore_LastTriScore; - } - else - { //more points for being higher in the cache - score = 1.0-((cache_idx-3)*FindVertexScore_Scaler); - score = pow(score, FindVertexScore_CacheDecayPower); - } - } - - //bonus points for having low valence - F64 valence_boost = pow((F64)data.mActiveTriangles, -FindVertexScore_ValenceBoostPower); - score += FindVertexScore_ValenceBoostScale * valence_boost; - - return score; -} - -class LLVCacheFIFO -{ -public: - LLVCacheVertexData* mCache[MaxSizeVertexCache]; - U32 mMisses; - - LLVCacheFIFO() - { - mMisses = 0; - for (U32 i = 0; i < MaxSizeVertexCache; ++i) - { - mCache[i] = NULL; - } - } - - void addVertex(LLVCacheVertexData* data) - { - if (data->mCacheTag == -1) - { - mMisses++; - - S32 end = MaxSizeVertexCache-1; - - if (mCache[end]) - { - mCache[end]->mCacheTag = -1; - } - - for (S32 i = end; i > 0; --i) - { - mCache[i] = mCache[i-1]; - if (mCache[i]) - { - mCache[i]->mCacheTag = i; - } - } - - mCache[0] = data; - data->mCacheTag = 0; - } - } -}; - -class LLVCacheLRU -{ -public: - LLVCacheVertexData* mCache[MaxSizeVertexCache+3]; - - LLVCacheTriangleData* mBestTriangle; - - U32 mMisses; - - LLVCacheLRU() - { - for (U32 i = 0; i < MaxSizeVertexCache+3; ++i) - { - mCache[i] = NULL; - } - - mBestTriangle = NULL; - mMisses = 0; - } - - void addVertex(LLVCacheVertexData* data) - { - S32 end = MaxSizeVertexCache+2; - if (data->mCacheTag != -1) - { //just moving a vertex to the front of the cache - end = data->mCacheTag; - } - else - { - mMisses++; - if (mCache[end]) - { //adding a new vertex, vertex at end of cache falls off - mCache[end]->mCacheTag = -1; - } - } - - for (S32 i = end; i > 0; --i) - { //adjust cache pointers and tags - mCache[i] = mCache[i-1]; - - if (mCache[i]) - { - mCache[i]->mCacheTag = i; - } - } - - mCache[0] = data; - mCache[0]->mCacheTag = 0; - } - - void addTriangle(LLVCacheTriangleData* data) - { - addVertex(data->mVertex[0]); - addVertex(data->mVertex[1]); - addVertex(data->mVertex[2]); - } - - void updateScores() - { - LLVCacheVertexData** data_iter = mCache+MaxSizeVertexCache; - LLVCacheVertexData** end_data = mCache+MaxSizeVertexCache+3; - - while(data_iter != end_data) - { - LLVCacheVertexData* data = *data_iter++; - //trailing 3 vertices aren't actually in the cache for scoring purposes - if (data) - { - data->mCacheTag = -1; - } - } - - data_iter = mCache; - end_data = mCache+MaxSizeVertexCache; - - while (data_iter != end_data) - { //update scores of vertices in cache - LLVCacheVertexData* data = *data_iter++; - if (data) - { - data->mScore = find_vertex_score(*data); - } - } - - mBestTriangle = NULL; - //update triangle scores - data_iter = mCache; - end_data = mCache+MaxSizeVertexCache+3; - - while (data_iter != end_data) - { - LLVCacheVertexData* data = *data_iter++; - if (data) - { - for (std::vector<LLVCacheTriangleData*>::iterator iter = data->mTriangles.begin(), end_iter = data->mTriangles.end(); iter != end_iter; ++iter) - { - LLVCacheTriangleData* tri = *iter; - if (tri->mActive) - { - tri->mScore = tri->mVertex[0] ? tri->mVertex[0]->mScore : 0; - tri->mScore += tri->mVertex[1] ? tri->mVertex[1]->mScore : 0; - tri->mScore += tri->mVertex[2] ? tri->mVertex[2]->mScore : 0; - - if (!mBestTriangle || mBestTriangle->mScore < tri->mScore) - { - mBestTriangle = tri; - } - } - } - } - } - - //knock trailing 3 vertices off the cache - data_iter = mCache+MaxSizeVertexCache; - end_data = mCache+MaxSizeVertexCache+3; - while (data_iter != end_data) - { - LLVCacheVertexData* data = *data_iter; - if (data) - { - llassert(data->mCacheTag == -1); - *data_iter = NULL; - } - ++data_iter; - } - } -}; - -// data structures for tangent generation - -struct MikktData -{ - LLVolumeFace* face; - std::vector<LLVector3> p; - std::vector<LLVector3> n; - std::vector<LLVector2> tc; - std::vector<LLVector4> w; - std::vector<LLVector4> t; - - MikktData(LLVolumeFace* f) - : face(f) - { - U32 count = face->mNumIndices; - - p.resize(count); - n.resize(count); - tc.resize(count); - t.resize(count); - - if (face->mWeights) - { - w.resize(count); - } - - - LLVector3 inv_scale(1.f / face->mNormalizedScale.mV[0], 1.f / face->mNormalizedScale.mV[1], 1.f / face->mNormalizedScale.mV[2]); - - - for (int i = 0; i < face->mNumIndices; ++i) - { - U32 idx = face->mIndices[i]; - - p[i].set(face->mPositions[idx].getF32ptr()); - p[i].scaleVec(face->mNormalizedScale); //put mesh in original coordinate frame when reconstructing tangents - n[i].set(face->mNormals[idx].getF32ptr()); - n[i].scaleVec(inv_scale); - n[i].normalize(); - tc[i].set(face->mTexCoords[idx]); - - if (idx >= face->mNumVertices) - { - // invalid index - // replace with a valid index to avoid crashes - idx = face->mNumVertices - 1; - face->mIndices[i] = idx; - - // Needs better logging - LL_DEBUGS_ONCE("LLVOLUME") << "Invalid index, substituting" << LL_ENDL; - } - - if (face->mWeights) - { - w[i].set(face->mWeights[idx].getF32ptr()); - } - } - } -}; - - -bool LLVolumeFace::cacheOptimize(bool gen_tangents) -{ //optimize for vertex cache according to Forsyth method: - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME; - llassert(!mOptimized); - mOptimized = TRUE; - - if (gen_tangents && mNormals && mTexCoords) - { // generate mikkt space tangents before cache optimizing since the index buffer may change - // a bit of a hack to do this here, but this function gets called exactly once for the lifetime of a mesh - // and is executed on a background thread - SMikkTSpaceInterface ms; - - ms.m_getNumFaces = [](const SMikkTSpaceContext* pContext) - { - MikktData* data = (MikktData*)pContext->m_pUserData; - LLVolumeFace* face = data->face; - return face->mNumIndices / 3; - }; - - ms.m_getNumVerticesOfFace = [](const SMikkTSpaceContext* pContext, const int iFace) - { - return 3; - }; - - ms.m_getPosition = [](const SMikkTSpaceContext* pContext, float fvPosOut[], const int iFace, const int iVert) - { - MikktData* data = (MikktData*)pContext->m_pUserData; - F32* v = data->p[iFace * 3 + iVert].mV; - fvPosOut[0] = v[0]; - fvPosOut[1] = v[1]; - fvPosOut[2] = v[2]; - }; - - ms.m_getNormal = [](const SMikkTSpaceContext* pContext, float fvNormOut[], const int iFace, const int iVert) - { - MikktData* data = (MikktData*)pContext->m_pUserData; - F32* n = data->n[iFace * 3 + iVert].mV; - fvNormOut[0] = n[0]; - fvNormOut[1] = n[1]; - fvNormOut[2] = n[2]; - }; - - ms.m_getTexCoord = [](const SMikkTSpaceContext* pContext, float fvTexcOut[], const int iFace, const int iVert) - { - MikktData* data = (MikktData*)pContext->m_pUserData; - F32* tc = data->tc[iFace * 3 + iVert].mV; - fvTexcOut[0] = tc[0]; - fvTexcOut[1] = tc[1]; - }; - - ms.m_setTSpaceBasic = [](const SMikkTSpaceContext* pContext, const float fvTangent[], const float fSign, const int iFace, const int iVert) - { - MikktData* data = (MikktData*)pContext->m_pUserData; - S32 i = iFace * 3 + iVert; - - data->t[i].set(fvTangent); - data->t[i].mV[3] = fSign; - }; - - ms.m_setTSpace = nullptr; - - MikktData data(this); - - SMikkTSpaceContext ctx = { &ms, &data }; - - genTangSpaceDefault(&ctx); - - //re-weld - meshopt_Stream mos[] = - { - { &data.p[0], sizeof(LLVector3), sizeof(LLVector3) }, - { &data.n[0], sizeof(LLVector3), sizeof(LLVector3) }, - { &data.t[0], sizeof(LLVector4), sizeof(LLVector4) }, - { &data.tc[0], sizeof(LLVector2), sizeof(LLVector2) }, - { data.w.empty() ? nullptr : &data.w[0], sizeof(LLVector4), sizeof(LLVector4) } - }; - - std::vector<U32> remap; - remap.resize(data.p.size()); - - U32 stream_count = data.w.empty() ? 4 : 5; - - size_t vert_count = meshopt_generateVertexRemapMulti(&remap[0], nullptr, data.p.size(), data.p.size(), mos, stream_count); - - if (vert_count < 65535 && vert_count != 0) - { - std::vector<U32> indices; - indices.resize(mNumIndices); - - //copy results back into volume - resizeVertices(vert_count); - - if (!data.w.empty()) - { - allocateWeights(vert_count); - } - - allocateTangents(mNumVertices); - - for (int i = 0; i < mNumIndices; ++i) - { - U32 src_idx = i; - U32 dst_idx = remap[i]; - if (dst_idx >= mNumVertices) - { - dst_idx = mNumVertices - 1; - // Shouldn't happen, figure out what gets returned in remap and why. - llassert(false); - LL_DEBUGS_ONCE("LLVOLUME") << "Invalid destination index, substituting" << LL_ENDL; - } - mIndices[i] = dst_idx; - - mPositions[dst_idx].load3(data.p[src_idx].mV); - mNormals[dst_idx].load3(data.n[src_idx].mV); - mTexCoords[dst_idx] = data.tc[src_idx]; - - mTangents[dst_idx].loadua(data.t[src_idx].mV); - - if (mWeights) - { - mWeights[dst_idx].loadua(data.w[src_idx].mV); - } - } - - // put back in normalized coordinate frame - LLVector4a inv_scale(1.f/mNormalizedScale.mV[0], 1.f / mNormalizedScale.mV[1], 1.f / mNormalizedScale.mV[2]); - LLVector4a scale; - scale.load3(mNormalizedScale.mV); - scale.getF32ptr()[3] = 1.f; - - for (int i = 0; i < mNumVertices; ++i) - { - mPositions[i].mul(inv_scale); - mNormals[i].mul(scale); - mNormals[i].normalize3(); - F32 w = mTangents[i].getF32ptr()[3]; - mTangents[i].mul(scale); - mTangents[i].normalize3(); - mTangents[i].getF32ptr()[3] = w; - } - } - else - { - if (vert_count == 0) - { - LL_WARNS_ONCE("LLVOLUME") << "meshopt_generateVertexRemapMulti failed to process a model or model was invalid" << LL_ENDL; - } - // blew past the max vertex size limit, use legacy tangent generation which never adds verts - createTangents(); - } - } - - // cache optimize index buffer - - // meshopt needs scratch space, do some pointer shuffling to avoid an extra index buffer copy - U16* src_indices = mIndices; - mIndices = nullptr; - resizeIndices(mNumIndices); - - meshopt_optimizeVertexCache<U16>(mIndices, src_indices, mNumIndices, mNumVertices); - - ll_aligned_free_16(src_indices); - - return true; -} - -void LLVolumeFace::createOctree(F32 scaler, const LLVector4a& center, const LLVector4a& size) -{ - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME - - if (getOctree()) - { - return; - } - - llassert(mNumIndices % 3 == 0); - - mOctree = new LLOctreeRoot<LLVolumeTriangle, LLVolumeTriangle*>(center, size, NULL); - new LLVolumeOctreeListener(mOctree); - const U32 num_triangles = mNumIndices / 3; - // Initialize all the triangles we need - mOctreeTriangles = new LLVolumeTriangle[num_triangles]; - - for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index) - { //for each triangle - const U32 index = triangle_index * 3; - LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index]; - - const LLVector4a& v0 = mPositions[mIndices[index]]; - const LLVector4a& v1 = mPositions[mIndices[index + 1]]; - const LLVector4a& v2 = mPositions[mIndices[index + 2]]; - - //store pointers to vertex data - tri->mV[0] = &v0; - tri->mV[1] = &v1; - tri->mV[2] = &v2; - - //store indices - tri->mIndex[0] = mIndices[index]; - tri->mIndex[1] = mIndices[index + 1]; - tri->mIndex[2] = mIndices[index + 2]; - - //get minimum point - LLVector4a min = v0; - min.setMin(min, v1); - min.setMin(min, v2); - - //get maximum point - LLVector4a max = v0; - max.setMax(max, v1); - max.setMax(max, v2); - - //compute center - LLVector4a center; - center.setAdd(min, max); - center.mul(0.5f); - - tri->mPositionGroup = center; - - //compute "radius" - LLVector4a size; - size.setSub(max,min); - - tri->mRadius = size.getLength3().getF32() * scaler; - - //insert - mOctree->insert(tri); - } - - //remove unneeded octree layers - while (!mOctree->balance()) { } - - //calculate AABB for each node - LLVolumeOctreeRebound rebound(this); - rebound.traverse(mOctree); - - if (gDebugGL) - { - LLVolumeOctreeValidate validate; - validate.traverse(mOctree); - } -} - -void LLVolumeFace::destroyOctree() -{ - delete mOctree; - mOctree = NULL; - delete[] mOctreeTriangles; - mOctreeTriangles = NULL; -} - -const LLOctreeNode<LLVolumeTriangle, LLVolumeTriangle*>* LLVolumeFace::getOctree() const -{ - return mOctree; -} - - -void LLVolumeFace::swapData(LLVolumeFace& rhs) -{ - llswap(rhs.mPositions, mPositions); - llswap(rhs.mNormals, mNormals); - llswap(rhs.mTangents, mTangents); - llswap(rhs.mTexCoords, mTexCoords); - llswap(rhs.mIndices,mIndices); - llswap(rhs.mNumVertices, mNumVertices); - llswap(rhs.mNumIndices, mNumIndices); -} - -void LerpPlanarVertex(LLVolumeFace::VertexData& v0, - LLVolumeFace::VertexData& v1, - LLVolumeFace::VertexData& v2, - LLVolumeFace::VertexData& vout, - F32 coef01, - F32 coef02) -{ - - LLVector4a lhs; - lhs.setSub(v1.getPosition(), v0.getPosition()); - lhs.mul(coef01); - LLVector4a rhs; - rhs.setSub(v2.getPosition(), v0.getPosition()); - rhs.mul(coef02); - - rhs.add(lhs); - rhs.add(v0.getPosition()); - - vout.setPosition(rhs); - - vout.mTexCoord = v0.mTexCoord + ((v1.mTexCoord-v0.mTexCoord)*coef01)+((v2.mTexCoord-v0.mTexCoord)*coef02); - vout.setNormal(v0.getNormal()); -} - -BOOL LLVolumeFace::createUnCutCubeCap(LLVolume* volume, BOOL partial_build) -{ - LL_CHECK_MEMORY - - const LLAlignedArray<LLVector4a,64>& mesh = volume->getMesh(); - const LLAlignedArray<LLVector4a,64>& profile = volume->getProfile().mProfile; - S32 max_s = volume->getProfile().getTotal(); - S32 max_t = volume->getPath().mPath.size(); - - // S32 i; - S32 grid_size = (profile.size()-1)/4; - // VFExtents change - LLVector4a& min = mExtents[0]; - LLVector4a& max = mExtents[1]; - - S32 offset = 0; - if (mTypeMask & TOP_MASK) - { - offset = (max_t-1) * max_s; - } - else - { - offset = mBeginS; - } - - { - VertexData corners[4]; - VertexData baseVert; - for(S32 t = 0; t < 4; t++) - { - corners[t].getPosition().load4a(mesh[offset + (grid_size*t)].getF32ptr()); - corners[t].mTexCoord.mV[0] = profile[grid_size*t][0]+0.5f; - corners[t].mTexCoord.mV[1] = 0.5f - profile[grid_size*t][1]; - } - - { - LLVector4a lhs; - lhs.setSub(corners[1].getPosition(), corners[0].getPosition()); - LLVector4a rhs; - rhs.setSub(corners[2].getPosition(), corners[1].getPosition()); - baseVert.getNormal().setCross3(lhs, rhs); - baseVert.getNormal().normalize3fast(); - } - - if(!(mTypeMask & TOP_MASK)) - { - baseVert.getNormal().mul(-1.0f); - } - else - { - //Swap the UVs on the U(X) axis for top face - LLVector2 swap; - swap = corners[0].mTexCoord; - corners[0].mTexCoord=corners[3].mTexCoord; - corners[3].mTexCoord=swap; - swap = corners[1].mTexCoord; - corners[1].mTexCoord=corners[2].mTexCoord; - corners[2].mTexCoord=swap; - } - - S32 size = (grid_size+1)*(grid_size+1); - resizeVertices(size); - - LLVector4a* pos = (LLVector4a*) mPositions; - LLVector4a* norm = (LLVector4a*) mNormals; - LLVector2* tc = (LLVector2*) mTexCoords; - - for(int gx = 0;gx<grid_size+1;gx++) - { - for(int gy = 0;gy<grid_size+1;gy++) - { - VertexData newVert; - LerpPlanarVertex( - corners[0], - corners[1], - corners[3], - newVert, - (F32)gx/(F32)grid_size, - (F32)gy/(F32)grid_size); - - *pos++ = newVert.getPosition(); - *norm++ = baseVert.getNormal(); - *tc++ = newVert.mTexCoord; - - if (gx == 0 && gy == 0) - { - min = newVert.getPosition(); - max = min; - } - else - { - min.setMin(min, newVert.getPosition()); - max.setMax(max, newVert.getPosition()); - } - } - } - - mCenter->setAdd(min, max); - mCenter->mul(0.5f); - } - - if (!partial_build) - { - resizeIndices(grid_size*grid_size*6); - if (!volume->isMeshAssetLoaded()) - { - S32 size = grid_size * grid_size * 6; - try - { - mEdge.resize(size); - } - catch (std::bad_alloc&) - { - LL_WARNS("LLVOLUME") << "Resize of mEdge to " << size << " failed" << LL_ENDL; - return false; - } - } - - U16* out = mIndices; - - S32 idxs[] = {0,1,(grid_size+1)+1,(grid_size+1)+1,(grid_size+1),0}; - - int cur_edge = 0; - - for(S32 gx = 0;gx<grid_size;gx++) - { - - for(S32 gy = 0;gy<grid_size;gy++) - { - if (mTypeMask & TOP_MASK) - { - for(S32 i=5;i>=0;i--) - { - *out++ = ((gy*(grid_size+1))+gx+idxs[i]); - } - - S32 edge_value = grid_size * 2 * gy + gx * 2; - - if (gx > 0) - { - mEdge[cur_edge++] = edge_value; - } - else - { - mEdge[cur_edge++] = -1; // Mark face to higlight it - } - - if (gy < grid_size - 1) - { - mEdge[cur_edge++] = edge_value; - } - else - { - mEdge[cur_edge++] = -1; - } - - mEdge[cur_edge++] = edge_value; - - if (gx < grid_size - 1) - { - mEdge[cur_edge++] = edge_value; - } - else - { - mEdge[cur_edge++] = -1; - } - - if (gy > 0) - { - mEdge[cur_edge++] = edge_value; - } - else - { - mEdge[cur_edge++] = -1; - } - - mEdge[cur_edge++] = edge_value; - } - else - { - for(S32 i=0;i<6;i++) - { - *out++ = ((gy*(grid_size+1))+gx+idxs[i]); - } - - S32 edge_value = grid_size * 2 * gy + gx * 2; - - if (gy > 0) - { - mEdge[cur_edge++] = edge_value; - } - else - { - mEdge[cur_edge++] = -1; - } - - if (gx < grid_size - 1) - { - mEdge[cur_edge++] = edge_value; - } - else - { - mEdge[cur_edge++] = -1; - } - - mEdge[cur_edge++] = edge_value; - - if (gy < grid_size - 1) - { - mEdge[cur_edge++] = edge_value; - } - else - { - mEdge[cur_edge++] = -1; - } - - if (gx > 0) - { - mEdge[cur_edge++] = edge_value; - } - else - { - mEdge[cur_edge++] = -1; - } - - mEdge[cur_edge++] = edge_value; - } - } - } - } - - LL_CHECK_MEMORY - return TRUE; -} - - -BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) -{ - if (!(mTypeMask & HOLLOW_MASK) && - !(mTypeMask & OPEN_MASK) && - ((volume->getParams().getPathParams().getBegin()==0.0f)&& - (volume->getParams().getPathParams().getEnd()==1.0f))&& - (volume->getParams().getProfileParams().getCurveType()==LL_PCODE_PROFILE_SQUARE && - volume->getParams().getPathParams().getCurveType()==LL_PCODE_PATH_LINE) - ){ - return createUnCutCubeCap(volume, partial_build); - } - - S32 num_vertices = 0, num_indices = 0; - - const LLAlignedArray<LLVector4a,64>& mesh = volume->getMesh(); - const LLAlignedArray<LLVector4a,64>& profile = volume->getProfile().mProfile; - - // All types of caps have the same number of vertices and indices - num_vertices = profile.size(); - num_indices = (profile.size() - 2)*3; - - if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK)) - { - resizeVertices(num_vertices+1); - - //if (!partial_build) - { - resizeIndices(num_indices+3); - } - } - else - { - resizeVertices(num_vertices); - //if (!partial_build) - { - resizeIndices(num_indices); - } - } - - LL_CHECK_MEMORY; - - S32 max_s = volume->getProfile().getTotal(); - S32 max_t = volume->getPath().mPath.size(); - - mCenter->clear(); - - S32 offset = 0; - if (mTypeMask & TOP_MASK) - { - offset = (max_t-1) * max_s; - } - else - { - offset = mBeginS; - } - - // Figure out the normal, assume all caps are flat faces. - // Cross product to get normals. - - LLVector2 cuv; - LLVector2 min_uv, max_uv; - // VFExtents change - LLVector4a& min = mExtents[0]; - LLVector4a& max = mExtents[1]; - - LLVector2* tc = (LLVector2*) mTexCoords; - LLVector4a* pos = (LLVector4a*) mPositions; - LLVector4a* norm = (LLVector4a*) mNormals; - - // Copy the vertices into the array - - const LLVector4a* src = mesh.mArray+offset; - const LLVector4a* end = src+num_vertices; - - min = *src; - max = min; - - - const LLVector4a* p = profile.mArray; - - if (mTypeMask & TOP_MASK) - { - min_uv.set((*p)[0]+0.5f, - (*p)[1]+0.5f); - - max_uv = min_uv; - - while(src < end) - { - tc->mV[0] = (*p)[0]+0.5f; - tc->mV[1] = (*p)[1]+0.5f; - - llassert(src->isFinite3()); // MAINT-5660; don't know why this happens, does not affect Release builds - update_min_max(min,max,*src); - update_min_max(min_uv, max_uv, *tc); - - *pos = *src; - - llassert(pos->isFinite3()); - - ++p; - ++tc; - ++src; - ++pos; - } - } - else - { - - min_uv.set((*p)[0]+0.5f, - 0.5f - (*p)[1]); - max_uv = min_uv; - - while(src < end) - { - // Mirror for underside. - tc->mV[0] = (*p)[0]+0.5f; - tc->mV[1] = 0.5f - (*p)[1]; - - llassert(src->isFinite3()); - update_min_max(min,max,*src); - update_min_max(min_uv, max_uv, *tc); - - *pos = *src; - - llassert(pos->isFinite3()); - - ++p; - ++tc; - ++src; - ++pos; - } - } - - LL_CHECK_MEMORY - - mCenter->setAdd(min, max); - mCenter->mul(0.5f); - - cuv = (min_uv + max_uv)*0.5f; - - - VertexData vd; - vd.setPosition(*mCenter); - vd.mTexCoord = cuv; - - if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK)) - { - *pos++ = *mCenter; - *tc++ = cuv; - num_vertices++; - } - - LL_CHECK_MEMORY - - //if (partial_build) - //{ - // return TRUE; - //} - - if (mTypeMask & HOLLOW_MASK) - { - if (mTypeMask & TOP_MASK) - { - // HOLLOW TOP - // Does it matter if it's open or closed? - djs - - S32 pt1 = 0, pt2 = num_vertices - 1; - S32 i = 0; - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - const LLVector4a& p1 = profile[pt1]; - const LLVector4a& p2 = profile[pt2]; - const LLVector4a& pa = profile[pt1+1]; - const LLVector4a& pb = profile[pt2-1]; - - const F32* p1V = p1.getF32ptr(); - const F32* p2V = p2.getF32ptr(); - const F32* paV = pa.getF32ptr(); - const F32* pbV = pb.getF32ptr(); - - //p1.mV[VZ] = 0.f; - //p2.mV[VZ] = 0.f; - //pa.mV[VZ] = 0.f; - //pb.mV[VZ] = 0.f; - - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1V[0]*paV[1] - paV[0]*p1V[1]) + - (paV[0]*p2V[1] - p2V[0]*paV[1]) + - (p2V[0]*p1V[1] - p1V[0]*p2V[1]); - - area_1ba = (p1V[0]*pbV[1] - pbV[0]*p1V[1]) + - (pbV[0]*paV[1] - paV[0]*pbV[1]) + - (paV[0]*p1V[1] - p1V[0]*paV[1]); - - area_21b = (p2V[0]*p1V[1] - p1V[0]*p2V[1]) + - (p1V[0]*pbV[1] - pbV[0]*p1V[1]) + - (pbV[0]*p2V[1] - p2V[0]*pbV[1]); - - area_2ab = (p2V[0]*paV[1] - paV[0]*p2V[1]) + - (paV[0]*pbV[1] - pbV[0]*paV[1]) + - (pbV[0]*p2V[1] - p2V[0]*pbV[1]); - - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; - - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } - - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector4a d1; - d1.setSub(p1, pa); - - LLVector4a d2; - d2.setSub(p2, pb); - - if (d1.dot3(d1) < d2.dot3(d2)) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } - - if (use_tri1a2) - { - mIndices[i++] = pt1; - mIndices[i++] = pt1 + 1; - mIndices[i++] = pt2; - pt1++; - } - else - { - mIndices[i++] = pt1; - mIndices[i++] = pt2 - 1; - mIndices[i++] = pt2; - pt2--; - } - } - } - else - { - // HOLLOW BOTTOM - // Does it matter if it's open or closed? - djs - - llassert(mTypeMask & BOTTOM_MASK); - S32 pt1 = 0, pt2 = num_vertices - 1; - - S32 i = 0; - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - const LLVector4a& p1 = profile[pt1]; - const LLVector4a& p2 = profile[pt2]; - const LLVector4a& pa = profile[pt1+1]; - const LLVector4a& pb = profile[pt2-1]; - - const F32* p1V = p1.getF32ptr(); - const F32* p2V = p2.getF32ptr(); - const F32* paV = pa.getF32ptr(); - const F32* pbV = pb.getF32ptr(); - - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1V[0]*paV[1] - paV[0]*p1V[1]) + - (paV[0]*p2V[1] - p2V[0]*paV[1]) + - (p2V[0]*p1V[1] - p1V[0]*p2V[1]); - - area_1ba = (p1V[0]*pbV[1] - pbV[0]*p1V[1]) + - (pbV[0]*paV[1] - paV[0]*pbV[1]) + - (paV[0]*p1V[1] - p1V[0]*paV[1]); - - area_21b = (p2V[0]*p1V[1] - p1V[0]*p2V[1]) + - (p1V[0]*pbV[1] - pbV[0]*p1V[1]) + - (pbV[0]*p2V[1] - p2V[0]*pbV[1]); - - area_2ab = (p2V[0]*paV[1] - paV[0]*p2V[1]) + - (paV[0]*pbV[1] - pbV[0]*paV[1]) + - (pbV[0]*p2V[1] - p2V[0]*pbV[1]); - - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; - - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } - - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector4a d1; - d1.setSub(p1,pa); - LLVector4a d2; - d2.setSub(p2,pb); - - if (d1.dot3(d1) < d2.dot3(d2)) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } - - // Flipped backfacing from top - if (use_tri1a2) - { - mIndices[i++] = pt1; - mIndices[i++] = pt2; - mIndices[i++] = pt1 + 1; - pt1++; - } - else - { - mIndices[i++] = pt1; - mIndices[i++] = pt2; - mIndices[i++] = pt2 - 1; - pt2--; - } - } - } - } - else - { - // Not hollow, generate the triangle fan. - U16 v1 = 2; - U16 v2 = 1; - - if (mTypeMask & TOP_MASK) - { - v1 = 1; - v2 = 2; - } - - for (S32 i = 0; i < (num_vertices - 2); i++) - { - mIndices[3*i] = num_vertices - 1; - mIndices[3*i+v1] = i; - mIndices[3*i+v2] = i + 1; - } - - - } - - LLVector4a d0,d1; - LL_CHECK_MEMORY - - - d0.setSub(mPositions[mIndices[1]], mPositions[mIndices[0]]); - d1.setSub(mPositions[mIndices[2]], mPositions[mIndices[0]]); - - LLVector4a normal; - normal.setCross3(d0,d1); - - if (normal.dot3(normal).getF32() > F_APPROXIMATELY_ZERO) - { - normal.normalize3fast(); - } - else - { //degenerate, make up a value - if(normal.getF32ptr()[2] >= 0) - normal.set(0.f,0.f,1.f); - else - normal.set(0.f,0.f,-1.f); - } - - llassert(llfinite(normal.getF32ptr()[0])); - llassert(llfinite(normal.getF32ptr()[1])); - llassert(llfinite(normal.getF32ptr()[2])); - - llassert(!llisnan(normal.getF32ptr()[0])); - llassert(!llisnan(normal.getF32ptr()[1])); - llassert(!llisnan(normal.getF32ptr()[2])); - - for (S32 i = 0; i < num_vertices; i++) - { - norm[i].load4a(normal.getF32ptr()); - } - - return TRUE; -} - -void CalculateTangentArray(U32 vertexCount, const LLVector4a *vertex, const LLVector4a *normal, - const LLVector2 *texcoord, U32 triangleCount, const U16* index_array, LLVector4a *tangent); - -void LLVolumeFace::createTangents() -{ - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME; - - if (!mTangents) - { - allocateTangents(mNumVertices); - - //generate tangents - LLVector4a* ptr = (LLVector4a*)mTangents; - - LLVector4a* end = mTangents + mNumVertices; - while (ptr < end) - { - (*ptr++).clear(); - } - - CalculateTangentArray(mNumVertices, mPositions, mNormals, mTexCoords, mNumIndices / 3, mIndices, mTangents); - - //normalize normals - for (U32 i = 0; i < mNumVertices; i++) - { - //bump map/planar projection code requires normals to be normalized - mNormals[i].normalize3fast(); - } - } - -} - -void LLVolumeFace::resizeVertices(S32 num_verts) -{ - ll_aligned_free<64>(mPositions); - //DO NOT free mNormals and mTexCoords as they are part of mPositions buffer - ll_aligned_free_16(mTangents); - - mTangents = NULL; - - if (num_verts) - { - //pad texture coordinate block end to allow for QWORD reads - S32 tc_size = ((num_verts*sizeof(LLVector2)) + 0xF) & ~0xF; - - mPositions = (LLVector4a*) ll_aligned_malloc<64>(sizeof(LLVector4a)*2*num_verts+tc_size); - mNormals = mPositions+num_verts; - mTexCoords = (LLVector2*) (mNormals+num_verts); - - ll_assert_aligned(mPositions, 64); - } - else - { - mPositions = NULL; - mNormals = NULL; - mTexCoords = NULL; - } - - - if (mPositions) - { - mNumVertices = num_verts; - mNumAllocatedVertices = num_verts; - } - else - { - // Either num_verts is zero or allocation failure - mNumVertices = 0; - mNumAllocatedVertices = 0; - } - - // Force update - mJointRiggingInfoTab.clear(); -} - -void LLVolumeFace::pushVertex(const LLVolumeFace::VertexData& cv) -{ - pushVertex(cv.getPosition(), cv.getNormal(), cv.mTexCoord); -} - -void LLVolumeFace::pushVertex(const LLVector4a& pos, const LLVector4a& norm, const LLVector2& tc) -{ - S32 new_verts = mNumVertices+1; - - if (new_verts > mNumAllocatedVertices) - { - // double buffer size on expansion - new_verts *= 2; - - S32 new_tc_size = ((new_verts*8)+0xF) & ~0xF; - S32 old_tc_size = ((mNumVertices*8)+0xF) & ~0xF; - - S32 old_vsize = mNumVertices*16; - - S32 new_size = new_verts*16*2+new_tc_size; - - LLVector4a* old_buf = mPositions; - - mPositions = (LLVector4a*) ll_aligned_malloc<64>(new_size); - mNormals = mPositions+new_verts; - mTexCoords = (LLVector2*) (mNormals+new_verts); - - if (old_buf != NULL) - { - // copy old positions into new buffer - LLVector4a::memcpyNonAliased16((F32*)mPositions, (F32*)old_buf, old_vsize); - - // normals - LLVector4a::memcpyNonAliased16((F32*)mNormals, (F32*)(old_buf + mNumVertices), old_vsize); - - // tex coords - LLVector4a::memcpyNonAliased16((F32*)mTexCoords, (F32*)(old_buf + mNumVertices * 2), old_tc_size); - } - - // just clear tangents - ll_aligned_free_16(mTangents); - mTangents = NULL; - ll_aligned_free<64>(old_buf); - - mNumAllocatedVertices = new_verts; - - } - - mPositions[mNumVertices] = pos; - mNormals[mNumVertices] = norm; - mTexCoords[mNumVertices] = tc; - - mNumVertices++; -} - -void LLVolumeFace::allocateTangents(S32 num_verts) -{ - ll_aligned_free_16(mTangents); - mTangents = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts); -} - -void LLVolumeFace::allocateWeights(S32 num_verts) -{ - ll_aligned_free_16(mWeights); - mWeights = (LLVector4a*)ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts); - -} - -void LLVolumeFace::allocateJointIndices(S32 num_verts) -{ -#if USE_SEPARATE_JOINT_INDICES_AND_WEIGHTS - ll_aligned_free_16(mJointIndices); - ll_aligned_free_16(mJustWeights); - - mJointIndices = (U8*)ll_aligned_malloc_16(sizeof(U8) * 4 * num_verts); - mJustWeights = (LLVector4a*)ll_aligned_malloc_16(sizeof(LLVector4a) * num_verts); -#endif -} - -void LLVolumeFace::resizeIndices(S32 num_indices) -{ - ll_aligned_free_16(mIndices); - llassert(num_indices % 3 == 0); - - if (num_indices) - { - //pad index block end to allow for QWORD reads - S32 size = ((num_indices*sizeof(U16)) + 0xF) & ~0xF; - - mIndices = (U16*) ll_aligned_malloc_16(size); - } - else - { - mIndices = NULL; - } - - if (mIndices) - { - mNumIndices = num_indices; - } - else - { - // Either num_indices is zero or allocation failure - mNumIndices = 0; - } -} - -void LLVolumeFace::pushIndex(const U16& idx) -{ - S32 new_count = mNumIndices + 1; - S32 new_size = ((new_count*2)+0xF) & ~0xF; - - S32 old_size = ((mNumIndices*2)+0xF) & ~0xF; - if (new_size != old_size) - { - mIndices = (U16*) ll_aligned_realloc_16(mIndices, new_size, old_size); - ll_assert_aligned(mIndices,16); - } - - mIndices[mNumIndices++] = idx; -} - -void LLVolumeFace::fillFromLegacyData(std::vector<LLVolumeFace::VertexData>& v, std::vector<U16>& idx) -{ - resizeVertices(v.size()); - resizeIndices(idx.size()); - - for (U32 i = 0; i < v.size(); ++i) - { - mPositions[i] = v[i].getPosition(); - mNormals[i] = v[i].getNormal(); - mTexCoords[i] = v[i].mTexCoord; - } - - for (U32 i = 0; i < idx.size(); ++i) - { - mIndices[i] = idx[i]; - } -} - -BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) -{ - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME - - LL_CHECK_MEMORY - BOOL flat = mTypeMask & FLAT_MASK; - - U8 sculpt_type = volume->getParams().getSculptType(); - U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK; - BOOL sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT; - BOOL sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR; - BOOL sculpt_reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror); // XOR - - S32 num_vertices, num_indices; - - const LLAlignedArray<LLVector4a,64>& mesh = volume->getMesh(); - const LLAlignedArray<LLVector4a,64>& profile = volume->getProfile().mProfile; - const LLAlignedArray<LLPath::PathPt,64>& path_data = volume->getPath().mPath; - - S32 max_s = volume->getProfile().getTotal(); - - S32 s, t, i; - F32 ss, tt; - - num_vertices = mNumS*mNumT; - num_indices = (mNumS-1)*(mNumT-1)*6; - - partial_build = (num_vertices > mNumVertices || num_indices > mNumIndices) ? FALSE : partial_build; - - if (!partial_build) - { - resizeVertices(num_vertices); - resizeIndices(num_indices); - - if (!volume->isMeshAssetLoaded()) - { - try - { - mEdge.resize(num_indices); - } - catch (std::bad_alloc&) - { - LL_WARNS("LLVOLUME") << "Resize of mEdge to " << num_indices << " failed" << LL_ENDL; - return false; - } - } - } - - LL_CHECK_MEMORY - - LLVector4a* pos = (LLVector4a*) mPositions; - LLVector2* tc = (LLVector2*) mTexCoords; - F32 begin_stex = floorf(profile[mBeginS][2]); - S32 num_s = ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2) ? mNumS/2 : mNumS; - - S32 cur_vertex = 0; - S32 end_t = mBeginT+mNumT; - bool test = (mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2; - - // Copy the vertices into the array - for (t = mBeginT; t < end_t; t++) - { - tt = path_data[t].mTexT; - for (s = 0; s < num_s; s++) - { - if (mTypeMask & END_MASK) - { - if (s) - { - ss = 1.f; - } - else - { - ss = 0.f; - } - } - else - { - // Get s value for tex-coord. - S32 index = mBeginS + s; - if (index >= profile.size()) - { - // edge? - ss = flat ? 1.f - begin_stex : 1.f; - } - else if (!flat) - { - ss = profile[index][2]; - } - else - { - ss = profile[index][2] - begin_stex; - } - } - - if (sculpt_reverse_horizontal) - { - ss = 1.f - ss; - } - - // Check to see if this triangle wraps around the array. - if (mBeginS + s >= max_s) - { - // We're wrapping - i = mBeginS + s + max_s*(t-1); - } - else - { - i = mBeginS + s + max_s*t; - } - - mesh[i].store4a((F32*)(pos+cur_vertex)); - tc[cur_vertex].set(ss,tt); - - cur_vertex++; - - if (test && s > 0) - { - mesh[i].store4a((F32*)(pos+cur_vertex)); - tc[cur_vertex].set(ss,tt); - cur_vertex++; - } - } - - if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2) - { - if (mTypeMask & OPEN_MASK) - { - s = num_s-1; - } - else - { - s = 0; - } - - i = mBeginS + s + max_s*t; - ss = profile[mBeginS + s][2] - begin_stex; - - mesh[i].store4a((F32*)(pos+cur_vertex)); - tc[cur_vertex].set(ss,tt); - - cur_vertex++; - } - } - LL_CHECK_MEMORY - - mCenter->clear(); - - LLVector4a* cur_pos = pos; - LLVector4a* end_pos = pos + mNumVertices; - - //get bounding box for this side - LLVector4a face_min; - LLVector4a face_max; - - face_min = face_max = *cur_pos++; - - while (cur_pos < end_pos) - { - update_min_max(face_min, face_max, *cur_pos++); - } - // VFExtents change - mExtents[0] = face_min; - mExtents[1] = face_max; - - U32 tc_count = mNumVertices; - if (tc_count%2 == 1) - { //odd number of texture coordinates, duplicate last entry to padded end of array - tc_count++; - mTexCoords[mNumVertices] = mTexCoords[mNumVertices-1]; - } - - LLVector4a* cur_tc = (LLVector4a*) mTexCoords; - LLVector4a* end_tc = (LLVector4a*) (mTexCoords+tc_count); - - LLVector4a tc_min; - LLVector4a tc_max; - - tc_min = tc_max = *cur_tc++; - - while (cur_tc < end_tc) - { - update_min_max(tc_min, tc_max, *cur_tc++); - } - - F32* minp = tc_min.getF32ptr(); - F32* maxp = tc_max.getF32ptr(); - - mTexCoordExtents[0].mV[0] = llmin(minp[0], minp[2]); - mTexCoordExtents[0].mV[1] = llmin(minp[1], minp[3]); - mTexCoordExtents[1].mV[0] = llmax(maxp[0], maxp[2]); - mTexCoordExtents[1].mV[1] = llmax(maxp[1], maxp[3]); - - mCenter->setAdd(face_min, face_max); - mCenter->mul(0.5f); - - S32 cur_index = 0; - S32 cur_edge = 0; - BOOL flat_face = mTypeMask & FLAT_MASK; - - if (!partial_build) - { - // Now we generate the indices. - for (t = 0; t < (mNumT-1); t++) - { - for (s = 0; s < (mNumS-1); s++) - { - mIndices[cur_index++] = s + mNumS*t; //bottom left - mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right - mIndices[cur_index++] = s + mNumS*(t+1); //top left - mIndices[cur_index++] = s + mNumS*t; //bottom left - mIndices[cur_index++] = s+1 + mNumS*t; //bottom right - mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right - - mEdge[cur_edge++] = (mNumS-1)*2*t+s*2+1; //bottom left/top right neighbor face - if (t < mNumT-2) { //top right/top left neighbor face - mEdge[cur_edge++] = (mNumS-1)*2*(t+1)+s*2+1; - } - else if (mNumT <= 3 || volume->getPath().isOpen() == TRUE) { //no neighbor - mEdge[cur_edge++] = -1; - } - else { //wrap on T - mEdge[cur_edge++] = s*2+1; - } - if (s > 0) { //top left/bottom left neighbor face - mEdge[cur_edge++] = (mNumS-1)*2*t+s*2-1; - } - else if (flat_face || volume->getProfile().isOpen() == TRUE) { //no neighbor - mEdge[cur_edge++] = -1; - } - else { //wrap on S - mEdge[cur_edge++] = (mNumS-1)*2*t+(mNumS-2)*2+1; - } - - if (t > 0) { //bottom left/bottom right neighbor face - mEdge[cur_edge++] = (mNumS-1)*2*(t-1)+s*2; - } - else if (mNumT <= 3 || volume->getPath().isOpen() == TRUE) { //no neighbor - mEdge[cur_edge++] = -1; - } - else { //wrap on T - mEdge[cur_edge++] = (mNumS-1)*2*(mNumT-2)+s*2; - } - if (s < mNumS-2) { //bottom right/top right neighbor face - mEdge[cur_edge++] = (mNumS-1)*2*t+(s+1)*2; - } - else if (flat_face || volume->getProfile().isOpen() == TRUE) { //no neighbor - mEdge[cur_edge++] = -1; - } - else { //wrap on S - mEdge[cur_edge++] = (mNumS-1)*2*t; - } - mEdge[cur_edge++] = (mNumS-1)*2*t+s*2; //top right/bottom left neighbor face - } - } - } - - LL_CHECK_MEMORY - - //clear normals - F32* dst = (F32*) mNormals; - F32* end = (F32*) (mNormals+mNumVertices); - LLVector4a zero = LLVector4a::getZero(); - - while (dst < end) - { - zero.store4a(dst); - dst += 4; - } - - LL_CHECK_MEMORY - - //generate normals - U32 count = mNumIndices/3; - - LLVector4a* norm = mNormals; - - static thread_local LLAlignedArray<LLVector4a, 64> triangle_normals; - try - { - triangle_normals.resize(count); - } - catch (std::bad_alloc&) - { - LL_WARNS("LLVOLUME") << "Resize of triangle_normals to " << count << " failed" << LL_ENDL; - return false; - } - LLVector4a* output = triangle_normals.mArray; - LLVector4a* end_output = output+count; - - U16* idx = mIndices; - - while (output < end_output) - { - LLVector4a b,v1,v2; - b.load4a((F32*) (pos+idx[0])); - v1.load4a((F32*) (pos+idx[1])); - v2.load4a((F32*) (pos+idx[2])); - - //calculate triangle normal - LLVector4a a; - - a.setSub(b, v1); - b.sub(v2); - - - LLQuad& vector1 = *((LLQuad*) &v1); - LLQuad& vector2 = *((LLQuad*) &v2); - - LLQuad& amQ = *((LLQuad*) &a); - LLQuad& bmQ = *((LLQuad*) &b); - - //v1.setCross3(t,v0); - //setCross3(const LLVector4a& a, const LLVector4a& b) - // Vectors are stored in memory in w, z, y, x order from high to low - // Set vector1 = { a[W], a[X], a[Z], a[Y] } - vector1 = _mm_shuffle_ps( amQ, amQ, _MM_SHUFFLE( 3, 0, 2, 1 )); - // Set vector2 = { b[W], b[Y], b[X], b[Z] } - vector2 = _mm_shuffle_ps( bmQ, bmQ, _MM_SHUFFLE( 3, 1, 0, 2 )); - // mQ = { a[W]*b[W], a[X]*b[Y], a[Z]*b[X], a[Y]*b[Z] } - vector2 = _mm_mul_ps( vector1, vector2 ); - // vector3 = { a[W], a[Y], a[X], a[Z] } - amQ = _mm_shuffle_ps( amQ, amQ, _MM_SHUFFLE( 3, 1, 0, 2 )); - // vector4 = { b[W], b[X], b[Z], b[Y] } - bmQ = _mm_shuffle_ps( bmQ, bmQ, _MM_SHUFFLE( 3, 0, 2, 1 )); - // mQ = { 0, a[X]*b[Y] - a[Y]*b[X], a[Z]*b[X] - a[X]*b[Z], a[Y]*b[Z] - a[Z]*b[Y] } - vector1 = _mm_sub_ps( vector2, _mm_mul_ps( amQ, bmQ )); - - llassert(v1.isFinite3()); - - v1.store4a((F32*) output); - - - output++; - idx += 3; - } - - idx = mIndices; - - LLVector4a* src = triangle_normals.mArray; - - for (U32 i = 0; i < count; i++) //for each triangle - { - LLVector4a c; - c.load4a((F32*) (src++)); - - LLVector4a* n0p = norm+idx[0]; - LLVector4a* n1p = norm+idx[1]; - LLVector4a* n2p = norm+idx[2]; - - idx += 3; - - LLVector4a n0,n1,n2; - n0.load4a((F32*) n0p); - n1.load4a((F32*) n1p); - n2.load4a((F32*) n2p); - - n0.add(c); - n1.add(c); - n2.add(c); - - llassert(c.isFinite3()); - - //even out quad contributions - switch (i%2+1) - { - case 0: n0.add(c); break; - case 1: n1.add(c); break; - case 2: n2.add(c); break; - }; - - n0.store4a((F32*) n0p); - n1.store4a((F32*) n1p); - n2.store4a((F32*) n2p); - } - - LL_CHECK_MEMORY - - // adjust normals based on wrapping and stitching - - LLVector4a top; - top.setSub(pos[0], pos[mNumS*(mNumT-2)]); - BOOL s_bottom_converges = (top.dot3(top) < 0.000001f); - - top.setSub(pos[mNumS-1], pos[mNumS*(mNumT-2)+mNumS-1]); - BOOL s_top_converges = (top.dot3(top) < 0.000001f); - - if (sculpt_stitching == LL_SCULPT_TYPE_NONE) // logic for non-sculpt volumes - { - if (volume->getPath().isOpen() == FALSE) - { //wrap normals on T - for (S32 i = 0; i < mNumS; i++) - { - LLVector4a n; - n.setAdd(norm[i], norm[mNumS*(mNumT-1)+i]); - norm[i] = n; - norm[mNumS*(mNumT-1)+i] = n; - } - } - - if ((volume->getProfile().isOpen() == FALSE) && !(s_bottom_converges)) - { //wrap normals on S - for (S32 i = 0; i < mNumT; i++) - { - LLVector4a n; - n.setAdd(norm[mNumS*i], norm[mNumS*i+mNumS-1]); - norm[mNumS * i] = n; - norm[mNumS * i+mNumS-1] = n; - } - } - - if (volume->getPathType() == LL_PCODE_PATH_CIRCLE && - ((volume->getProfileType() & LL_PCODE_PROFILE_MASK) == LL_PCODE_PROFILE_CIRCLE_HALF)) - { - if (s_bottom_converges) - { //all lower S have same normal - for (S32 i = 0; i < mNumT; i++) - { - norm[mNumS*i].set(1,0,0); - } - } - - if (s_top_converges) - { //all upper S have same normal - for (S32 i = 0; i < mNumT; i++) - { - norm[mNumS*i+mNumS-1].set(-1,0,0); - } - } - } - } - else // logic for sculpt volumes - { - BOOL average_poles = FALSE; - BOOL wrap_s = FALSE; - BOOL wrap_t = FALSE; - - if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE) - average_poles = TRUE; - - if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) || - (sculpt_stitching == LL_SCULPT_TYPE_TORUS) || - (sculpt_stitching == LL_SCULPT_TYPE_CYLINDER)) - wrap_s = TRUE; - - if (sculpt_stitching == LL_SCULPT_TYPE_TORUS) - wrap_t = TRUE; - - - if (average_poles) - { - // average normals for north pole - - LLVector4a average; - average.clear(); - - for (S32 i = 0; i < mNumS; i++) - { - average.add(norm[i]); - } - - // set average - for (S32 i = 0; i < mNumS; i++) - { - norm[i] = average; - } - - // average normals for south pole - - average.clear(); - - for (S32 i = 0; i < mNumS; i++) - { - average.add(norm[i + mNumS * (mNumT - 1)]); - } - - // set average - for (S32 i = 0; i < mNumS; i++) - { - norm[i + mNumS * (mNumT - 1)] = average; - } - - } - - - if (wrap_s) - { - for (S32 i = 0; i < mNumT; i++) - { - LLVector4a n; - n.setAdd(norm[mNumS*i], norm[mNumS*i+mNumS-1]); - norm[mNumS * i] = n; - norm[mNumS * i+mNumS-1] = n; - } - } - - if (wrap_t) - { - for (S32 i = 0; i < mNumS; i++) - { - LLVector4a n; - n.setAdd(norm[i], norm[mNumS*(mNumT-1)+i]); - norm[i] = n; - norm[mNumS*(mNumT-1)+i] = n; - } - } - - } - - LL_CHECK_MEMORY - - return TRUE; -} - -//adapted from Lengyel, Eric. "Computing Tangent Space Basis Vectors for an Arbitrary Mesh". Terathon Software 3D Graphics Library, 2001. http://www.terathon.com/code/tangent.html -void CalculateTangentArray(U32 vertexCount, const LLVector4a *vertex, const LLVector4a *normal, - const LLVector2 *texcoord, U32 triangleCount, const U16* index_array, LLVector4a *tangent) -{ - LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME - - //LLVector4a *tan1 = new LLVector4a[vertexCount * 2]; - LLVector4a* tan1 = (LLVector4a*) ll_aligned_malloc_16(vertexCount*2*sizeof(LLVector4a)); - // new(tan1) LLVector4a; - - LLVector4a* tan2 = tan1 + vertexCount; - - U32 count = vertexCount * 2; - for (U32 i = 0; i < count; i++) - { - tan1[i].clear(); - } - - for (U32 a = 0; a < triangleCount; a++) - { - U32 i1 = *index_array++; - U32 i2 = *index_array++; - U32 i3 = *index_array++; - - const LLVector4a& v1 = vertex[i1]; - const LLVector4a& v2 = vertex[i2]; - const LLVector4a& v3 = vertex[i3]; - - const LLVector2& w1 = texcoord[i1]; - const LLVector2& w2 = texcoord[i2]; - const LLVector2& w3 = texcoord[i3]; - - const F32* v1ptr = v1.getF32ptr(); - const F32* v2ptr = v2.getF32ptr(); - const F32* v3ptr = v3.getF32ptr(); - - float x1 = v2ptr[0] - v1ptr[0]; - float x2 = v3ptr[0] - v1ptr[0]; - float y1 = v2ptr[1] - v1ptr[1]; - float y2 = v3ptr[1] - v1ptr[1]; - float z1 = v2ptr[2] - v1ptr[2]; - float z2 = v3ptr[2] - v1ptr[2]; - - float s1 = w2.mV[0] - w1.mV[0]; - float s2 = w3.mV[0] - w1.mV[0]; - float t1 = w2.mV[1] - w1.mV[1]; - float t2 = w3.mV[1] - w1.mV[1]; - - F32 rd = s1*t2-s2*t1; - - float r = ((rd*rd) > FLT_EPSILON) ? (1.0f / rd) - : ((rd > 0.0f) ? 1024.f : -1024.f); //some made up large ratio for division by zero - - llassert(llfinite(r)); - llassert(!llisnan(r)); - - LLVector4a sdir((t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r, - (t2 * z1 - t1 * z2) * r); - LLVector4a tdir((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r, - (s1 * z2 - s2 * z1) * r); - - tan1[i1].add(sdir); - tan1[i2].add(sdir); - tan1[i3].add(sdir); - - tan2[i1].add(tdir); - tan2[i2].add(tdir); - tan2[i3].add(tdir); - } - - for (U32 a = 0; a < vertexCount; a++) - { - LLVector4a n = normal[a]; - - const LLVector4a& t = tan1[a]; - - LLVector4a ncrosst; - ncrosst.setCross3(n,t); - - // Gram-Schmidt orthogonalize - n.mul(n.dot3(t).getF32()); - - LLVector4a tsubn; - tsubn.setSub(t,n); - - if (tsubn.dot3(tsubn).getF32() > F_APPROXIMATELY_ZERO) - { - tsubn.normalize3fast(); - - // Calculate handedness - F32 handedness = ncrosst.dot3(tan2[a]).getF32() < 0.f ? -1.f : 1.f; - - tsubn.getF32ptr()[3] = handedness; - - tangent[a] = tsubn; - } - else - { //degenerate, make up a value - tangent[a].set(0,0,1,1); - } - } - - ll_aligned_free_16(tan1); -} - - +/**
+ * @file llvolume.cpp
+ *
+ * $LicenseInfo:firstyear=2002&license=viewerlgpl$
+ * Second Life Viewer Source Code
+ * Copyright (C) 2010, Linden Research, Inc.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation;
+ * version 2.1 of the License only.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
+ * $/LicenseInfo$
+ */
+
+#include "linden_common.h"
+#include "llmemory.h"
+#include "llmath.h"
+
+#include <set>
+#if !LL_WINDOWS
+#include <stdint.h>
+#endif
+#include <cmath>
+#include <unordered_map>
+
+#include "llerror.h"
+
+#include "llvolumemgr.h"
+#include "v2math.h"
+#include "v3math.h"
+#include "v4math.h"
+#include "m4math.h"
+#include "m3math.h"
+#include "llmatrix3a.h"
+#include "lloctree.h"
+#include "llvolume.h"
+#include "llvolumeoctree.h"
+#include "llstl.h"
+#include "llsdserialize.h"
+#include "llvector4a.h"
+#include "llmatrix4a.h"
+#include "llmeshoptimizer.h"
+#include "lltimer.h"
+
+#include "mikktspace/mikktspace.h"
+#include "mikktspace/mikktspace.c" // insert mikktspace implementation into llvolume object file
+
+#include "meshoptimizer/meshoptimizer.h"
+
+#define DEBUG_SILHOUETTE_BINORMALS 0
+#define DEBUG_SILHOUETTE_NORMALS 0 // TomY: Use this to display normals using the silhouette
+#define DEBUG_SILHOUETTE_EDGE_MAP 0 // DaveP: Use this to display edge map using the silhouette
+
+constexpr F32 MIN_CUT_DELTA = 0.02f;
+
+constexpr F32 HOLLOW_MIN = 0.f;
+constexpr F32 HOLLOW_MAX = 0.95f;
+constexpr F32 HOLLOW_MAX_SQUARE = 0.7f;
+
+constexpr F32 TWIST_MIN = -1.f;
+constexpr F32 TWIST_MAX = 1.f;
+
+constexpr F32 RATIO_MIN = 0.f;
+constexpr F32 RATIO_MAX = 2.f; // Tom Y: Inverted sense here: 0 = top taper, 2 = bottom taper
+
+constexpr F32 HOLE_X_MIN= 0.05f;
+constexpr F32 HOLE_X_MAX= 1.0f;
+
+constexpr F32 HOLE_Y_MIN= 0.05f;
+constexpr F32 HOLE_Y_MAX= 0.5f;
+
+constexpr F32 SHEAR_MIN = -0.5f;
+constexpr F32 SHEAR_MAX = 0.5f;
+
+constexpr F32 REV_MIN = 1.f;
+constexpr F32 REV_MAX = 4.f;
+
+constexpr F32 TAPER_MIN = -1.f;
+constexpr F32 TAPER_MAX = 1.f;
+
+constexpr F32 SKEW_MIN = -0.95f;
+constexpr F32 SKEW_MAX = 0.95f;
+
+constexpr F32 SCULPT_MIN_AREA = 0.002f;
+constexpr S32 SCULPT_MIN_AREA_DETAIL = 1;
+
+bool gDebugGL = false; // See settings.xml "RenderDebugGL"
+
+bool check_same_clock_dir( const LLVector3& pt1, const LLVector3& pt2, const LLVector3& pt3, const LLVector3& norm)
+{
+ LLVector3 test = (pt2-pt1)%(pt3-pt2);
+
+ //answer
+ if(test * norm < 0)
+ {
+ return false;
+ }
+ else
+ {
+ return true;
+ }
+}
+
+bool LLLineSegmentBoxIntersect(const LLVector3& start, const LLVector3& end, const LLVector3& center, const LLVector3& size)
+{
+ return LLLineSegmentBoxIntersect(start.mV, end.mV, center.mV, size.mV);
+}
+
+bool LLLineSegmentBoxIntersect(const F32* start, const F32* end, const F32* center, const F32* size)
+{
+ F32 fAWdU[3]{};
+ F32 dir[3]{};
+ F32 diff[3]{};
+
+ for (U32 i = 0; i < 3; i++)
+ {
+ dir[i] = 0.5f * (end[i] - start[i]);
+ diff[i] = (0.5f * (end[i] + start[i])) - center[i];
+ fAWdU[i] = fabsf(dir[i]);
+ if(fabsf(diff[i])>size[i] + fAWdU[i]) return false;
+ }
+
+ float f;
+ f = dir[1] * diff[2] - dir[2] * diff[1]; if(fabsf(f)>size[1]*fAWdU[2] + size[2]*fAWdU[1]) return false;
+ f = dir[2] * diff[0] - dir[0] * diff[2]; if(fabsf(f)>size[0]*fAWdU[2] + size[2]*fAWdU[0]) return false;
+ f = dir[0] * diff[1] - dir[1] * diff[0]; if(fabsf(f)>size[0]*fAWdU[1] + size[1]*fAWdU[0]) return false;
+
+ return true;
+}
+
+// Finds tangent vec based on three vertices with texture coordinates.
+// Fills in dummy values if the triangle has degenerate texture coordinates.
+void calc_tangent_from_triangle(
+ LLVector4a& normal,
+ LLVector4a& tangent_out,
+ const LLVector4a& v1,
+ const LLVector2& w1,
+ const LLVector4a& v2,
+ const LLVector2& w2,
+ const LLVector4a& v3,
+ const LLVector2& w3)
+{
+ const F32* v1ptr = v1.getF32ptr();
+ const F32* v2ptr = v2.getF32ptr();
+ const F32* v3ptr = v3.getF32ptr();
+
+ float x1 = v2ptr[0] - v1ptr[0];
+ float x2 = v3ptr[0] - v1ptr[0];
+ float y1 = v2ptr[1] - v1ptr[1];
+ float y2 = v3ptr[1] - v1ptr[1];
+ float z1 = v2ptr[2] - v1ptr[2];
+ float z2 = v3ptr[2] - v1ptr[2];
+
+ float s1 = w2.mV[0] - w1.mV[0];
+ float s2 = w3.mV[0] - w1.mV[0];
+ float t1 = w2.mV[1] - w1.mV[1];
+ float t2 = w3.mV[1] - w1.mV[1];
+
+ F32 rd = s1*t2-s2*t1;
+
+ float r = ((rd*rd) > FLT_EPSILON) ? (1.0f / rd)
+ : ((rd > 0.0f) ? 1024.f : -1024.f); //some made up large ratio for division by zero
+
+ llassert(llfinite(r));
+ llassert(!llisnan(r));
+
+ LLVector4a sdir(
+ (t2 * x1 - t1 * x2) * r,
+ (t2 * y1 - t1 * y2) * r,
+ (t2 * z1 - t1 * z2) * r);
+
+ LLVector4a tdir(
+ (s1 * x2 - s2 * x1) * r,
+ (s1 * y2 - s2 * y1) * r,
+ (s1 * z2 - s2 * z1) * r);
+
+ LLVector4a n = normal;
+ LLVector4a t = sdir;
+
+ LLVector4a ncrosst;
+ ncrosst.setCross3(n,t);
+
+ // Gram-Schmidt orthogonalize
+ n.mul(n.dot3(t).getF32());
+
+ LLVector4a tsubn;
+ tsubn.setSub(t,n);
+
+ if (tsubn.dot3(tsubn).getF32() > F_APPROXIMATELY_ZERO)
+ {
+ tsubn.normalize3fast_checked();
+
+ // Calculate handedness
+ F32 handedness = ncrosst.dot3(tdir).getF32() < 0.f ? -1.f : 1.f;
+
+ tsubn.getF32ptr()[3] = handedness;
+
+ tangent_out = tsubn;
+ }
+ else
+ {
+ // degenerate, make up a value
+ //
+ tangent_out.set(0,0,1,1);
+ }
+
+}
+
+
+// intersect test between triangle vert0, vert1, vert2 and a ray from orig in direction dir.
+// returns true if intersecting and returns barycentric coordinates in intersection_a, intersection_b,
+// and returns the intersection point along dir in intersection_t.
+
+// Moller-Trumbore algorithm
+bool LLTriangleRayIntersect(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir,
+ F32& intersection_a, F32& intersection_b, F32& intersection_t)
+{
+
+ /* find vectors for two edges sharing vert0 */
+ LLVector4a edge1;
+ edge1.setSub(vert1, vert0);
+
+ LLVector4a edge2;
+ edge2.setSub(vert2, vert0);
+
+ /* begin calculating determinant - also used to calculate U parameter */
+ LLVector4a pvec;
+ pvec.setCross3(dir, edge2);
+
+ /* if determinant is near zero, ray lies in plane of triangle */
+ LLVector4a det;
+ det.setAllDot3(edge1, pvec);
+
+ if (det.greaterEqual(LLVector4a::getEpsilon()).getGatheredBits() & 0x7)
+ {
+ /* calculate distance from vert0 to ray origin */
+ LLVector4a tvec;
+ tvec.setSub(orig, vert0);
+
+ /* calculate U parameter and test bounds */
+ LLVector4a u;
+ u.setAllDot3(tvec,pvec);
+
+ if ((u.greaterEqual(LLVector4a::getZero()).getGatheredBits() & 0x7) &&
+ (u.lessEqual(det).getGatheredBits() & 0x7))
+ {
+ /* prepare to test V parameter */
+ LLVector4a qvec;
+ qvec.setCross3(tvec, edge1);
+
+ /* calculate V parameter and test bounds */
+ LLVector4a v;
+ v.setAllDot3(dir, qvec);
+
+
+ //if (!(v < 0.f || u + v > det))
+
+ LLVector4a sum_uv;
+ sum_uv.setAdd(u, v);
+
+ S32 v_gequal = v.greaterEqual(LLVector4a::getZero()).getGatheredBits() & 0x7;
+ S32 sum_lequal = sum_uv.lessEqual(det).getGatheredBits() & 0x7;
+
+ if (v_gequal && sum_lequal)
+ {
+ /* calculate t, scale parameters, ray intersects triangle */
+ LLVector4a t;
+ t.setAllDot3(edge2,qvec);
+
+ t.div(det);
+ u.div(det);
+ v.div(det);
+
+ intersection_a = u[0];
+ intersection_b = v[0];
+ intersection_t = t[0];
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool LLTriangleRayIntersectTwoSided(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir,
+ F32& intersection_a, F32& intersection_b, F32& intersection_t)
+{
+ F32 u, v, t;
+
+ /* find vectors for two edges sharing vert0 */
+ LLVector4a edge1;
+ edge1.setSub(vert1, vert0);
+
+
+ LLVector4a edge2;
+ edge2.setSub(vert2, vert0);
+
+ /* begin calculating determinant - also used to calculate U parameter */
+ LLVector4a pvec;
+ pvec.setCross3(dir, edge2);
+
+ /* if determinant is near zero, ray lies in plane of triangle */
+ F32 det = edge1.dot3(pvec).getF32();
+
+
+ if (det > -F_APPROXIMATELY_ZERO && det < F_APPROXIMATELY_ZERO)
+ {
+ return false;
+ }
+
+ F32 inv_det = 1.f / det;
+
+ /* calculate distance from vert0 to ray origin */
+ LLVector4a tvec;
+ tvec.setSub(orig, vert0);
+
+ /* calculate U parameter and test bounds */
+ u = (tvec.dot3(pvec).getF32()) * inv_det;
+ if (u < 0.f || u > 1.f)
+ {
+ return false;
+ }
+
+ /* prepare to test V parameter */
+ tvec.sub(edge1);
+
+ /* calculate V parameter and test bounds */
+ v = (dir.dot3(tvec).getF32()) * inv_det;
+
+ if (v < 0.f || u + v > 1.f)
+ {
+ return false;
+ }
+
+ /* calculate t, ray intersects triangle */
+ t = (edge2.dot3(tvec).getF32()) * inv_det;
+
+ intersection_a = u;
+ intersection_b = v;
+ intersection_t = t;
+
+
+ return true;
+}
+
+class LLVolumeOctreeRebound : public LLOctreeTravelerDepthFirst<LLVolumeTriangle, LLVolumeTriangle*>
+{
+public:
+ const LLVolumeFace* mFace;
+
+ LLVolumeOctreeRebound(const LLVolumeFace* face)
+ {
+ mFace = face;
+ }
+
+ virtual void visit(const LLOctreeNode<LLVolumeTriangle, LLVolumeTriangle*>* branch)
+ { //this is a depth first traversal, so it's safe to assum all children have complete
+ //bounding data
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME
+
+ LLVolumeOctreeListener* node = (LLVolumeOctreeListener*) branch->getListener(0);
+
+ LLVector4a& min = node->mExtents[0];
+ LLVector4a& max = node->mExtents[1];
+
+ if (!branch->isEmpty())
+ { //node has data, find AABB that binds data set
+ const LLVolumeTriangle* tri = *(branch->getDataBegin());
+
+ //initialize min/max to first available vertex
+ min = *(tri->mV[0]);
+ max = *(tri->mV[0]);
+
+ for (LLOctreeNode<LLVolumeTriangle, LLVolumeTriangle*>::const_element_iter iter = branch->getDataBegin(); iter != branch->getDataEnd(); ++iter)
+ { //for each triangle in node
+
+ //stretch by triangles in node
+ tri = *iter;
+
+ min.setMin(min, *tri->mV[0]);
+ min.setMin(min, *tri->mV[1]);
+ min.setMin(min, *tri->mV[2]);
+
+ max.setMax(max, *tri->mV[0]);
+ max.setMax(max, *tri->mV[1]);
+ max.setMax(max, *tri->mV[2]);
+ }
+ }
+ else if (branch->getChildCount() > 0)
+ { //no data, but child nodes exist
+ LLVolumeOctreeListener* child = (LLVolumeOctreeListener*) branch->getChild(0)->getListener(0);
+
+ //initialize min/max to extents of first child
+ min = child->mExtents[0];
+ max = child->mExtents[1];
+ }
+ else
+ {
+ llassert(!branch->isLeaf()); // Empty leaf
+ }
+
+ for (S32 i = 0; i < branch->getChildCount(); ++i)
+ { //stretch by child extents
+ LLVolumeOctreeListener* child = (LLVolumeOctreeListener*) branch->getChild(i)->getListener(0);
+ min.setMin(min, child->mExtents[0]);
+ max.setMax(max, child->mExtents[1]);
+ }
+
+ node->mBounds[0].setAdd(min, max);
+ node->mBounds[0].mul(0.5f);
+
+ node->mBounds[1].setSub(max,min);
+ node->mBounds[1].mul(0.5f);
+ }
+};
+
+//-------------------------------------------------------------------
+// statics
+//-------------------------------------------------------------------
+
+
+//----------------------------------------------------
+
+LLProfile::Face* LLProfile::addCap(S16 faceID)
+{
+ Face *face = vector_append(mFaces, 1);
+
+ face->mIndex = 0;
+ face->mCount = mTotal;
+ face->mScaleU= 1.0f;
+ face->mCap = true;
+ face->mFaceID = faceID;
+ return face;
+}
+
+LLProfile::Face* LLProfile::addFace(S32 i, S32 count, F32 scaleU, S16 faceID, bool flat)
+{
+ Face *face = vector_append(mFaces, 1);
+
+ face->mIndex = i;
+ face->mCount = count;
+ face->mScaleU= scaleU;
+
+ face->mFlat = flat;
+ face->mCap = false;
+ face->mFaceID = faceID;
+ return face;
+}
+
+//static
+S32 LLProfile::getNumNGonPoints(const LLProfileParams& params, S32 sides, F32 offset, F32 bevel, F32 ang_scale, S32 split)
+{ // this is basically LLProfile::genNGon stripped down to only the operations that influence the number of points
+ S32 np = 0;
+
+ // Generate an n-sided "circular" path.
+ // 0 is (1,0), and we go counter-clockwise along a circular path from there.
+ F32 t, t_step, t_first, t_fraction;
+
+ F32 begin = params.getBegin();
+ F32 end = params.getEnd();
+
+ t_step = 1.0f / sides;
+
+ t_first = floor(begin * sides) / (F32)sides;
+
+ // pt1 is the first point on the fractional face.
+ // Starting t and ang values for the first face
+ t = t_first;
+
+ // Increment to the next point.
+ // pt2 is the end point on the fractional face
+ t += t_step;
+
+ t_fraction = (begin - t_first)*sides;
+
+ // Only use if it's not almost exactly on an edge.
+ if (t_fraction < 0.9999f)
+ {
+ np++;
+ }
+
+ // There's lots of potential here for floating point error to generate unneeded extra points - DJS 04/05/02
+ while (t < end)
+ {
+ // Iterate through all the integer steps of t.
+ np++;
+
+ t += t_step;
+ }
+
+ t_fraction = (end - (t - t_step))*sides;
+
+ // Find the fraction that we need to add to the end point.
+ t_fraction = (end - (t - t_step))*sides;
+ if (t_fraction > 0.0001f)
+ {
+ np++;
+ }
+
+ // If we're sliced, the profile is open.
+ if ((end - begin)*ang_scale < 0.99f)
+ {
+ if (params.getHollow() <= 0)
+ {
+ // put center point if not hollow.
+ np++;
+ }
+ }
+
+ return np;
+}
+
+// What is the bevel parameter used for? - DJS 04/05/02
+// Bevel parameter is currently unused but presumedly would support
+// filleted and chamfered corners
+void LLProfile::genNGon(const LLProfileParams& params, S32 sides, F32 offset, F32 bevel, F32 ang_scale, S32 split)
+{
+ // Generate an n-sided "circular" path.
+ // 0 is (1,0), and we go counter-clockwise along a circular path from there.
+ constexpr F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f };
+ F32 scale = 0.5f;
+ F32 t, t_step, t_first, t_fraction, ang, ang_step;
+ LLVector4a pt1,pt2;
+
+ F32 begin = params.getBegin();
+ F32 end = params.getEnd();
+
+ t_step = 1.0f / sides;
+ ang_step = 2.0f*F_PI*t_step*ang_scale;
+
+ // Scale to have size "match" scale. Compensates to get object to generally fill bounding box.
+
+ S32 total_sides = ll_round(sides / ang_scale); // Total number of sides all around
+
+ if (total_sides < 8)
+ {
+ scale = tableScale[total_sides];
+ }
+
+ t_first = floor(begin * sides) / (F32)sides;
+
+ // pt1 is the first point on the fractional face.
+ // Starting t and ang values for the first face
+ t = t_first;
+ ang = 2.0f*F_PI*(t*ang_scale + offset);
+ pt1.set(cos(ang)*scale,sin(ang)*scale, t);
+
+ // Increment to the next point.
+ // pt2 is the end point on the fractional face
+ t += t_step;
+ ang += ang_step;
+ pt2.set(cos(ang)*scale,sin(ang)*scale,t);
+
+ t_fraction = (begin - t_first)*sides;
+
+ // Only use if it's not almost exactly on an edge.
+ if (t_fraction < 0.9999f)
+ {
+ LLVector4a new_pt;
+ new_pt.setLerp(pt1, pt2, t_fraction);
+ mProfile.push_back(new_pt);
+ }
+
+ // There's lots of potential here for floating point error to generate unneeded extra points - DJS 04/05/02
+ while (t < end)
+ {
+ // Iterate through all the integer steps of t.
+ pt1.set(cos(ang)*scale,sin(ang)*scale,t);
+
+ if (mProfile.size() > 0) {
+ LLVector4a p = mProfile[mProfile.size()-1];
+ for (S32 i = 0; i < split && mProfile.size() > 0; i++) {
+ //mProfile.push_back(p+(pt1-p) * 1.0f/(float)(split+1) * (float)(i+1));
+ LLVector4a new_pt;
+ new_pt.setSub(pt1, p);
+ new_pt.mul(1.0f/(float)(split+1) * (float)(i+1));
+ new_pt.add(p);
+ mProfile.push_back(new_pt);
+ }
+ }
+ mProfile.push_back(pt1);
+
+ t += t_step;
+ ang += ang_step;
+ }
+
+ t_fraction = (end - (t - t_step))*sides;
+
+ // pt1 is the first point on the fractional face
+ // pt2 is the end point on the fractional face
+ pt2.set(cos(ang)*scale,sin(ang)*scale,t);
+
+ // Find the fraction that we need to add to the end point.
+ t_fraction = (end - (t - t_step))*sides;
+ if (t_fraction > 0.0001f)
+ {
+ LLVector4a new_pt;
+ new_pt.setLerp(pt1, pt2, t_fraction);
+
+ if (mProfile.size() > 0) {
+ LLVector4a p = mProfile[mProfile.size()-1];
+ for (S32 i = 0; i < split && mProfile.size() > 0; i++) {
+ //mProfile.push_back(p+(new_pt-p) * 1.0f/(float)(split+1) * (float)(i+1));
+
+ LLVector4a pt1;
+ pt1.setSub(new_pt, p);
+ pt1.mul(1.0f/(float)(split+1) * (float)(i+1));
+ pt1.add(p);
+ mProfile.push_back(pt1);
+ }
+ }
+ mProfile.push_back(new_pt);
+ }
+
+ // If we're sliced, the profile is open.
+ if ((end - begin)*ang_scale < 0.99f)
+ {
+ if ((end - begin)*ang_scale > 0.5f)
+ {
+ mConcave = true;
+ }
+ else
+ {
+ mConcave = false;
+ }
+ mOpen = true;
+ if (params.getHollow() <= 0)
+ {
+ // put center point if not hollow.
+ mProfile.push_back(LLVector4a(0,0,0));
+ }
+ }
+ else
+ {
+ // The profile isn't open.
+ mOpen = false;
+ mConcave = false;
+ }
+
+ mTotal = mProfile.size();
+}
+
+// Hollow is percent of the original bounding box, not of this particular
+// profile's geometry. Thus, a swept triangle needs lower hollow values than
+// a swept square.
+LLProfile::Face* LLProfile::addHole(const LLProfileParams& params, bool flat, F32 sides, F32 offset, F32 box_hollow, F32 ang_scale, S32 split)
+{
+ // Note that addHole will NOT work for non-"circular" profiles, if we ever decide to use them.
+
+ // Total add has number of vertices on outside.
+ mTotalOut = mTotal;
+
+ // Why is the "bevel" parameter -1? DJS 04/05/02
+ genNGon(params, llfloor(sides),offset,-1, ang_scale, split);
+
+ Face *face = addFace(mTotalOut, mTotal-mTotalOut,0,LL_FACE_INNER_SIDE, flat);
+
+ static thread_local LLAlignedArray<LLVector4a,64> pt;
+ pt.resize(mTotal) ;
+
+ for (S32 i=mTotalOut;i<mTotal;i++)
+ {
+ pt[i] = mProfile[i];
+ pt[i].mul(box_hollow);
+ }
+
+ S32 j=mTotal-1;
+ for (S32 i=mTotalOut;i<mTotal;i++)
+ {
+ mProfile[i] = pt[j--];
+ }
+
+ for (S32 i=0;i<(S32)mFaces.size();i++)
+ {
+ if (mFaces[i].mCap)
+ {
+ mFaces[i].mCount *= 2;
+ }
+ }
+
+ return face;
+}
+
+//static
+S32 LLProfile::getNumPoints(const LLProfileParams& params, bool path_open,F32 detail, S32 split,
+ bool is_sculpted, S32 sculpt_size)
+{ // this is basically LLProfile::generate stripped down to only operations that influence the number of points
+ if (detail < MIN_LOD)
+ {
+ detail = MIN_LOD;
+ }
+
+ // Generate the face data
+ F32 hollow = params.getHollow();
+
+ S32 np = 0;
+
+ switch (params.getCurveType() & LL_PCODE_PROFILE_MASK)
+ {
+ case LL_PCODE_PROFILE_SQUARE:
+ {
+ np = getNumNGonPoints(params, 4,-0.375, 0, 1, split);
+
+ if (hollow)
+ {
+ np *= 2;
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_ISOTRI:
+ case LL_PCODE_PROFILE_RIGHTTRI:
+ case LL_PCODE_PROFILE_EQUALTRI:
+ {
+ np = getNumNGonPoints(params, 3,0, 0, 1, split);
+
+ if (hollow)
+ {
+ np *= 2;
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_CIRCLE:
+ {
+ // If this has a square hollow, we should adjust the
+ // number of faces a bit so that the geometry lines up.
+ U8 hole_type=0;
+ F32 circle_detail = MIN_DETAIL_FACES * detail;
+ if (hollow)
+ {
+ hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
+ if (hole_type == LL_PCODE_HOLE_SQUARE)
+ {
+ // Snap to the next multiple of four sides,
+ // so that corners line up.
+ circle_detail = llceil(circle_detail / 4.0f) * 4.0f;
+ }
+ }
+
+ S32 sides = (S32)circle_detail;
+
+ if (is_sculpted)
+ sides = sculpt_size;
+
+ np = getNumNGonPoints(params, sides);
+
+ if (hollow)
+ {
+ np *= 2;
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_CIRCLE_HALF:
+ {
+ // If this has a square hollow, we should adjust the
+ // number of faces a bit so that the geometry lines up.
+ U8 hole_type=0;
+ // Number of faces is cut in half because it's only a half-circle.
+ F32 circle_detail = MIN_DETAIL_FACES * detail * 0.5f;
+ if (hollow)
+ {
+ hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
+ if (hole_type == LL_PCODE_HOLE_SQUARE)
+ {
+ // Snap to the next multiple of four sides (div 2),
+ // so that corners line up.
+ circle_detail = llceil(circle_detail / 2.0f) * 2.0f;
+ }
+ }
+ np = getNumNGonPoints(params, llfloor(circle_detail), 0.5f, 0.f, 0.5f);
+
+ if (hollow)
+ {
+ np *= 2;
+ }
+
+ // Special case for openness of sphere
+ if ((params.getEnd() - params.getBegin()) < 1.f)
+ {
+ }
+ else if (!hollow)
+ {
+ np++;
+ }
+ }
+ break;
+ default:
+ break;
+ };
+
+
+ return np;
+}
+
+
+bool LLProfile::generate(const LLProfileParams& params, bool path_open,F32 detail, S32 split,
+ bool is_sculpted, S32 sculpt_size)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME
+
+ if ((!mDirty) && (!is_sculpted))
+ {
+ return false;
+ }
+ mDirty = false;
+
+ if (detail < MIN_LOD)
+ {
+ LL_INFOS() << "Generating profile with LOD < MIN_LOD. CLAMPING" << LL_ENDL;
+ detail = MIN_LOD;
+ }
+
+ mProfile.resize(0);
+ mFaces.resize(0);
+
+ // Generate the face data
+ S32 i;
+ F32 begin = params.getBegin();
+ F32 end = params.getEnd();
+ F32 hollow = params.getHollow();
+
+ // Quick validation to eliminate some server crashes.
+ if (begin > end - 0.01f)
+ {
+ LL_WARNS() << "LLProfile::generate() assertion failed (begin >= end)" << LL_ENDL;
+ return false;
+ }
+
+ S32 face_num = 0;
+
+ switch (params.getCurveType() & LL_PCODE_PROFILE_MASK)
+ {
+ case LL_PCODE_PROFILE_SQUARE:
+ {
+ genNGon(params, 4,-0.375, 0, 1, split);
+ if (path_open)
+ {
+ addCap (LL_FACE_PATH_BEGIN);
+ }
+
+ for (i = llfloor(begin * 4.f); i < llfloor(end * 4.f + .999f); i++)
+ {
+ addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, true);
+ }
+
+ LLVector4a scale(1,1,4,1);
+
+ for (i = 0; i <(S32) mProfile.size(); i++)
+ {
+ // Scale by 4 to generate proper tex coords.
+ mProfile[i].mul(scale);
+ llassert(mProfile[i].isFinite3());
+ }
+
+ if (hollow)
+ {
+ switch (params.getCurveType() & LL_PCODE_HOLE_MASK)
+ {
+ case LL_PCODE_HOLE_TRIANGLE:
+ // This offset is not correct, but we can't change it now... DK 11/17/04
+ addHole(params, true, 3, -0.375f, hollow, 1.f, split);
+ break;
+ case LL_PCODE_HOLE_CIRCLE:
+ // TODO: Compute actual detail levels for cubes
+ addHole(params, false, MIN_DETAIL_FACES * detail, -0.375f, hollow, 1.f);
+ break;
+ case LL_PCODE_HOLE_SAME:
+ case LL_PCODE_HOLE_SQUARE:
+ default:
+ addHole(params, true, 4, -0.375f, hollow, 1.f, split);
+ break;
+ }
+ }
+
+ if (path_open) {
+ mFaces[0].mCount = mTotal;
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_ISOTRI:
+ case LL_PCODE_PROFILE_RIGHTTRI:
+ case LL_PCODE_PROFILE_EQUALTRI:
+ {
+ genNGon(params, 3,0, 0, 1, split);
+ LLVector4a scale(1,1,3,1);
+ for (i = 0; i <(S32) mProfile.size(); i++)
+ {
+ // Scale by 3 to generate proper tex coords.
+ mProfile[i].mul(scale);
+ llassert(mProfile[i].isFinite3());
+ }
+
+ if (path_open)
+ {
+ addCap(LL_FACE_PATH_BEGIN);
+ }
+
+ for (i = llfloor(begin * 3.f); i < llfloor(end * 3.f + .999f); i++)
+ {
+ addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, true);
+ }
+ if (hollow)
+ {
+ // Swept triangles need smaller hollowness values,
+ // because the triangle doesn't fill the bounding box.
+ F32 triangle_hollow = hollow / 2.f;
+
+ switch (params.getCurveType() & LL_PCODE_HOLE_MASK)
+ {
+ case LL_PCODE_HOLE_CIRCLE:
+ // TODO: Actually generate level of detail for triangles
+ addHole(params, false, MIN_DETAIL_FACES * detail, 0, triangle_hollow, 1.f);
+ break;
+ case LL_PCODE_HOLE_SQUARE:
+ addHole(params, true, 4, 0, triangle_hollow, 1.f, split);
+ break;
+ case LL_PCODE_HOLE_SAME:
+ case LL_PCODE_HOLE_TRIANGLE:
+ default:
+ addHole(params, true, 3, 0, triangle_hollow, 1.f, split);
+ break;
+ }
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_CIRCLE:
+ {
+ // If this has a square hollow, we should adjust the
+ // number of faces a bit so that the geometry lines up.
+ U8 hole_type=0;
+ F32 circle_detail = MIN_DETAIL_FACES * detail;
+ if (hollow)
+ {
+ hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
+ if (hole_type == LL_PCODE_HOLE_SQUARE)
+ {
+ // Snap to the next multiple of four sides,
+ // so that corners line up.
+ circle_detail = llceil(circle_detail / 4.0f) * 4.0f;
+ }
+ }
+
+ S32 sides = (S32)circle_detail;
+
+ if (is_sculpted)
+ sides = sculpt_size;
+
+ genNGon(params, sides);
+
+ if (path_open)
+ {
+ addCap (LL_FACE_PATH_BEGIN);
+ }
+
+ if (mOpen && !hollow)
+ {
+ addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, false);
+ }
+ else
+ {
+ addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, false);
+ }
+
+ if (hollow)
+ {
+ switch (hole_type)
+ {
+ case LL_PCODE_HOLE_SQUARE:
+ addHole(params, true, 4, 0, hollow, 1.f, split);
+ break;
+ case LL_PCODE_HOLE_TRIANGLE:
+ addHole(params, true, 3, 0, hollow, 1.f, split);
+ break;
+ case LL_PCODE_HOLE_CIRCLE:
+ case LL_PCODE_HOLE_SAME:
+ default:
+ addHole(params, true, circle_detail, 0, hollow, 1.f);
+ break;
+ }
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_CIRCLE_HALF:
+ {
+ // If this has a square hollow, we should adjust the
+ // number of faces a bit so that the geometry lines up.
+ U8 hole_type=0;
+ // Number of faces is cut in half because it's only a half-circle.
+ F32 circle_detail = MIN_DETAIL_FACES * detail * 0.5f;
+ if (hollow)
+ {
+ hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
+ if (hole_type == LL_PCODE_HOLE_SQUARE)
+ {
+ // Snap to the next multiple of four sides (div 2),
+ // so that corners line up.
+ circle_detail = llceil(circle_detail / 2.0f) * 2.0f;
+ }
+ }
+ genNGon(params, llfloor(circle_detail), 0.5f, 0.f, 0.5f);
+ if (path_open)
+ {
+ addCap(LL_FACE_PATH_BEGIN);
+ }
+ if (mOpen && !params.getHollow())
+ {
+ addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, false);
+ }
+ else
+ {
+ addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, false);
+ }
+
+ if (hollow)
+ {
+ switch (hole_type)
+ {
+ case LL_PCODE_HOLE_SQUARE:
+ addHole(params, true, 2, 0.5f, hollow, 0.5f, split);
+ break;
+ case LL_PCODE_HOLE_TRIANGLE:
+ addHole(params, true, 3, 0.5f, hollow, 0.5f, split);
+ break;
+ case LL_PCODE_HOLE_CIRCLE:
+ case LL_PCODE_HOLE_SAME:
+ default:
+ addHole(params, false, circle_detail, 0.5f, hollow, 0.5f);
+ break;
+ }
+ }
+
+ // Special case for openness of sphere
+ if ((params.getEnd() - params.getBegin()) < 1.f)
+ {
+ mOpen = true;
+ }
+ else if (!hollow)
+ {
+ mOpen = false;
+ mProfile.push_back(mProfile[0]);
+ mTotal++;
+ }
+ }
+ break;
+ default:
+ LL_ERRS() << "Unknown profile: getCurveType()=" << params.getCurveType() << LL_ENDL;
+ break;
+ };
+
+ if (path_open)
+ {
+ addCap(LL_FACE_PATH_END); // bottom
+ }
+
+ if ( mOpen) // interior edge caps
+ {
+ addFace(mTotal-1, 2,0.5,LL_FACE_PROFILE_BEGIN, true);
+
+ if (hollow)
+ {
+ addFace(mTotalOut-1, 2,0.5,LL_FACE_PROFILE_END, true);
+ }
+ else
+ {
+ addFace(mTotal-2, 2,0.5,LL_FACE_PROFILE_END, true);
+ }
+ }
+
+ return true;
+}
+
+
+
+bool LLProfileParams::importFile(LLFILE *fp)
+{
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE]; /* Flawfinder: ignore */
+ // *NOTE: changing the size or type of these buffers will require
+ // changing the sscanf below.
+ char keyword[256]; /* Flawfinder: ignore */
+ char valuestr[256]; /* Flawfinder: ignore */
+ keyword[0] = 0;
+ valuestr[0] = 0;
+ F32 tempF32;
+ U32 tempU32;
+
+ while (!feof(fp))
+ {
+ if (fgets(buffer, BUFSIZE, fp) == NULL)
+ {
+ buffer[0] = '\0';
+ }
+
+ sscanf( /* Flawfinder: ignore */
+ buffer,
+ " %255s %255s",
+ keyword, valuestr);
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("curve", keyword))
+ {
+ sscanf(valuestr,"%d",&tempU32);
+ setCurveType((U8) tempU32);
+ }
+ else if (!strcmp("begin",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setBegin(tempF32);
+ }
+ else if (!strcmp("end",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setEnd(tempF32);
+ }
+ else if (!strcmp("hollow",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setHollow(tempF32);
+ }
+ else
+ {
+ LL_WARNS() << "unknown keyword " << keyword << " in profile import" << LL_ENDL;
+ }
+ }
+
+ return true;
+}
+
+
+bool LLProfileParams::exportFile(LLFILE *fp) const
+{
+ fprintf(fp,"\t\tprofile 0\n");
+ fprintf(fp,"\t\t{\n");
+ fprintf(fp,"\t\t\tcurve\t%d\n", getCurveType());
+ fprintf(fp,"\t\t\tbegin\t%g\n", getBegin());
+ fprintf(fp,"\t\t\tend\t%g\n", getEnd());
+ fprintf(fp,"\t\t\thollow\t%g\n", getHollow());
+ fprintf(fp, "\t\t}\n");
+ return true;
+}
+
+
+bool LLProfileParams::importLegacyStream(std::istream& input_stream)
+{
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE]; /* Flawfinder: ignore */
+ // *NOTE: changing the size or type of these buffers will require
+ // changing the sscanf below.
+ char keyword[256]; /* Flawfinder: ignore */
+ char valuestr[256]; /* Flawfinder: ignore */
+ keyword[0] = 0;
+ valuestr[0] = 0;
+ F32 tempF32;
+ U32 tempU32;
+
+ while (input_stream.good())
+ {
+ input_stream.getline(buffer, BUFSIZE);
+ sscanf( /* Flawfinder: ignore */
+ buffer,
+ " %255s %255s",
+ keyword,
+ valuestr);
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("curve", keyword))
+ {
+ sscanf(valuestr,"%d",&tempU32);
+ setCurveType((U8) tempU32);
+ }
+ else if (!strcmp("begin",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setBegin(tempF32);
+ }
+ else if (!strcmp("end",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setEnd(tempF32);
+ }
+ else if (!strcmp("hollow",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setHollow(tempF32);
+ }
+ else
+ {
+ LL_WARNS() << "unknown keyword " << keyword << " in profile import" << LL_ENDL;
+ }
+ }
+
+ return true;
+}
+
+
+bool LLProfileParams::exportLegacyStream(std::ostream& output_stream) const
+{
+ output_stream <<"\t\tprofile 0\n";
+ output_stream <<"\t\t{\n";
+ output_stream <<"\t\t\tcurve\t" << (S32) getCurveType() << "\n";
+ output_stream <<"\t\t\tbegin\t" << getBegin() << "\n";
+ output_stream <<"\t\t\tend\t" << getEnd() << "\n";
+ output_stream <<"\t\t\thollow\t" << getHollow() << "\n";
+ output_stream << "\t\t}\n";
+ return true;
+}
+
+LLSD LLProfileParams::asLLSD() const
+{
+ LLSD sd;
+
+ sd["curve"] = getCurveType();
+ sd["begin"] = getBegin();
+ sd["end"] = getEnd();
+ sd["hollow"] = getHollow();
+ return sd;
+}
+
+bool LLProfileParams::fromLLSD(LLSD& sd)
+{
+ setCurveType(sd["curve"].asInteger());
+ setBegin((F32)sd["begin"].asReal());
+ setEnd((F32)sd["end"].asReal());
+ setHollow((F32)sd["hollow"].asReal());
+ return true;
+}
+
+void LLProfileParams::copyParams(const LLProfileParams ¶ms)
+{
+ setCurveType(params.getCurveType());
+ setBegin(params.getBegin());
+ setEnd(params.getEnd());
+ setHollow(params.getHollow());
+}
+
+
+LLPath::~LLPath()
+{
+}
+
+S32 LLPath::getNumNGonPoints(const LLPathParams& params, S32 sides, F32 startOff, F32 end_scale, F32 twist_scale)
+{ //this is basically LLPath::genNGon stripped down to only operations that influence the number of points added
+ S32 ret = 0;
+
+ F32 step= 1.0f / sides;
+ F32 t = params.getBegin();
+ ret = 1;
+
+ t+=step;
+
+ // Snap to a quantized parameter, so that cut does not
+ // affect most sample points.
+ t = ((S32)(t * sides)) / (F32)sides;
+
+ // Run through the non-cut dependent points.
+ while (t < params.getEnd())
+ {
+ ret++;
+ t+=step;
+ }
+
+ ret++;
+
+ return ret;
+}
+
+void LLPath::genNGon(const LLPathParams& params, S32 sides, F32 startOff, F32 end_scale, F32 twist_scale)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME
+
+ // Generates a circular path, starting at (1, 0, 0), counterclockwise along the xz plane.
+ constexpr F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f };
+
+ F32 revolutions = params.getRevolutions();
+ F32 skew = params.getSkew();
+ F32 skew_mag = fabs(skew);
+ F32 hole_x = params.getScaleX() * (1.0f - skew_mag);
+ F32 hole_y = params.getScaleY();
+
+ // Calculate taper begin/end for x,y (Negative means taper the beginning)
+ F32 taper_x_begin = 1.0f;
+ F32 taper_x_end = 1.0f - params.getTaperX();
+ F32 taper_y_begin = 1.0f;
+ F32 taper_y_end = 1.0f - params.getTaperY();
+
+ if ( taper_x_end > 1.0f )
+ {
+ // Flip tapering.
+ taper_x_begin = 2.0f - taper_x_end;
+ taper_x_end = 1.0f;
+ }
+ if ( taper_y_end > 1.0f )
+ {
+ // Flip tapering.
+ taper_y_begin = 2.0f - taper_y_end;
+ taper_y_end = 1.0f;
+ }
+
+ // For spheres, the radius is usually zero.
+ F32 radius_start = 0.5f;
+ if (sides < 8)
+ {
+ radius_start = tableScale[sides];
+ }
+
+ // Scale the radius to take the hole size into account.
+ radius_start *= 1.0f - hole_y;
+
+ // Now check the radius offset to calculate the start,end radius. (Negative means
+ // decrease the start radius instead).
+ F32 radius_end = radius_start;
+ F32 radius_offset = params.getRadiusOffset();
+ if (radius_offset < 0.f)
+ {
+ radius_start *= 1.f + radius_offset;
+ }
+ else
+ {
+ radius_end *= 1.f - radius_offset;
+ }
+
+ // Is the path NOT a closed loop?
+ mOpen = ( (params.getEnd()*end_scale - params.getBegin() < 1.0f) ||
+ (skew_mag > 0.001f) ||
+ (fabs(taper_x_end - taper_x_begin) > 0.001f) ||
+ (fabs(taper_y_end - taper_y_begin) > 0.001f) ||
+ (fabs(radius_end - radius_start) > 0.001f) );
+
+ F32 ang, c, s;
+ LLQuaternion twist, qang;
+ PathPt *pt;
+ LLVector3 path_axis (1.f, 0.f, 0.f);
+ //LLVector3 twist_axis(0.f, 0.f, 1.f);
+ F32 twist_begin = params.getTwistBegin() * twist_scale;
+ F32 twist_end = params.getTwist() * twist_scale;
+
+ // We run through this once before the main loop, to make sure
+ // the path begins at the correct cut.
+ F32 step= 1.0f / sides;
+ F32 t = params.getBegin();
+ pt = mPath.append(1);
+ ang = 2.0f*F_PI*revolutions * t;
+ s = sin(ang)*lerp(radius_start, radius_end, t);
+ c = cos(ang)*lerp(radius_start, radius_end, t);
+
+
+ pt->mPos.set(0 + lerp(0,params.getShear().mV[0],s)
+ + lerp(-skew ,skew, t) * 0.5f,
+ c + lerp(0,params.getShear().mV[1],s),
+ s);
+ pt->mScale.set(hole_x * lerp(taper_x_begin, taper_x_end, t),
+ hole_y * lerp(taper_y_begin, taper_y_end, t),
+ 0,1);
+ pt->mTexT = t;
+
+ // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
+ twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
+ // Rotate the point around the circle's center.
+ qang.setQuat (ang,path_axis);
+
+ LLMatrix3 rot(twist * qang);
+
+ pt->mRot.loadu(rot);
+
+ t+=step;
+
+ // Snap to a quantized parameter, so that cut does not
+ // affect most sample points.
+ t = ((S32)(t * sides)) / (F32)sides;
+
+ // Run through the non-cut dependent points.
+ while (t < params.getEnd())
+ {
+ pt = mPath.append(1);
+
+ ang = 2.0f*F_PI*revolutions * t;
+ c = cos(ang)*lerp(radius_start, radius_end, t);
+ s = sin(ang)*lerp(radius_start, radius_end, t);
+
+ pt->mPos.set(0 + lerp(0,params.getShear().mV[0],s)
+ + lerp(-skew ,skew, t) * 0.5f,
+ c + lerp(0,params.getShear().mV[1],s),
+ s);
+
+ pt->mScale.set(hole_x * lerp(taper_x_begin, taper_x_end, t),
+ hole_y * lerp(taper_y_begin, taper_y_end, t),
+ 0,1);
+ pt->mTexT = t;
+
+ // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
+ twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
+ // Rotate the point around the circle's center.
+ qang.setQuat (ang,path_axis);
+ LLMatrix3 tmp(twist*qang);
+ pt->mRot.loadu(tmp);
+
+ t+=step;
+ }
+
+ // Make one final pass for the end cut.
+ t = params.getEnd();
+ pt = mPath.append(1);
+ ang = 2.0f*F_PI*revolutions * t;
+ c = cos(ang)*lerp(radius_start, radius_end, t);
+ s = sin(ang)*lerp(radius_start, radius_end, t);
+
+ pt->mPos.set(0 + lerp(0,params.getShear().mV[0],s)
+ + lerp(-skew ,skew, t) * 0.5f,
+ c + lerp(0,params.getShear().mV[1],s),
+ s);
+ pt->mScale.set(hole_x * lerp(taper_x_begin, taper_x_end, t),
+ hole_y * lerp(taper_y_begin, taper_y_end, t),
+ 0,1);
+ pt->mTexT = t;
+
+ // Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
+ twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
+ // Rotate the point around the circle's center.
+ qang.setQuat (ang,path_axis);
+ LLMatrix3 tmp(twist*qang);
+ pt->mRot.loadu(tmp);
+
+ mTotal = mPath.size();
+}
+
+const LLVector2 LLPathParams::getBeginScale() const
+{
+ LLVector2 begin_scale(1.f, 1.f);
+ if (getScaleX() > 1)
+ {
+ begin_scale.mV[0] = 2-getScaleX();
+ }
+ if (getScaleY() > 1)
+ {
+ begin_scale.mV[1] = 2-getScaleY();
+ }
+ return begin_scale;
+}
+
+const LLVector2 LLPathParams::getEndScale() const
+{
+ LLVector2 end_scale(1.f, 1.f);
+ if (getScaleX() < 1)
+ {
+ end_scale.mV[0] = getScaleX();
+ }
+ if (getScaleY() < 1)
+ {
+ end_scale.mV[1] = getScaleY();
+ }
+ return end_scale;
+}
+
+S32 LLPath::getNumPoints(const LLPathParams& params, F32 detail)
+{ // this is basically LLPath::generate stripped down to only the operations that influence the number of points
+ if (detail < MIN_LOD)
+ {
+ detail = MIN_LOD;
+ }
+
+ S32 np = 2; // hardcode for line
+
+ // Is this 0xf0 mask really necessary? DK 03/02/05
+
+ switch (params.getCurveType() & 0xf0)
+ {
+ default:
+ case LL_PCODE_PATH_LINE:
+ {
+ // Take the begin/end twist into account for detail.
+ np = llfloor(fabs(params.getTwistBegin() - params.getTwist()) * 3.5f * (detail-0.5f)) + 2;
+ }
+ break;
+
+ case LL_PCODE_PATH_CIRCLE:
+ {
+ // Increase the detail as the revolutions and twist increase.
+ F32 twist_mag = fabs(params.getTwistBegin() - params.getTwist());
+
+ S32 sides = (S32)llfloor(llfloor((MIN_DETAIL_FACES * detail + twist_mag * 3.5f * (detail-0.5f))) * params.getRevolutions());
+
+ np = sides;
+ }
+ break;
+
+ case LL_PCODE_PATH_CIRCLE2:
+ {
+ //genNGon(params, llfloor(MIN_DETAIL_FACES * detail), 4.f, 0.f);
+ np = getNumNGonPoints(params, llfloor(MIN_DETAIL_FACES * detail));
+ }
+ break;
+
+ case LL_PCODE_PATH_TEST:
+
+ np = 5;
+ break;
+ };
+
+ return np;
+}
+
+bool LLPath::generate(const LLPathParams& params, F32 detail, S32 split,
+ bool is_sculpted, S32 sculpt_size)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME
+
+ if ((!mDirty) && (!is_sculpted))
+ {
+ return false;
+ }
+
+ if (detail < MIN_LOD)
+ {
+ LL_INFOS() << "Generating path with LOD < MIN! Clamping to 1" << LL_ENDL;
+ detail = MIN_LOD;
+ }
+
+ mDirty = false;
+ S32 np = 2; // hardcode for line
+
+ mPath.resize(0);
+ mOpen = true;
+
+ // Is this 0xf0 mask really necessary? DK 03/02/05
+ switch (params.getCurveType() & 0xf0)
+ {
+ default:
+ case LL_PCODE_PATH_LINE:
+ {
+ // Take the begin/end twist into account for detail.
+ np = llfloor(fabs(params.getTwistBegin() - params.getTwist()) * 3.5f * (detail-0.5f)) + 2;
+ if (np < split+2)
+ {
+ np = split+2;
+ }
+
+ mStep = 1.0f / (np-1);
+
+ mPath.resize(np);
+
+ LLVector2 start_scale = params.getBeginScale();
+ LLVector2 end_scale = params.getEndScale();
+
+ for (S32 i=0;i<np;i++)
+ {
+ F32 t = lerp(params.getBegin(),params.getEnd(),(F32)i * mStep);
+ mPath[i].mPos.set(lerp(0,params.getShear().mV[0],t),
+ lerp(0,params.getShear().mV[1],t),
+ t - 0.5f);
+ LLQuaternion quat;
+ quat.setQuat(lerp(F_PI * params.getTwistBegin(),F_PI * params.getTwist(),t),0,0,1);
+ LLMatrix3 tmp(quat);
+ mPath[i].mRot.loadu(tmp);
+ mPath[i].mScale.set(lerp(start_scale.mV[0],end_scale.mV[0],t),
+ lerp(start_scale.mV[1],end_scale.mV[1],t),
+ 0,1);
+ mPath[i].mTexT = t;
+ }
+ }
+ break;
+
+ case LL_PCODE_PATH_CIRCLE:
+ {
+ // Increase the detail as the revolutions and twist increase.
+ F32 twist_mag = fabs(params.getTwistBegin() - params.getTwist());
+
+ S32 sides = (S32)llfloor(llfloor((MIN_DETAIL_FACES * detail + twist_mag * 3.5f * (detail-0.5f))) * params.getRevolutions());
+
+ if (is_sculpted)
+ sides = llmax(sculpt_size, 1);
+
+ if (0 < sides)
+ genNGon(params, sides);
+ }
+ break;
+
+ case LL_PCODE_PATH_CIRCLE2:
+ {
+ if (params.getEnd() - params.getBegin() >= 0.99f &&
+ params.getScaleX() >= .99f)
+ {
+ mOpen = false;
+ }
+
+ //genNGon(params, llfloor(MIN_DETAIL_FACES * detail), 4.f, 0.f);
+ genNGon(params, llfloor(MIN_DETAIL_FACES * detail));
+
+ F32 toggle = 0.5f;
+ for (S32 i=0;i<(S32)mPath.size();i++)
+ {
+ mPath[i].mPos.getF32ptr()[0] = toggle;
+ if (toggle == 0.5f)
+ toggle = -0.5f;
+ else
+ toggle = 0.5f;
+ }
+ }
+
+ break;
+
+ case LL_PCODE_PATH_TEST:
+
+ np = 5;
+ mStep = 1.0f / (np-1);
+
+ mPath.resize(np);
+
+ for (S32 i=0;i<np;i++)
+ {
+ F32 t = (F32)i * mStep;
+ mPath[i].mPos.set(0,
+ lerp(0, -sin(F_PI*params.getTwist()*t)*0.5f,t),
+ lerp(-0.5f, cos(F_PI*params.getTwist()*t)*0.5f,t));
+ mPath[i].mScale.set(lerp(1,params.getScale().mV[0],t),
+ lerp(1,params.getScale().mV[1],t), 0,1);
+ mPath[i].mTexT = t;
+ LLQuaternion quat;
+ quat.setQuat(F_PI * params.getTwist() * t,1,0,0);
+ LLMatrix3 tmp(quat);
+ mPath[i].mRot.loadu(tmp);
+ }
+
+ break;
+ };
+
+ if (params.getTwist() != params.getTwistBegin()) mOpen = true;
+
+ //if ((int(fabsf(params.getTwist() - params.getTwistBegin())*100))%100 != 0) {
+ // mOpen = true;
+ //}
+
+ return true;
+}
+
+bool LLDynamicPath::generate(const LLPathParams& params, F32 detail, S32 split,
+ bool is_sculpted, S32 sculpt_size)
+{
+ mOpen = true; // Draw end caps
+ if (getPathLength() == 0)
+ {
+ // Path hasn't been generated yet.
+ // Some algorithms later assume at least TWO path points.
+ resizePath(2);
+ LLQuaternion quat;
+ quat.setQuat(0,0,0);
+ LLMatrix3 tmp(quat);
+
+ for (U32 i = 0; i < 2; i++)
+ {
+ mPath[i].mPos.set(0, 0, 0);
+ mPath[i].mRot.loadu(tmp);
+ mPath[i].mScale.set(1, 1, 0, 1);
+ mPath[i].mTexT = 0;
+ }
+ }
+
+ return true;
+}
+
+
+bool LLPathParams::importFile(LLFILE *fp)
+{
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE]; /* Flawfinder: ignore */
+ // *NOTE: changing the size or type of these buffers will require
+ // changing the sscanf below.
+ char keyword[256]; /* Flawfinder: ignore */
+ char valuestr[256]; /* Flawfinder: ignore */
+ keyword[0] = 0;
+ valuestr[0] = 0;
+
+ F32 tempF32;
+ F32 x, y;
+ U32 tempU32;
+
+ while (!feof(fp))
+ {
+ if (fgets(buffer, BUFSIZE, fp) == NULL)
+ {
+ buffer[0] = '\0';
+ }
+
+ sscanf( /* Flawfinder: ignore */
+ buffer,
+ " %255s %255s",
+ keyword, valuestr);
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("curve", keyword))
+ {
+ sscanf(valuestr,"%d",&tempU32);
+ setCurveType((U8) tempU32);
+ }
+ else if (!strcmp("begin",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setBegin(tempF32);
+ }
+ else if (!strcmp("end",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setEnd(tempF32);
+ }
+ else if (!strcmp("scale",keyword))
+ {
+ // Legacy for one dimensional scale per path
+ sscanf(valuestr,"%g",&tempF32);
+ setScale(tempF32, tempF32);
+ }
+ else if (!strcmp("scale_x", keyword))
+ {
+ sscanf(valuestr, "%g", &x);
+ setScaleX(x);
+ }
+ else if (!strcmp("scale_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setScaleY(y);
+ }
+ else if (!strcmp("shear_x", keyword))
+ {
+ sscanf(valuestr, "%g", &x);
+ setShearX(x);
+ }
+ else if (!strcmp("shear_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setShearY(y);
+ }
+ else if (!strcmp("twist",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setTwist(tempF32);
+ }
+ else if (!strcmp("twist_begin", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTwistBegin(y);
+ }
+ else if (!strcmp("radius_offset", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setRadiusOffset(y);
+ }
+ else if (!strcmp("taper_x", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTaperX(y);
+ }
+ else if (!strcmp("taper_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTaperY(y);
+ }
+ else if (!strcmp("revolutions", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setRevolutions(y);
+ }
+ else if (!strcmp("skew", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setSkew(y);
+ }
+ else
+ {
+ LL_WARNS() << "unknown keyword " << " in path import" << LL_ENDL;
+ }
+ }
+ return true;
+}
+
+
+bool LLPathParams::exportFile(LLFILE *fp) const
+{
+ fprintf(fp, "\t\tpath 0\n");
+ fprintf(fp, "\t\t{\n");
+ fprintf(fp, "\t\t\tcurve\t%d\n", getCurveType());
+ fprintf(fp, "\t\t\tbegin\t%g\n", getBegin());
+ fprintf(fp, "\t\t\tend\t%g\n", getEnd());
+ fprintf(fp, "\t\t\tscale_x\t%g\n", getScaleX() );
+ fprintf(fp, "\t\t\tscale_y\t%g\n", getScaleY() );
+ fprintf(fp, "\t\t\tshear_x\t%g\n", getShearX() );
+ fprintf(fp, "\t\t\tshear_y\t%g\n", getShearY() );
+ fprintf(fp,"\t\t\ttwist\t%g\n", getTwist());
+
+ fprintf(fp,"\t\t\ttwist_begin\t%g\n", getTwistBegin());
+ fprintf(fp,"\t\t\tradius_offset\t%g\n", getRadiusOffset());
+ fprintf(fp,"\t\t\ttaper_x\t%g\n", getTaperX());
+ fprintf(fp,"\t\t\ttaper_y\t%g\n", getTaperY());
+ fprintf(fp,"\t\t\trevolutions\t%g\n", getRevolutions());
+ fprintf(fp,"\t\t\tskew\t%g\n", getSkew());
+
+ fprintf(fp, "\t\t}\n");
+ return true;
+}
+
+
+bool LLPathParams::importLegacyStream(std::istream& input_stream)
+{
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE]; /* Flawfinder: ignore */
+ // *NOTE: changing the size or type of these buffers will require
+ // changing the sscanf below.
+ char keyword[256]; /* Flawfinder: ignore */
+ char valuestr[256]; /* Flawfinder: ignore */
+ keyword[0] = 0;
+ valuestr[0] = 0;
+
+ F32 tempF32;
+ F32 x, y;
+ U32 tempU32;
+
+ while (input_stream.good())
+ {
+ input_stream.getline(buffer, BUFSIZE);
+ sscanf( /* Flawfinder: ignore */
+ buffer,
+ " %255s %255s",
+ keyword, valuestr);
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("curve", keyword))
+ {
+ sscanf(valuestr,"%d",&tempU32);
+ setCurveType((U8) tempU32);
+ }
+ else if (!strcmp("begin",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setBegin(tempF32);
+ }
+ else if (!strcmp("end",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setEnd(tempF32);
+ }
+ else if (!strcmp("scale",keyword))
+ {
+ // Legacy for one dimensional scale per path
+ sscanf(valuestr,"%g",&tempF32);
+ setScale(tempF32, tempF32);
+ }
+ else if (!strcmp("scale_x", keyword))
+ {
+ sscanf(valuestr, "%g", &x);
+ setScaleX(x);
+ }
+ else if (!strcmp("scale_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setScaleY(y);
+ }
+ else if (!strcmp("shear_x", keyword))
+ {
+ sscanf(valuestr, "%g", &x);
+ setShearX(x);
+ }
+ else if (!strcmp("shear_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setShearY(y);
+ }
+ else if (!strcmp("twist",keyword))
+ {
+ sscanf(valuestr,"%g",&tempF32);
+ setTwist(tempF32);
+ }
+ else if (!strcmp("twist_begin", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTwistBegin(y);
+ }
+ else if (!strcmp("radius_offset", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setRadiusOffset(y);
+ }
+ else if (!strcmp("taper_x", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTaperX(y);
+ }
+ else if (!strcmp("taper_y", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setTaperY(y);
+ }
+ else if (!strcmp("revolutions", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setRevolutions(y);
+ }
+ else if (!strcmp("skew", keyword))
+ {
+ sscanf(valuestr, "%g", &y);
+ setSkew(y);
+ }
+ else
+ {
+ LL_WARNS() << "unknown keyword " << " in path import" << LL_ENDL;
+ }
+ }
+ return true;
+}
+
+
+bool LLPathParams::exportLegacyStream(std::ostream& output_stream) const
+{
+ output_stream << "\t\tpath 0\n";
+ output_stream << "\t\t{\n";
+ output_stream << "\t\t\tcurve\t" << (S32) getCurveType() << "\n";
+ output_stream << "\t\t\tbegin\t" << getBegin() << "\n";
+ output_stream << "\t\t\tend\t" << getEnd() << "\n";
+ output_stream << "\t\t\tscale_x\t" << getScaleX() << "\n";
+ output_stream << "\t\t\tscale_y\t" << getScaleY() << "\n";
+ output_stream << "\t\t\tshear_x\t" << getShearX() << "\n";
+ output_stream << "\t\t\tshear_y\t" << getShearY() << "\n";
+ output_stream <<"\t\t\ttwist\t" << getTwist() << "\n";
+
+ output_stream <<"\t\t\ttwist_begin\t" << getTwistBegin() << "\n";
+ output_stream <<"\t\t\tradius_offset\t" << getRadiusOffset() << "\n";
+ output_stream <<"\t\t\ttaper_x\t" << getTaperX() << "\n";
+ output_stream <<"\t\t\ttaper_y\t" << getTaperY() << "\n";
+ output_stream <<"\t\t\trevolutions\t" << getRevolutions() << "\n";
+ output_stream <<"\t\t\tskew\t" << getSkew() << "\n";
+
+ output_stream << "\t\t}\n";
+ return true;
+}
+
+LLSD LLPathParams::asLLSD() const
+{
+ LLSD sd = LLSD();
+ sd["curve"] = getCurveType();
+ sd["begin"] = getBegin();
+ sd["end"] = getEnd();
+ sd["scale_x"] = getScaleX();
+ sd["scale_y"] = getScaleY();
+ sd["shear_x"] = getShearX();
+ sd["shear_y"] = getShearY();
+ sd["twist"] = getTwist();
+ sd["twist_begin"] = getTwistBegin();
+ sd["radius_offset"] = getRadiusOffset();
+ sd["taper_x"] = getTaperX();
+ sd["taper_y"] = getTaperY();
+ sd["revolutions"] = getRevolutions();
+ sd["skew"] = getSkew();
+
+ return sd;
+}
+
+bool LLPathParams::fromLLSD(LLSD& sd)
+{
+ setCurveType(sd["curve"].asInteger());
+ setBegin((F32)sd["begin"].asReal());
+ setEnd((F32)sd["end"].asReal());
+ setScaleX((F32)sd["scale_x"].asReal());
+ setScaleY((F32)sd["scale_y"].asReal());
+ setShearX((F32)sd["shear_x"].asReal());
+ setShearY((F32)sd["shear_y"].asReal());
+ setTwist((F32)sd["twist"].asReal());
+ setTwistBegin((F32)sd["twist_begin"].asReal());
+ setRadiusOffset((F32)sd["radius_offset"].asReal());
+ setTaperX((F32)sd["taper_x"].asReal());
+ setTaperY((F32)sd["taper_y"].asReal());
+ setRevolutions((F32)sd["revolutions"].asReal());
+ setSkew((F32)sd["skew"].asReal());
+ return true;
+}
+
+void LLPathParams::copyParams(const LLPathParams ¶ms)
+{
+ setCurveType(params.getCurveType());
+ setBegin(params.getBegin());
+ setEnd(params.getEnd());
+ setScale(params.getScaleX(), params.getScaleY() );
+ setShear(params.getShearX(), params.getShearY() );
+ setTwist(params.getTwist());
+ setTwistBegin(params.getTwistBegin());
+ setRadiusOffset(params.getRadiusOffset());
+ setTaper( params.getTaperX(), params.getTaperY() );
+ setRevolutions(params.getRevolutions());
+ setSkew(params.getSkew());
+}
+
+LLProfile::~LLProfile()
+{
+}
+
+
+S32 LLVolume::sNumMeshPoints = 0;
+
+LLVolume::LLVolume(const LLVolumeParams ¶ms, const F32 detail, const bool generate_single_face, const bool is_unique)
+ : mParams(params)
+{
+ mUnique = is_unique;
+ mFaceMask = 0x0;
+ mDetail = detail;
+ mSculptLevel = -2;
+ mSurfaceArea = 1.f; //only calculated for sculpts, defaults to 1 for all other prims
+ mIsMeshAssetLoaded = false;
+ mIsMeshAssetUnavaliable = false;
+ mLODScaleBias.setVec(1,1,1);
+ mHullPoints = nullptr;
+ mHullIndices = nullptr;
+ mNumHullPoints = 0;
+ mNumHullIndices = 0;
+
+ // set defaults
+ if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_FLEXIBLE)
+ {
+ mPathp = new LLDynamicPath();
+ }
+ else
+ {
+ mPathp = new LLPath();
+ }
+ mProfilep = new LLProfile();
+
+ mGenerateSingleFace = generate_single_face;
+
+ generate();
+
+ if ((mParams.getSculptID().isNull() && mParams.getSculptType() == LL_SCULPT_TYPE_NONE) || mParams.getSculptType() == LL_SCULPT_TYPE_MESH)
+ {
+ createVolumeFaces();
+ }
+}
+
+void LLVolume::resizePath(S32 length)
+{
+ mPathp->resizePath(length);
+ mVolumeFaces.clear();
+ setDirty();
+}
+
+void LLVolume::regen()
+{
+ generate();
+ createVolumeFaces();
+}
+
+void LLVolume::genTangents(S32 face)
+{
+ // generate legacy tangents for the specified face
+ llassert(!isMeshAssetLoaded() || mVolumeFaces[face].mTangents != nullptr); // if this is a complete mesh asset, we should already have tangents
+ mVolumeFaces[face].createTangents();
+}
+
+LLVolume::~LLVolume()
+{
+ sNumMeshPoints -= mMesh.size();
+ delete mPathp;
+
+ delete mProfilep;
+
+ mPathp = NULL;
+ mProfilep = NULL;
+ mVolumeFaces.clear();
+
+ ll_aligned_free_16(mHullPoints);
+ mHullPoints = NULL;
+ ll_aligned_free_16(mHullIndices);
+ mHullIndices = NULL;
+}
+
+bool LLVolume::generate()
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME
+
+ LL_CHECK_MEMORY
+ llassert_always(mProfilep);
+
+ //Added 10.03.05 Dave Parks
+ // Split is a parameter to LLProfile::generate that tesselates edges on the profile
+ // to prevent lighting and texture interpolation errors on triangles that are
+ // stretched due to twisting or scaling on the path.
+ S32 split = (S32) ((mDetail)*0.66f);
+
+ if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_LINE &&
+ (mParams.getPathParams().getScale().mV[0] != 1.0f ||
+ mParams.getPathParams().getScale().mV[1] != 1.0f) &&
+ (mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_SQUARE ||
+ mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_ISOTRI ||
+ mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_EQUALTRI ||
+ mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_RIGHTTRI))
+ {
+ split = 0;
+ }
+
+ mLODScaleBias.setVec(0.5f, 0.5f, 0.5f);
+
+ F32 profile_detail = mDetail;
+ F32 path_detail = mDetail;
+
+ if ((mParams.getSculptType() & LL_SCULPT_TYPE_MASK) != LL_SCULPT_TYPE_MESH)
+ {
+ U8 path_type = mParams.getPathParams().getCurveType();
+ U8 profile_type = mParams.getProfileParams().getCurveType();
+ if (path_type == LL_PCODE_PATH_LINE && profile_type == LL_PCODE_PROFILE_CIRCLE)
+ {
+ //cylinders don't care about Z-Axis
+ mLODScaleBias.setVec(0.6f, 0.6f, 0.0f);
+ }
+ else if (path_type == LL_PCODE_PATH_CIRCLE)
+ {
+ mLODScaleBias.setVec(0.6f, 0.6f, 0.6f);
+ }
+ }
+
+ bool regenPath = mPathp->generate(mParams.getPathParams(), path_detail, split);
+ bool regenProf = mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(),profile_detail, split);
+
+ if (regenPath || regenProf )
+ {
+ S32 sizeS = mPathp->mPath.size();
+ S32 sizeT = mProfilep->mProfile.size();
+
+ sNumMeshPoints -= mMesh.size();
+ mMesh.resize(sizeT * sizeS);
+ sNumMeshPoints += mMesh.size();
+
+ //generate vertex positions
+
+ // Run along the path.
+ LLVector4a* dst = mMesh.mArray;
+
+ for (S32 s = 0; s < sizeS; ++s)
+ {
+ F32* scale = mPathp->mPath[s].mScale.getF32ptr();
+
+ F32 sc [] =
+ { scale[0], 0, 0, 0,
+ 0, scale[1], 0, 0,
+ 0, 0, scale[2], 0,
+ 0, 0, 0, 1 };
+
+ LLMatrix4 rot((F32*) mPathp->mPath[s].mRot.mMatrix);
+ LLMatrix4 scale_mat(sc);
+
+ scale_mat *= rot;
+
+ LLMatrix4a rot_mat;
+ rot_mat.loadu(scale_mat);
+
+ LLVector4a* profile = mProfilep->mProfile.mArray;
+ LLVector4a* end_profile = profile+sizeT;
+ LLVector4a offset = mPathp->mPath[s].mPos;
+
+ // hack to work around MAINT-5660 for debug until we can suss out
+ // what is wrong with the path generated that inserts NaNs...
+ if (!offset.isFinite3())
+ {
+ offset.clear();
+ }
+
+ LLVector4a tmp;
+
+ // Run along the profile.
+ while (profile < end_profile)
+ {
+ rot_mat.rotate(*profile++, tmp);
+ dst->setAdd(tmp,offset);
+ ++dst;
+ }
+ }
+
+ for (std::vector<LLProfile::Face>::iterator iter = mProfilep->mFaces.begin();
+ iter != mProfilep->mFaces.end(); ++iter)
+ {
+ LLFaceID id = iter->mFaceID;
+ mFaceMask |= id;
+ }
+ LL_CHECK_MEMORY
+ return true;
+ }
+
+ LL_CHECK_MEMORY
+ return false;
+}
+
+void LLVolumeFace::VertexData::init()
+{
+ if (!mData)
+ {
+ mData = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*2);
+ }
+}
+
+LLVolumeFace::VertexData::VertexData()
+{
+ mData = NULL;
+ init();
+}
+
+LLVolumeFace::VertexData::VertexData(const VertexData& rhs)
+{
+ mData = NULL;
+ *this = rhs;
+}
+
+const LLVolumeFace::VertexData& LLVolumeFace::VertexData::operator=(const LLVolumeFace::VertexData& rhs)
+{
+ if (this != &rhs)
+ {
+ init();
+ LLVector4a::memcpyNonAliased16((F32*) mData, (F32*) rhs.mData, 2*sizeof(LLVector4a));
+ mTexCoord = rhs.mTexCoord;
+ }
+ return *this;
+}
+
+LLVolumeFace::VertexData::~VertexData()
+{
+ ll_aligned_free_16(mData);
+ mData = NULL;
+}
+
+LLVector4a& LLVolumeFace::VertexData::getPosition()
+{
+ return mData[POSITION];
+}
+
+LLVector4a& LLVolumeFace::VertexData::getNormal()
+{
+ return mData[NORMAL];
+}
+
+const LLVector4a& LLVolumeFace::VertexData::getPosition() const
+{
+ return mData[POSITION];
+}
+
+const LLVector4a& LLVolumeFace::VertexData::getNormal() const
+{
+ return mData[NORMAL];
+}
+
+
+void LLVolumeFace::VertexData::setPosition(const LLVector4a& pos)
+{
+ mData[POSITION] = pos;
+}
+
+void LLVolumeFace::VertexData::setNormal(const LLVector4a& norm)
+{
+ mData[NORMAL] = norm;
+}
+
+bool LLVolumeFace::VertexData::operator<(const LLVolumeFace::VertexData& rhs)const
+{
+ const F32* lp = this->getPosition().getF32ptr();
+ const F32* rp = rhs.getPosition().getF32ptr();
+
+ if (lp[0] != rp[0])
+ {
+ return lp[0] < rp[0];
+ }
+
+ if (rp[1] != lp[1])
+ {
+ return lp[1] < rp[1];
+ }
+
+ if (rp[2] != lp[2])
+ {
+ return lp[2] < rp[2];
+ }
+
+ lp = getNormal().getF32ptr();
+ rp = rhs.getNormal().getF32ptr();
+
+ if (lp[0] != rp[0])
+ {
+ return lp[0] < rp[0];
+ }
+
+ if (rp[1] != lp[1])
+ {
+ return lp[1] < rp[1];
+ }
+
+ if (rp[2] != lp[2])
+ {
+ return lp[2] < rp[2];
+ }
+
+ if (mTexCoord.mV[0] != rhs.mTexCoord.mV[0])
+ {
+ return mTexCoord.mV[0] < rhs.mTexCoord.mV[0];
+ }
+
+ return mTexCoord.mV[1] < rhs.mTexCoord.mV[1];
+}
+
+bool LLVolumeFace::VertexData::operator==(const LLVolumeFace::VertexData& rhs)const
+{
+ return mData[POSITION].equals3(rhs.getPosition()) &&
+ mData[NORMAL].equals3(rhs.getNormal()) &&
+ mTexCoord == rhs.mTexCoord;
+}
+
+bool LLVolumeFace::VertexData::compareNormal(const LLVolumeFace::VertexData& rhs, F32 angle_cutoff) const
+{
+ bool retval = false;
+
+ const F32 epsilon = 0.00001f;
+
+ if (rhs.mData[POSITION].equals3(mData[POSITION], epsilon) &&
+ fabs(rhs.mTexCoord[0]-mTexCoord[0]) < epsilon &&
+ fabs(rhs.mTexCoord[1]-mTexCoord[1]) < epsilon)
+ {
+ if (angle_cutoff > 1.f)
+ {
+ retval = (mData[NORMAL].equals3(rhs.mData[NORMAL], epsilon));
+ }
+ else
+ {
+ F32 cur_angle = rhs.mData[NORMAL].dot3(mData[NORMAL]).getF32();
+ retval = cur_angle > angle_cutoff;
+ }
+ }
+
+ return retval;
+}
+
+bool LLVolume::unpackVolumeFaces(std::istream& is, S32 size)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME
+
+ //input stream is now pointing at a zlib compressed block of LLSD
+ //decompress block
+ LLSD mdl;
+ U32 uzip_result = LLUZipHelper::unzip_llsd(mdl, is, size);
+ if (uzip_result != LLUZipHelper::ZR_OK)
+ {
+ LL_DEBUGS("MeshStreaming") << "Failed to unzip LLSD blob for LoD with code " << uzip_result << " , will probably fetch from sim again." << LL_ENDL;
+ return false;
+ }
+ return unpackVolumeFacesInternal(mdl);
+}
+
+bool LLVolume::unpackVolumeFaces(U8* in_data, S32 size)
+{
+ //input data is now pointing at a zlib compressed block of LLSD
+ //decompress block
+ LLSD mdl;
+ U32 uzip_result = LLUZipHelper::unzip_llsd(mdl, in_data, size);
+ if (uzip_result != LLUZipHelper::ZR_OK)
+ {
+ LL_DEBUGS("MeshStreaming") << "Failed to unzip LLSD blob for LoD with code " << uzip_result << " , will probably fetch from sim again." << LL_ENDL;
+ return false;
+ }
+ return unpackVolumeFacesInternal(mdl);
+}
+
+bool LLVolume::unpackVolumeFacesInternal(const LLSD& mdl)
+{
+ {
+ U32 face_count = mdl.size();
+
+ if (face_count == 0)
+ { //no faces unpacked, treat as failed decode
+ LL_WARNS() << "found no faces!" << LL_ENDL;
+ return false;
+ }
+
+ mVolumeFaces.resize(face_count);
+
+ for (size_t i = 0; i < face_count; ++i)
+ {
+ LLVolumeFace& face = mVolumeFaces[i];
+
+ if (mdl[i].has("NoGeometry"))
+ { //face has no geometry, continue
+ face.resizeIndices(3);
+ face.resizeVertices(1);
+ face.mPositions->clear();
+ face.mNormals->clear();
+ face.mTexCoords->setZero();
+ memset(face.mIndices, 0, sizeof(U16)*3);
+ continue;
+ }
+
+ LLSD::Binary pos = mdl[i]["Position"];
+ LLSD::Binary norm = mdl[i]["Normal"];
+ LLSD::Binary tangent = mdl[i]["Tangent"];
+ LLSD::Binary tc = mdl[i]["TexCoord0"];
+ LLSD::Binary idx = mdl[i]["TriangleList"];
+
+ //copy out indices
+ S32 num_indices = idx.size() / 2;
+ const S32 indices_to_discard = num_indices % 3;
+ if (indices_to_discard > 0)
+ {
+ // Invalid number of triangle indices
+ LL_WARNS() << "Incomplete triangle discarded from face! Indices count " << num_indices << " was not divisible by 3. face index: " << i << " Total: " << face_count << LL_ENDL;
+ num_indices -= indices_to_discard;
+ }
+ face.resizeIndices(num_indices);
+
+ if (num_indices > 2 && !face.mIndices)
+ {
+ LL_WARNS() << "Failed to allocate " << num_indices << " indices for face index: " << i << " Total: " << face_count << LL_ENDL;
+ continue;
+ }
+
+ if (idx.empty() || face.mNumIndices < 3)
+ { //why is there an empty index list?
+ LL_WARNS() << "Empty face present! Face index: " << i << " Total: " << face_count << LL_ENDL;
+ continue;
+ }
+
+ U16* indices = (U16*) &(idx[0]);
+ for (U32 j = 0; j < num_indices; ++j)
+ {
+ face.mIndices[j] = indices[j];
+ }
+
+ //copy out vertices
+ U32 num_verts = pos.size()/(3*2);
+ face.resizeVertices(num_verts);
+
+ if (num_verts > 0 && !face.mPositions)
+ {
+ LL_WARNS() << "Failed to allocate " << num_verts << " vertices for face index: " << i << " Total: " << face_count << LL_ENDL;
+ face.resizeIndices(0);
+ continue;
+ }
+
+ LLVector3 minp;
+ LLVector3 maxp;
+ LLVector2 min_tc;
+ LLVector2 max_tc;
+
+ minp.setValue(mdl[i]["PositionDomain"]["Min"]);
+ maxp.setValue(mdl[i]["PositionDomain"]["Max"]);
+ LLVector4a min_pos, max_pos;
+ min_pos.load3(minp.mV);
+ max_pos.load3(maxp.mV);
+
+ min_tc.setValue(mdl[i]["TexCoord0Domain"]["Min"]);
+ max_tc.setValue(mdl[i]["TexCoord0Domain"]["Max"]);
+
+ //unpack normalized scale/translation
+ if (mdl[i].has("NormalizedScale"))
+ {
+ face.mNormalizedScale.setValue(mdl[i]["NormalizedScale"]);
+ }
+ else
+ {
+ face.mNormalizedScale.set(1, 1, 1);
+ }
+
+ LLVector4a pos_range;
+ pos_range.setSub(max_pos, min_pos);
+ LLVector2 tc_range2 = max_tc - min_tc;
+
+ LLVector4a tc_range;
+ tc_range.set(tc_range2[0], tc_range2[1], tc_range2[0], tc_range2[1]);
+ LLVector4a min_tc4(min_tc[0], min_tc[1], min_tc[0], min_tc[1]);
+
+ LLVector4a* pos_out = face.mPositions;
+ LLVector4a* norm_out = face.mNormals;
+ LLVector4a* tc_out = (LLVector4a*) face.mTexCoords;
+
+ {
+ U16* v = (U16*) &(pos[0]);
+ for (U32 j = 0; j < num_verts; ++j)
+ {
+ pos_out->set((F32) v[0], (F32) v[1], (F32) v[2]);
+ pos_out->div(65535.f);
+ pos_out->mul(pos_range);
+ pos_out->add(min_pos);
+ pos_out++;
+ v += 3;
+ }
+
+ }
+
+ {
+ if (!norm.empty())
+ {
+ U16* n = (U16*) &(norm[0]);
+ for (U32 j = 0; j < num_verts; ++j)
+ {
+ norm_out->set((F32) n[0], (F32) n[1], (F32) n[2]);
+ norm_out->div(65535.f);
+ norm_out->mul(2.f);
+ norm_out->sub(1.f);
+ norm_out++;
+ n += 3;
+ }
+ }
+ else
+ {
+ for (U32 j = 0; j < num_verts; ++j)
+ {
+ norm_out->clear();
+ norm_out++; // or just norm_out[j].clear();
+ }
+ }
+ }
+
+#if 0 // keep this code for now in case we decide to add support for on-the-wire tangents
+ {
+ if (!tangent.empty())
+ {
+ face.allocateTangents(face.mNumVertices);
+ U16* t = (U16*)&(tangent[0]);
+
+ // NOTE: tangents coming from the asset may not be mikkt space, but they should always be used by the GLTF shaders to
+ // maintain compliance with the GLTF spec
+ LLVector4a* t_out = face.mTangents;
+
+ for (U32 j = 0; j < num_verts; ++j)
+ {
+ t_out->set((F32)t[0], (F32)t[1], (F32)t[2], (F32) t[3]);
+ t_out->div(65535.f);
+ t_out->mul(2.f);
+ t_out->sub(1.f);
+
+ F32* tp = t_out->getF32ptr();
+ tp[3] = tp[3] < 0.f ? -1.f : 1.f;
+
+ t_out++;
+ t += 4;
+ }
+ }
+ }
+#endif
+
+ {
+ if (!tc.empty())
+ {
+ U16* t = (U16*) &(tc[0]);
+ for (U32 j = 0; j < num_verts; j+=2)
+ {
+ if (j < num_verts-1)
+ {
+ tc_out->set((F32) t[0], (F32) t[1], (F32) t[2], (F32) t[3]);
+ }
+ else
+ {
+ tc_out->set((F32) t[0], (F32) t[1], 0.f, 0.f);
+ }
+
+ t += 4;
+
+ tc_out->div(65535.f);
+ tc_out->mul(tc_range);
+ tc_out->add(min_tc4);
+
+ tc_out++;
+ }
+ }
+ else
+ {
+ for (U32 j = 0; j < num_verts; j += 2)
+ {
+ tc_out->clear();
+ tc_out++;
+ }
+ }
+ }
+
+ if (mdl[i].has("Weights"))
+ {
+ face.allocateWeights(num_verts);
+ if (!face.mWeights && num_verts)
+ {
+ LL_WARNS() << "Failed to allocate " << num_verts << " weights for face index: " << i << " Total: " << face_count << LL_ENDL;
+ face.resizeIndices(0);
+ face.resizeVertices(0);
+ continue;
+ }
+
+ LLSD::Binary weights = mdl[i]["Weights"];
+
+ U32 idx = 0;
+
+ U32 cur_vertex = 0;
+ while (idx < weights.size() && cur_vertex < num_verts)
+ {
+ const U8 END_INFLUENCES = 0xFF;
+ U8 joint = weights[idx++];
+
+ U32 cur_influence = 0;
+ LLVector4 wght(0,0,0,0);
+ U32 joints[4] = {0,0,0,0};
+ LLVector4 joints_with_weights(0,0,0,0);
+
+ while (joint != END_INFLUENCES && idx < weights.size())
+ {
+ U16 influence = weights[idx++];
+ influence |= ((U16) weights[idx++] << 8);
+
+ F32 w = llclamp((F32) influence / 65535.f, 0.001f, 0.999f);
+ wght.mV[cur_influence] = w;
+ joints[cur_influence] = joint;
+ cur_influence++;
+
+ if (cur_influence >= 4)
+ {
+ joint = END_INFLUENCES;
+ }
+ else
+ {
+ joint = weights[idx++];
+ }
+ }
+ F32 wsum = wght.mV[VX] + wght.mV[VY] + wght.mV[VZ] + wght.mV[VW];
+ if (wsum <= 0.f)
+ {
+ wght = LLVector4(0.999f,0.f,0.f,0.f);
+ }
+ for (U32 k=0; k<4; k++)
+ {
+ F32 f_combined = (F32) joints[k] + wght[k];
+ joints_with_weights[k] = f_combined;
+ // Any weights we added above should wind up non-zero and applied to a specific bone.
+ // A failure here would indicate a floating point precision error in the math.
+ llassert((k >= cur_influence) || (f_combined - S32(f_combined) > 0.0f));
+ }
+ face.mWeights[cur_vertex].loadua(joints_with_weights.mV);
+
+ cur_vertex++;
+ }
+
+ if (cur_vertex != num_verts || idx != weights.size())
+ {
+ LL_WARNS() << "Vertex weight count does not match vertex count!" << LL_ENDL;
+ }
+
+ }
+
+ // modifier flags?
+ bool do_mirror = (mParams.getSculptType() & LL_SCULPT_FLAG_MIRROR);
+ bool do_invert = (mParams.getSculptType() &LL_SCULPT_FLAG_INVERT);
+
+
+ // translate to actions:
+ bool do_reflect_x = false;
+ bool do_reverse_triangles = false;
+ bool do_invert_normals = false;
+
+ if (do_mirror)
+ {
+ do_reflect_x = true;
+ do_reverse_triangles = !do_reverse_triangles;
+ }
+
+ if (do_invert)
+ {
+ do_invert_normals = true;
+ do_reverse_triangles = !do_reverse_triangles;
+ }
+
+ // now do the work
+
+ if (do_reflect_x)
+ {
+ LLVector4a* p = (LLVector4a*) face.mPositions;
+ LLVector4a* n = (LLVector4a*) face.mNormals;
+
+ for (S32 i = 0; i < face.mNumVertices; i++)
+ {
+ p[i].mul(-1.0f);
+ n[i].mul(-1.0f);
+ }
+ }
+
+ if (do_invert_normals)
+ {
+ LLVector4a* n = (LLVector4a*) face.mNormals;
+
+ for (S32 i = 0; i < face.mNumVertices; i++)
+ {
+ n[i].mul(-1.0f);
+ }
+ }
+
+ if (do_reverse_triangles)
+ {
+ for (U32 j = 0; j < face.mNumIndices; j += 3)
+ {
+ // swap the 2nd and 3rd index
+ S32 swap = face.mIndices[j+1];
+ face.mIndices[j+1] = face.mIndices[j+2];
+ face.mIndices[j+2] = swap;
+ }
+ }
+
+ //calculate bounding box
+ // VFExtents change
+ LLVector4a& min = face.mExtents[0];
+ LLVector4a& max = face.mExtents[1];
+
+ if (face.mNumVertices < 3)
+ { //empty face, use a dummy 1cm (at 1m scale) bounding box
+ min.splat(-0.005f);
+ max.splat(0.005f);
+ }
+ else
+ {
+ min = max = face.mPositions[0];
+
+ for (S32 i = 1; i < face.mNumVertices; ++i)
+ {
+ min.setMin(min, face.mPositions[i]);
+ max.setMax(max, face.mPositions[i]);
+ }
+
+ if (face.mTexCoords)
+ {
+ LLVector2& min_tc = face.mTexCoordExtents[0];
+ LLVector2& max_tc = face.mTexCoordExtents[1];
+
+ min_tc = face.mTexCoords[0];
+ max_tc = face.mTexCoords[0];
+
+ for (U32 j = 1; j < face.mNumVertices; ++j)
+ {
+ update_min_max(min_tc, max_tc, face.mTexCoords[j]);
+ }
+ }
+ else
+ {
+ face.mTexCoordExtents[0].set(0,0);
+ face.mTexCoordExtents[1].set(1,1);
+ }
+ }
+ }
+ }
+
+ if (!cacheOptimize(true))
+ {
+ // Out of memory?
+ LL_WARNS() << "Failed to optimize!" << LL_ENDL;
+ mVolumeFaces.clear();
+ return false;
+ }
+
+ mSculptLevel = 0; // success!
+
+ return true;
+}
+
+
+bool LLVolume::isMeshAssetLoaded()
+{
+ return mIsMeshAssetLoaded;
+}
+
+void LLVolume::setMeshAssetLoaded(bool loaded)
+{
+ mIsMeshAssetLoaded = loaded;
+ if (loaded)
+ {
+ mIsMeshAssetUnavaliable = false;
+ }
+}
+
+void LLVolume::setMeshAssetUnavaliable(bool unavaliable)
+{
+ // Don't set it if at least one lod loaded
+ if (!mIsMeshAssetLoaded)
+ {
+ mIsMeshAssetUnavaliable = unavaliable;
+ }
+}
+
+bool LLVolume::isMeshAssetUnavaliable()
+{
+ return mIsMeshAssetUnavaliable;
+}
+
+void LLVolume::copyFacesTo(std::vector<LLVolumeFace> &faces) const
+{
+ faces = mVolumeFaces;
+}
+
+void LLVolume::copyFacesFrom(const std::vector<LLVolumeFace> &faces)
+{
+ mVolumeFaces = faces;
+ mSculptLevel = 0;
+}
+
+void LLVolume::copyVolumeFaces(const LLVolume* volume)
+{
+ mVolumeFaces = volume->mVolumeFaces;
+ mSculptLevel = 0;
+}
+
+bool LLVolume::cacheOptimize(bool gen_tangents)
+{
+ for (S32 i = 0; i < mVolumeFaces.size(); ++i)
+ {
+ if (!mVolumeFaces[i].cacheOptimize(gen_tangents))
+ {
+ return false;
+ }
+ }
+ return true;
+}
+
+
+S32 LLVolume::getNumFaces() const
+{
+ return mIsMeshAssetLoaded ? getNumVolumeFaces() : (S32)mProfilep->mFaces.size();
+}
+
+
+void LLVolume::createVolumeFaces()
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME
+
+ if (mGenerateSingleFace)
+ {
+ // do nothing
+ }
+ else
+ {
+ S32 num_faces = getNumFaces();
+ bool partial_build = true;
+ if (num_faces != mVolumeFaces.size())
+ {
+ partial_build = false;
+ mVolumeFaces.resize(num_faces);
+ }
+ // Initialize volume faces with parameter data
+ for (S32 i = 0; i < (S32)mVolumeFaces.size(); i++)
+ {
+ LLVolumeFace& vf = mVolumeFaces[i];
+ LLProfile::Face& face = mProfilep->mFaces[i];
+ vf.mBeginS = face.mIndex;
+ vf.mNumS = face.mCount;
+ if (vf.mNumS < 0)
+ {
+ LL_ERRS() << "Volume face corruption detected." << LL_ENDL;
+ }
+
+ vf.mBeginT = 0;
+ vf.mNumT= getPath().mPath.size();
+ vf.mID = i;
+
+ // Set the type mask bits correctly
+ if (mParams.getProfileParams().getHollow() > 0)
+ {
+ vf.mTypeMask |= LLVolumeFace::HOLLOW_MASK;
+ }
+ if (mProfilep->isOpen())
+ {
+ vf.mTypeMask |= LLVolumeFace::OPEN_MASK;
+ }
+ if (face.mCap)
+ {
+ vf.mTypeMask |= LLVolumeFace::CAP_MASK;
+ if (face.mFaceID == LL_FACE_PATH_BEGIN)
+ {
+ vf.mTypeMask |= LLVolumeFace::TOP_MASK;
+ }
+ else
+ {
+ llassert(face.mFaceID == LL_FACE_PATH_END);
+ vf.mTypeMask |= LLVolumeFace::BOTTOM_MASK;
+ }
+ }
+ else if (face.mFaceID & (LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END))
+ {
+ vf.mTypeMask |= LLVolumeFace::FLAT_MASK | LLVolumeFace::END_MASK;
+ }
+ else
+ {
+ vf.mTypeMask |= LLVolumeFace::SIDE_MASK;
+ if (face.mFlat)
+ {
+ vf.mTypeMask |= LLVolumeFace::FLAT_MASK;
+ }
+ if (face.mFaceID & LL_FACE_INNER_SIDE)
+ {
+ vf.mTypeMask |= LLVolumeFace::INNER_MASK;
+ if (face.mFlat && vf.mNumS > 2)
+ { //flat inner faces have to copy vert normals
+ vf.mNumS = vf.mNumS*2;
+ if (vf.mNumS < 0)
+ {
+ LL_ERRS() << "Volume face corruption detected." << LL_ENDL;
+ }
+ }
+ }
+ else
+ {
+ vf.mTypeMask |= LLVolumeFace::OUTER_MASK;
+ }
+ }
+ }
+
+ for (face_list_t::iterator iter = mVolumeFaces.begin();
+ iter != mVolumeFaces.end(); ++iter)
+ {
+ (*iter).create(this, partial_build);
+ }
+ }
+}
+
+
+inline LLVector4a sculpt_rgb_to_vector(U8 r, U8 g, U8 b)
+{
+ // maps RGB values to vector values [0..255] -> [-0.5..0.5]
+ LLVector4a value;
+ LLVector4a sub(0.5f, 0.5f, 0.5f);
+
+ value.set(r,g,b);
+ value.mul(1.f/255.f);
+ value.sub(sub);
+
+ return value;
+}
+
+inline U32 sculpt_xy_to_index(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components)
+{
+ U32 index = (x + y * sculpt_width) * sculpt_components;
+ return index;
+}
+
+
+inline U32 sculpt_st_to_index(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components)
+{
+ U32 x = (U32) ((F32)s/(size_s) * (F32) sculpt_width);
+ U32 y = (U32) ((F32)t/(size_t) * (F32) sculpt_height);
+
+ return sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components);
+}
+
+
+inline LLVector4a sculpt_index_to_vector(U32 index, const U8* sculpt_data)
+{
+ LLVector4a v = sculpt_rgb_to_vector(sculpt_data[index], sculpt_data[index+1], sculpt_data[index+2]);
+
+ return v;
+}
+
+inline LLVector4a sculpt_st_to_vector(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data)
+{
+ U32 index = sculpt_st_to_index(s, t, size_s, size_t, sculpt_width, sculpt_height, sculpt_components);
+
+ return sculpt_index_to_vector(index, sculpt_data);
+}
+
+inline LLVector4a sculpt_xy_to_vector(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data)
+{
+ U32 index = sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components);
+
+ return sculpt_index_to_vector(index, sculpt_data);
+}
+
+
+F32 LLVolume::sculptGetSurfaceArea()
+{
+ // test to see if image has enough variation to create non-degenerate geometry
+
+ F32 area = 0;
+
+ S32 sizeS = mPathp->mPath.size();
+ S32 sizeT = mProfilep->mProfile.size();
+
+ for (S32 s = 0; s < sizeS-1; s++)
+ {
+ for (S32 t = 0; t < sizeT-1; t++)
+ {
+ // get four corners of quad
+ LLVector4a& p1 = mMesh[(s )*sizeT + (t )];
+ LLVector4a& p2 = mMesh[(s+1)*sizeT + (t )];
+ LLVector4a& p3 = mMesh[(s )*sizeT + (t+1)];
+ LLVector4a& p4 = mMesh[(s+1)*sizeT + (t+1)];
+
+ // compute the area of the quad by taking the length of the cross product of the two triangles
+ LLVector4a v0,v1,v2,v3;
+ v0.setSub(p1,p2);
+ v1.setSub(p1,p3);
+ v2.setSub(p4,p2);
+ v3.setSub(p4,p3);
+
+ LLVector4a cross1, cross2;
+ cross1.setCross3(v0,v1);
+ cross2.setCross3(v2,v3);
+
+ //LLVector3 cross1 = (p1 - p2) % (p1 - p3);
+ //LLVector3 cross2 = (p4 - p2) % (p4 - p3);
+
+ area += (cross1.getLength3() + cross2.getLength3()).getF32() / 2.f;
+ }
+ }
+
+ return area;
+}
+
+// create empty placeholder shape
+void LLVolume::sculptGenerateEmptyPlaceholder()
+{
+ S32 sizeS = mPathp->mPath.size();
+ S32 sizeT = mProfilep->mProfile.size();
+
+ S32 line = 0;
+
+ for (S32 s = 0; s < sizeS; s++)
+ {
+ for (S32 t = 0; t < sizeT; t++)
+ {
+ S32 i = t + line;
+ LLVector4a& pt = mMesh[i];
+
+ F32* p = pt.getF32ptr();
+
+ p[0] = 0;
+ p[1] = 0;
+ p[2] = 0;
+
+ llassert(pt.isFinite3());
+ }
+ line += sizeT;
+ }
+}
+
+// create sphere placeholder shape
+void LLVolume::sculptGenerateSpherePlaceholder()
+{
+ S32 sizeS = mPathp->mPath.size();
+ S32 sizeT = mProfilep->mProfile.size();
+
+ S32 line = 0;
+
+ for (S32 s = 0; s < sizeS; s++)
+ {
+ for (S32 t = 0; t < sizeT; t++)
+ {
+ S32 i = t + line;
+ LLVector4a& pt = mMesh[i];
+
+
+ F32 u = (F32)s / (sizeS - 1);
+ F32 v = (F32)t / (sizeT - 1);
+
+ const F32 RADIUS = (F32) 0.3;
+
+ F32* p = pt.getF32ptr();
+
+ p[0] = (F32)(sin(F_PI * v) * cos(2.0 * F_PI * u) * RADIUS);
+ p[1] = (F32)(sin(F_PI * v) * sin(2.0 * F_PI * u) * RADIUS);
+ p[2] = (F32)(cos(F_PI * v) * RADIUS);
+
+ llassert(pt.isFinite3());
+ }
+ line += sizeT;
+ }
+}
+
+// create the vertices from the map
+void LLVolume::sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, U8 sculpt_type)
+{
+ U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK;
+ bool sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT;
+ bool sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR;
+ bool reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror); // XOR
+
+ S32 sizeS = mPathp->mPath.size();
+ S32 sizeT = mProfilep->mProfile.size();
+
+ S32 line = 0;
+ for (S32 s = 0; s < sizeS; s++)
+ {
+ // Run along the profile.
+ for (S32 t = 0; t < sizeT; t++)
+ {
+ S32 i = t + line;
+ LLVector4a& pt = mMesh[i];
+
+ S32 reversed_t = t;
+
+ if (reverse_horizontal)
+ {
+ reversed_t = sizeT - t - 1;
+ }
+
+ U32 x = (U32) ((F32)reversed_t/(sizeT-1) * (F32) sculpt_width);
+ U32 y = (U32) ((F32)s/(sizeS-1) * (F32) sculpt_height);
+
+
+ if (y == 0) // top row stitching
+ {
+ // pinch?
+ if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE)
+ {
+ x = sculpt_width / 2;
+ }
+ }
+
+ if (y == sculpt_height) // bottom row stitching
+ {
+ // wrap?
+ if (sculpt_stitching == LL_SCULPT_TYPE_TORUS)
+ {
+ y = 0;
+ }
+ else
+ {
+ y = sculpt_height - 1;
+ }
+
+ // pinch?
+ if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE)
+ {
+ x = sculpt_width / 2;
+ }
+ }
+
+ if (x == sculpt_width) // side stitching
+ {
+ // wrap?
+ if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) ||
+ (sculpt_stitching == LL_SCULPT_TYPE_TORUS) ||
+ (sculpt_stitching == LL_SCULPT_TYPE_CYLINDER))
+ {
+ x = 0;
+ }
+
+ else
+ {
+ x = sculpt_width - 1;
+ }
+ }
+
+ pt = sculpt_xy_to_vector(x, y, sculpt_width, sculpt_height, sculpt_components, sculpt_data);
+
+ if (sculpt_mirror)
+ {
+ LLVector4a scale(-1.f,1,1,1);
+ pt.mul(scale);
+ }
+
+ llassert(pt.isFinite3());
+ }
+
+ line += sizeT;
+ }
+}
+
+
+constexpr S32 SCULPT_REZ_1 = 6; // changed from 4 to 6 - 6 looks round whereas 4 looks square
+constexpr S32 SCULPT_REZ_2 = 8;
+constexpr S32 SCULPT_REZ_3 = 16;
+constexpr S32 SCULPT_REZ_4 = 32;
+
+S32 sculpt_sides(F32 detail)
+{
+ // detail is usually one of: 1, 1.5, 2.5, 4.0.
+
+ if (detail <= 1.0)
+ {
+ return SCULPT_REZ_1;
+ }
+ if (detail <= 2.0)
+ {
+ return SCULPT_REZ_2;
+ }
+ if (detail <= 3.0)
+ {
+ return SCULPT_REZ_3;
+ }
+ else
+ {
+ return SCULPT_REZ_4;
+ }
+}
+
+
+
+// determine the number of vertices in both s and t direction for this sculpt
+void sculpt_calc_mesh_resolution(U16 width, U16 height, U8 type, F32 detail, S32& s, S32& t)
+{
+ // this code has the following properties:
+ // 1) the aspect ratio of the mesh is as close as possible to the ratio of the map
+ // while still using all available verts
+ // 2) the mesh cannot have more verts than is allowed by LOD
+ // 3) the mesh cannot have more verts than is allowed by the map
+
+ S32 max_vertices_lod = (S32)pow((double)sculpt_sides(detail), 2.0);
+ S32 max_vertices_map = width * height / 4;
+
+ S32 vertices;
+ if (max_vertices_map > 0)
+ vertices = llmin(max_vertices_lod, max_vertices_map);
+ else
+ vertices = max_vertices_lod;
+
+
+ F32 ratio;
+ if ((width == 0) || (height == 0))
+ ratio = 1.f;
+ else
+ ratio = (F32) width / (F32) height;
+
+
+ s = (S32)(F32) sqrt(((F32)vertices / ratio));
+
+ s = llmax(s, 4); // no degenerate sizes, please
+ t = vertices / s;
+
+ t = llmax(t, 4); // no degenerate sizes, please
+ s = vertices / t;
+}
+
+// sculpt replaces generate() for sculpted surfaces
+void LLVolume::sculpt(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, S32 sculpt_level, bool visible_placeholder)
+{
+ U8 sculpt_type = mParams.getSculptType();
+
+ bool data_is_empty = false;
+
+ if (sculpt_width == 0 || sculpt_height == 0 || sculpt_components < 3 || sculpt_data == NULL)
+ {
+ sculpt_level = -1;
+ data_is_empty = true;
+ }
+
+ S32 requested_sizeS = 0;
+ S32 requested_sizeT = 0;
+
+ sculpt_calc_mesh_resolution(sculpt_width, sculpt_height, sculpt_type, mDetail, requested_sizeS, requested_sizeT);
+
+ mPathp->generate(mParams.getPathParams(), mDetail, 0, true, requested_sizeS);
+ mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(), mDetail, 0, true, requested_sizeT);
+
+ S32 sizeS = mPathp->mPath.size(); // we requested a specific size, now see what we really got
+ S32 sizeT = mProfilep->mProfile.size(); // we requested a specific size, now see what we really got
+
+ // weird crash bug - DEV-11158 - trying to collect more data:
+ if ((sizeS == 0) || (sizeT == 0))
+ {
+ LL_WARNS() << "sculpt bad mesh size " << sizeS << " " << sizeT << LL_ENDL;
+ }
+
+ sNumMeshPoints -= mMesh.size();
+ mMesh.resize(sizeS * sizeT);
+ sNumMeshPoints += mMesh.size();
+
+ //generate vertex positions
+ if (!data_is_empty)
+ {
+ sculptGenerateMapVertices(sculpt_width, sculpt_height, sculpt_components, sculpt_data, sculpt_type);
+
+ // don't test lowest LOD to support legacy content DEV-33670
+ if (mDetail > SCULPT_MIN_AREA_DETAIL)
+ {
+ F32 area = sculptGetSurfaceArea();
+
+ mSurfaceArea = area;
+
+ const F32 SCULPT_MAX_AREA = 384.f;
+
+ if (area < SCULPT_MIN_AREA || area > SCULPT_MAX_AREA)
+ {
+ data_is_empty = true;
+ visible_placeholder = true;
+ }
+ }
+ }
+
+ if (data_is_empty)
+ {
+ if (visible_placeholder)
+ {
+ // Object should be visible since there will be nothing else to display
+ sculptGenerateSpherePlaceholder();
+ }
+ else
+ {
+ sculptGenerateEmptyPlaceholder();
+ }
+ }
+
+ for (S32 i = 0; i < (S32)mProfilep->mFaces.size(); i++)
+ {
+ mFaceMask |= mProfilep->mFaces[i].mFaceID;
+ }
+
+ mSculptLevel = sculpt_level;
+
+ // Delete any existing faces so that they get regenerated
+ mVolumeFaces.clear();
+
+ createVolumeFaces();
+}
+
+
+
+
+bool LLVolume::isCap(S32 face)
+{
+ return mProfilep->mFaces[face].mCap;
+}
+
+bool LLVolume::isFlat(S32 face)
+{
+ return mProfilep->mFaces[face].mFlat;
+}
+
+
+bool LLVolumeParams::isSculpt() const
+{
+ return (mSculptType & LL_SCULPT_TYPE_MASK) != LL_SCULPT_TYPE_NONE;
+}
+
+bool LLVolumeParams::isMeshSculpt() const
+{
+ return (mSculptType & LL_SCULPT_TYPE_MASK) == LL_SCULPT_TYPE_MESH;
+}
+
+bool LLVolumeParams::operator==(const LLVolumeParams ¶ms) const
+{
+ return ( (getPathParams() == params.getPathParams()) &&
+ (getProfileParams() == params.getProfileParams()) &&
+ (mSculptID == params.mSculptID) &&
+ (mSculptType == params.mSculptType) );
+}
+
+bool LLVolumeParams::operator!=(const LLVolumeParams ¶ms) const
+{
+ return ( (getPathParams() != params.getPathParams()) ||
+ (getProfileParams() != params.getProfileParams()) ||
+ (mSculptID != params.mSculptID) ||
+ (mSculptType != params.mSculptType) );
+}
+
+bool LLVolumeParams::operator<(const LLVolumeParams ¶ms) const
+{
+ if( getPathParams() != params.getPathParams() )
+ {
+ return getPathParams() < params.getPathParams();
+ }
+
+ if (getProfileParams() != params.getProfileParams())
+ {
+ return getProfileParams() < params.getProfileParams();
+ }
+
+ if (mSculptID != params.mSculptID)
+ {
+ return mSculptID < params.mSculptID;
+ }
+
+ return mSculptType < params.mSculptType;
+
+
+}
+
+void LLVolumeParams::copyParams(const LLVolumeParams ¶ms)
+{
+ mProfileParams.copyParams(params.mProfileParams);
+ mPathParams.copyParams(params.mPathParams);
+ mSculptID = params.getSculptID();
+ mSculptType = params.getSculptType();
+}
+
+// Less restricitve approx 0 for volumes
+constexpr F32 APPROXIMATELY_ZERO = 0.001f;
+bool approx_zero( F32 f, F32 tolerance = APPROXIMATELY_ZERO)
+{
+ return (f >= -tolerance) && (f <= tolerance);
+}
+
+// return true if in range (or nearly so)
+static bool limit_range(F32& v, F32 min, F32 max, F32 tolerance = APPROXIMATELY_ZERO)
+{
+ F32 min_delta = v - min;
+ if (min_delta < 0.f)
+ {
+ v = min;
+ if (!approx_zero(min_delta, tolerance))
+ return false;
+ }
+ F32 max_delta = max - v;
+ if (max_delta < 0.f)
+ {
+ v = max;
+ if (!approx_zero(max_delta, tolerance))
+ return false;
+ }
+ return true;
+}
+
+bool LLVolumeParams::setBeginAndEndS(const F32 b, const F32 e)
+{
+ bool valid = true;
+
+ // First, clamp to valid ranges.
+ F32 begin = b;
+ valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA);
+
+ F32 end = e;
+ if (end >= .0149f && end < MIN_CUT_DELTA) end = MIN_CUT_DELTA; // eliminate warning for common rounding error
+ valid &= limit_range(end, MIN_CUT_DELTA, 1.f);
+
+ valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f);
+
+ // Now set them.
+ mProfileParams.setBegin(begin);
+ mProfileParams.setEnd(end);
+
+ return valid;
+}
+
+bool LLVolumeParams::setBeginAndEndT(const F32 b, const F32 e)
+{
+ bool valid = true;
+
+ // First, clamp to valid ranges.
+ F32 begin = b;
+ valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA);
+
+ F32 end = e;
+ valid &= limit_range(end, MIN_CUT_DELTA, 1.f);
+
+ valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f);
+
+ // Now set them.
+ mPathParams.setBegin(begin);
+ mPathParams.setEnd(end);
+
+ return valid;
+}
+
+bool LLVolumeParams::setHollow(const F32 h)
+{
+ // Validate the hollow based on path and profile.
+ U8 profile = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
+ U8 hole_type = mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK;
+
+ F32 max_hollow = HOLLOW_MAX;
+
+ // Only square holes have trouble.
+ if (LL_PCODE_HOLE_SQUARE == hole_type)
+ {
+ switch(profile)
+ {
+ case LL_PCODE_PROFILE_CIRCLE:
+ case LL_PCODE_PROFILE_CIRCLE_HALF:
+ case LL_PCODE_PROFILE_EQUALTRI:
+ max_hollow = HOLLOW_MAX_SQUARE;
+ }
+ }
+
+ F32 hollow = h;
+ bool valid = limit_range(hollow, HOLLOW_MIN, max_hollow);
+ mProfileParams.setHollow(hollow);
+
+ return valid;
+}
+
+bool LLVolumeParams::setTwistBegin(const F32 b)
+{
+ F32 twist_begin = b;
+ bool valid = limit_range(twist_begin, TWIST_MIN, TWIST_MAX);
+ mPathParams.setTwistBegin(twist_begin);
+ return valid;
+}
+
+bool LLVolumeParams::setTwistEnd(const F32 e)
+{
+ F32 twist_end = e;
+ bool valid = limit_range(twist_end, TWIST_MIN, TWIST_MAX);
+ mPathParams.setTwistEnd(twist_end);
+ return valid;
+}
+
+bool LLVolumeParams::setRatio(const F32 x, const F32 y)
+{
+ F32 min_x = RATIO_MIN;
+ F32 max_x = RATIO_MAX;
+ F32 min_y = RATIO_MIN;
+ F32 max_y = RATIO_MAX;
+ // If this is a circular path (and not a sphere) then 'ratio' is actually hole size.
+ U8 path_type = mPathParams.getCurveType();
+ U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
+ if ( LL_PCODE_PATH_CIRCLE == path_type &&
+ LL_PCODE_PROFILE_CIRCLE_HALF != profile_type)
+ {
+ // Holes are more restricted...
+ min_x = HOLE_X_MIN;
+ max_x = HOLE_X_MAX;
+ min_y = HOLE_Y_MIN;
+ max_y = HOLE_Y_MAX;
+ }
+
+ F32 ratio_x = x;
+ bool valid = limit_range(ratio_x, min_x, max_x);
+ F32 ratio_y = y;
+ valid &= limit_range(ratio_y, min_y, max_y);
+
+ mPathParams.setScale(ratio_x, ratio_y);
+
+ return valid;
+}
+
+bool LLVolumeParams::setShear(const F32 x, const F32 y)
+{
+ F32 shear_x = x;
+ bool valid = limit_range(shear_x, SHEAR_MIN, SHEAR_MAX);
+ F32 shear_y = y;
+ valid &= limit_range(shear_y, SHEAR_MIN, SHEAR_MAX);
+ mPathParams.setShear(shear_x, shear_y);
+ return valid;
+}
+
+bool LLVolumeParams::setTaperX(const F32 v)
+{
+ F32 taper = v;
+ bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX);
+ mPathParams.setTaperX(taper);
+ return valid;
+}
+
+bool LLVolumeParams::setTaperY(const F32 v)
+{
+ F32 taper = v;
+ bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX);
+ mPathParams.setTaperY(taper);
+ return valid;
+}
+
+bool LLVolumeParams::setRevolutions(const F32 r)
+{
+ F32 revolutions = r;
+ bool valid = limit_range(revolutions, REV_MIN, REV_MAX);
+ mPathParams.setRevolutions(revolutions);
+ return valid;
+}
+
+bool LLVolumeParams::setRadiusOffset(const F32 offset)
+{
+ bool valid = true;
+
+ // If this is a sphere, just set it to 0 and get out.
+ U8 path_type = mPathParams.getCurveType();
+ U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
+ if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ||
+ LL_PCODE_PATH_CIRCLE != path_type )
+ {
+ mPathParams.setRadiusOffset(0.f);
+ return true;
+ }
+
+ // Limit radius offset, based on taper and hole size y.
+ F32 radius_offset = offset;
+ F32 taper_y = getTaperY();
+ F32 radius_mag = fabs(radius_offset);
+ F32 hole_y_mag = fabs(getRatioY());
+ F32 taper_y_mag = fabs(taper_y);
+ // Check to see if the taper effects us.
+ if ( (radius_offset > 0.f && taper_y < 0.f) ||
+ (radius_offset < 0.f && taper_y > 0.f) )
+ {
+ // The taper does not help increase the radius offset range.
+ taper_y_mag = 0.f;
+ }
+ F32 max_radius_mag = 1.f - hole_y_mag * (1.f - taper_y_mag) / (1.f - hole_y_mag);
+
+ // Enforce the maximum magnitude.
+ F32 delta = max_radius_mag - radius_mag;
+ if (delta < 0.f)
+ {
+ // Check radius offset sign.
+ if (radius_offset < 0.f)
+ {
+ radius_offset = -max_radius_mag;
+ }
+ else
+ {
+ radius_offset = max_radius_mag;
+ }
+ valid = approx_zero(delta, .1f);
+ }
+
+ mPathParams.setRadiusOffset(radius_offset);
+ return valid;
+}
+
+bool LLVolumeParams::setSkew(const F32 skew_value)
+{
+ bool valid = true;
+
+ // Check the skew value against the revolutions.
+ F32 skew = llclamp(skew_value, SKEW_MIN, SKEW_MAX);
+ F32 skew_mag = fabs(skew);
+ F32 revolutions = getRevolutions();
+ F32 scale_x = getRatioX();
+ F32 min_skew_mag = 1.0f - 1.0f / (revolutions * scale_x + 1.0f);
+ // Discontinuity; A revolution of 1 allows skews below 0.5.
+ if ( fabs(revolutions - 1.0f) < 0.001)
+ min_skew_mag = 0.0f;
+
+ // Clip skew.
+ F32 delta = skew_mag - min_skew_mag;
+ if (delta < 0.f)
+ {
+ // Check skew sign.
+ if (skew < 0.0f)
+ {
+ skew = -min_skew_mag;
+ }
+ else
+ {
+ skew = min_skew_mag;
+ }
+ valid = approx_zero(delta, .01f);
+ }
+
+ mPathParams.setSkew(skew);
+ return valid;
+}
+
+bool LLVolumeParams::setSculptID(const LLUUID& sculpt_id, U8 sculpt_type)
+{
+ mSculptID = sculpt_id;
+ mSculptType = sculpt_type;
+ return true;
+}
+
+bool LLVolumeParams::setType(U8 profile, U8 path)
+{
+ bool result = true;
+ // First, check profile and path for validity.
+ U8 profile_type = profile & LL_PCODE_PROFILE_MASK;
+ U8 hole_type = (profile & LL_PCODE_HOLE_MASK) >> 4;
+ U8 path_type = path >> 4;
+
+ if (profile_type > LL_PCODE_PROFILE_MAX)
+ {
+ // Bad profile. Make it square.
+ profile = LL_PCODE_PROFILE_SQUARE;
+ result = false;
+ LL_WARNS() << "LLVolumeParams::setType changing bad profile type (" << profile_type
+ << ") to be LL_PCODE_PROFILE_SQUARE" << LL_ENDL;
+ }
+ else if (hole_type > LL_PCODE_HOLE_MAX)
+ {
+ // Bad hole. Make it the same.
+ profile = profile_type;
+ result = false;
+ LL_WARNS() << "LLVolumeParams::setType changing bad hole type (" << hole_type
+ << ") to be LL_PCODE_HOLE_SAME" << LL_ENDL;
+ }
+
+ if (path_type < LL_PCODE_PATH_MIN ||
+ path_type > LL_PCODE_PATH_MAX)
+ {
+ // Bad path. Make it linear.
+ result = false;
+ LL_WARNS() << "LLVolumeParams::setType changing bad path (" << path
+ << ") to be LL_PCODE_PATH_LINE" << LL_ENDL;
+ path = LL_PCODE_PATH_LINE;
+ }
+
+ mProfileParams.setCurveType(profile);
+ mPathParams.setCurveType(path);
+ return result;
+}
+
+// static
+bool LLVolumeParams::validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow,
+ U8 path_curve, F32 path_begin, F32 path_end,
+ F32 scx, F32 scy, F32 shx, F32 shy,
+ F32 twistend, F32 twistbegin, F32 radiusoffset,
+ F32 tx, F32 ty, F32 revolutions, F32 skew)
+{
+ LLVolumeParams test_params;
+ if (!test_params.setType (prof_curve, path_curve))
+ {
+ return false;
+ }
+ if (!test_params.setBeginAndEndS (prof_begin, prof_end))
+ {
+ return false;
+ }
+ if (!test_params.setBeginAndEndT (path_begin, path_end))
+ {
+ return false;
+ }
+ if (!test_params.setHollow (hollow))
+ {
+ return false;
+ }
+ if (!test_params.setTwistBegin (twistbegin))
+ {
+ return false;
+ }
+ if (!test_params.setTwistEnd (twistend))
+ {
+ return false;
+ }
+ if (!test_params.setRatio (scx, scy))
+ {
+ return false;
+ }
+ if (!test_params.setShear (shx, shy))
+ {
+ return false;
+ }
+ if (!test_params.setTaper (tx, ty))
+ {
+ return false;
+ }
+ if (!test_params.setRevolutions (revolutions))
+ {
+ return false;
+ }
+ if (!test_params.setRadiusOffset (radiusoffset))
+ {
+ return false;
+ }
+ if (!test_params.setSkew (skew))
+ {
+ return false;
+ }
+ return true;
+}
+
+void LLVolume::getLoDTriangleCounts(const LLVolumeParams& params, S32* counts)
+{ //attempt to approximate the number of triangles that will result from generating a volume LoD set for the
+ //supplied LLVolumeParams -- inaccurate, but a close enough approximation for determining streaming cost
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME;
+ F32 detail[] = {1.f, 1.5f, 2.5f, 4.f};
+ for (S32 i = 0; i < 4; i++)
+ {
+ S32 count = 0;
+ S32 path_points = LLPath::getNumPoints(params.getPathParams(), detail[i]);
+ S32 profile_points = LLProfile::getNumPoints(params.getProfileParams(), false, detail[i]);
+
+ count = (profile_points-1)*2*(path_points-1);
+ count += profile_points*2;
+
+ counts[i] = count;
+ }
+}
+
+
+S32 LLVolume::getNumTriangles(S32* vcount) const
+{
+ U32 triangle_count = 0;
+ U32 vertex_count = 0;
+
+ for (S32 i = 0; i < getNumVolumeFaces(); ++i)
+ {
+ const LLVolumeFace& face = getVolumeFace(i);
+ triangle_count += face.mNumIndices/3;
+
+ vertex_count += face.mNumVertices;
+ }
+
+
+ if (vcount)
+ {
+ *vcount = vertex_count;
+ }
+
+ return triangle_count;
+}
+
+
+//-----------------------------------------------------------------------------
+// generateSilhouetteVertices()
+//-----------------------------------------------------------------------------
+void LLVolume::generateSilhouetteVertices(std::vector<LLVector3> &vertices,
+ std::vector<LLVector3> &normals,
+ const LLVector3& obj_cam_vec_in,
+ const LLMatrix4& mat_in,
+ const LLMatrix3& norm_mat_in,
+ S32 face_mask)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME
+
+ LLMatrix4a mat;
+ mat.loadu(mat_in);
+
+ LLMatrix4a norm_mat;
+ norm_mat.loadu(norm_mat_in);
+
+ LLVector4a obj_cam_vec;
+ obj_cam_vec.load3(obj_cam_vec_in.mV);
+
+ vertices.clear();
+ normals.clear();
+
+ if ((mParams.getSculptType() & LL_SCULPT_TYPE_MASK) == LL_SCULPT_TYPE_MESH)
+ {
+ return;
+ }
+
+ S32 cur_index = 0;
+ //for each face
+ for (face_list_t::iterator iter = mVolumeFaces.begin();
+ iter != mVolumeFaces.end(); ++iter)
+ {
+ LLVolumeFace& face = *iter;
+
+ if (!(face_mask & (0x1 << cur_index++)) ||
+ face.mNumIndices == 0 || face.mEdge.empty())
+ {
+ continue;
+ }
+
+ if (face.mTypeMask & (LLVolumeFace::CAP_MASK))
+ {
+ LLVector4a* v = (LLVector4a*)face.mPositions;
+ LLVector4a* n = (LLVector4a*)face.mNormals;
+
+ for (U32 j = 0; j < face.mNumIndices / 3; j++)
+ {
+ for (S32 k = 0; k < 3; k++)
+ {
+ S32 index = face.mEdge[j * 3 + k];
+
+ if (index == -1)
+ {
+ // silhouette edge, currently only cubes, so no other conditions
+
+ S32 v1 = face.mIndices[j * 3 + k];
+ S32 v2 = face.mIndices[j * 3 + ((k + 1) % 3)];
+
+ LLVector4a t;
+ mat.affineTransform(v[v1], t);
+ vertices.push_back(LLVector3(t[0], t[1], t[2]));
+
+ norm_mat.rotate(n[v1], t);
+
+ t.normalize3fast();
+ normals.push_back(LLVector3(t[0], t[1], t[2]));
+
+ mat.affineTransform(v[v2], t);
+ vertices.push_back(LLVector3(t[0], t[1], t[2]));
+
+ norm_mat.rotate(n[v2], t);
+ t.normalize3fast();
+ normals.push_back(LLVector3(t[0], t[1], t[2]));
+ }
+ }
+ }
+
+ }
+ else
+ {
+ //==============================================
+ //DEBUG draw edge map instead of silhouette edge
+ //==============================================
+
+#if DEBUG_SILHOUETTE_EDGE_MAP
+
+ //for each triangle
+ U32 tri_count = face.mNumIndices / 3;
+ for (U32 j = 0; j < tri_count; j++) {
+ //get vertices
+ S32 v1 = face.mIndices[j*3+0];
+ S32 v2 = face.mIndices[j*3+1];
+ S32 v3 = face.mIndices[j*3+2];
+
+ //get current face center
+ LLVector3 cCenter = (face.mVertices[v1].getPosition() +
+ face.mVertices[v2].getPosition() +
+ face.mVertices[v3].getPosition()) / 3.0f;
+
+ //for each edge
+ for (S32 k = 0; k < 3; k++) {
+ S32 nIndex = face.mEdge[j*3+k];
+ if (nIndex <= -1) {
+ continue;
+ }
+
+ if (nIndex >= (S32)tri_count) {
+ continue;
+ }
+ //get neighbor vertices
+ v1 = face.mIndices[nIndex*3+0];
+ v2 = face.mIndices[nIndex*3+1];
+ v3 = face.mIndices[nIndex*3+2];
+
+ //get neighbor face center
+ LLVector3 nCenter = (face.mVertices[v1].getPosition() +
+ face.mVertices[v2].getPosition() +
+ face.mVertices[v3].getPosition()) / 3.0f;
+
+ //draw line
+ vertices.push_back(cCenter);
+ vertices.push_back(nCenter);
+ normals.push_back(LLVector3(1,1,1));
+ normals.push_back(LLVector3(1,1,1));
+ segments.push_back(vertices.size());
+ }
+ }
+
+ continue;
+
+ //==============================================
+ //DEBUG
+ //==============================================
+
+ //==============================================
+ //DEBUG draw normals instead of silhouette edge
+ //==============================================
+#elif DEBUG_SILHOUETTE_NORMALS
+
+ //for each vertex
+ for (U32 j = 0; j < face.mNumVertices; j++) {
+ vertices.push_back(face.mVertices[j].getPosition());
+ vertices.push_back(face.mVertices[j].getPosition() + face.mVertices[j].getNormal()*0.1f);
+ normals.push_back(LLVector3(0,0,1));
+ normals.push_back(LLVector3(0,0,1));
+ segments.push_back(vertices.size());
+#if DEBUG_SILHOUETTE_BINORMALS
+ vertices.push_back(face.mVertices[j].getPosition());
+ vertices.push_back(face.mVertices[j].getPosition() + face.mVertices[j].mTangent*0.1f);
+ normals.push_back(LLVector3(0,0,1));
+ normals.push_back(LLVector3(0,0,1));
+ segments.push_back(vertices.size());
+#endif
+ }
+
+ continue;
+#else
+ //==============================================
+ //DEBUG
+ //==============================================
+
+ constexpr U8 AWAY = 0x01,
+ TOWARDS = 0x02;
+
+ //for each triangle
+ std::vector<U8> fFacing;
+ vector_append(fFacing, face.mNumIndices/3);
+
+ LLVector4a* v = (LLVector4a*) face.mPositions;
+ LLVector4a* n = (LLVector4a*) face.mNormals;
+
+ for (U32 j = 0; j < face.mNumIndices/3; j++)
+ {
+ //approximate normal
+ S32 v1 = face.mIndices[j*3+0];
+ S32 v2 = face.mIndices[j*3+1];
+ S32 v3 = face.mIndices[j*3+2];
+
+ LLVector4a c1,c2;
+ c1.setSub(v[v1], v[v2]);
+ c2.setSub(v[v2], v[v3]);
+
+ LLVector4a norm;
+
+ norm.setCross3(c1, c2);
+
+ if (norm.dot3(norm) < 0.00000001f)
+ {
+ fFacing[j] = AWAY | TOWARDS;
+ }
+ else
+ {
+ //get view vector
+ LLVector4a view;
+ view.setSub(obj_cam_vec, v[v1]);
+ bool away = view.dot3(norm) > 0.0f;
+ if (away)
+ {
+ fFacing[j] = AWAY;
+ }
+ else
+ {
+ fFacing[j] = TOWARDS;
+ }
+ }
+ }
+
+ //for each triangle
+ for (U32 j = 0; j < face.mNumIndices/3; j++)
+ {
+ if (fFacing[j] == (AWAY | TOWARDS))
+ { //this is a degenerate triangle
+ //take neighbor facing (degenerate faces get facing of one of their neighbors)
+ // *FIX IF NEEDED: this does not deal with neighboring degenerate faces
+ for (S32 k = 0; k < 3; k++)
+ {
+ S32 index = face.mEdge[j*3+k];
+ if (index != -1)
+ {
+ fFacing[j] = fFacing[index];
+ break;
+ }
+ }
+ continue; //skip degenerate face
+ }
+
+ //for each edge
+ for (S32 k = 0; k < 3; k++) {
+ S32 index = face.mEdge[j*3+k];
+ if (index != -1 && fFacing[index] == (AWAY | TOWARDS)) {
+ //our neighbor is degenerate, make him face our direction
+ fFacing[face.mEdge[j*3+k]] = fFacing[j];
+ continue;
+ }
+
+ if (index == -1 || //edge has no neighbor, MUST be a silhouette edge
+ (fFacing[index] & fFacing[j]) == 0) { //we found a silhouette edge
+
+ S32 v1 = face.mIndices[j*3+k];
+ S32 v2 = face.mIndices[j*3+((k+1)%3)];
+
+ LLVector4a t;
+ mat.affineTransform(v[v1], t);
+ vertices.push_back(LLVector3(t[0], t[1], t[2]));
+
+ norm_mat.rotate(n[v1], t);
+
+ t.normalize3fast();
+ normals.push_back(LLVector3(t[0], t[1], t[2]));
+
+ mat.affineTransform(v[v2], t);
+ vertices.push_back(LLVector3(t[0], t[1], t[2]));
+
+ norm_mat.rotate(n[v2], t);
+ t.normalize3fast();
+ normals.push_back(LLVector3(t[0], t[1], t[2]));
+ }
+ }
+ }
+#endif
+ }
+ }
+}
+
+S32 LLVolume::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end,
+ S32 face,
+ LLVector4a* intersection,LLVector2* tex_coord, LLVector4a* normal, LLVector4a* tangent_out)
+{
+ S32 hit_face = -1;
+
+ S32 start_face;
+ S32 end_face;
+
+ if (face == -1) // ALL_SIDES
+ {
+ start_face = 0;
+ end_face = getNumVolumeFaces() - 1;
+ }
+ else
+ {
+ start_face = face;
+ end_face = face;
+ }
+
+ LLVector4a dir;
+ dir.setSub(end, start);
+
+ F32 closest_t = 2.f; // must be larger than 1
+
+ end_face = llmin(end_face, getNumVolumeFaces()-1);
+
+ for (S32 i = start_face; i <= end_face; i++)
+ {
+ LLVolumeFace &face = mVolumeFaces[i];
+
+ LLVector4a box_center;
+ box_center.setAdd(face.mExtents[0], face.mExtents[1]);
+ box_center.mul(0.5f);
+
+ LLVector4a box_size;
+ box_size.setSub(face.mExtents[1], face.mExtents[0]);
+
+ if (LLLineSegmentBoxIntersect(start, end, box_center, box_size))
+ {
+ if (tangent_out != NULL) // if the caller wants tangents, we may need to generate them
+ {
+ genTangents(i);
+ }
+
+ if (isUnique())
+ { //don't bother with an octree for flexi volumes
+ U32 tri_count = face.mNumIndices/3;
+
+ for (U32 j = 0; j < tri_count; ++j)
+ {
+ U16 idx0 = face.mIndices[j*3+0];
+ U16 idx1 = face.mIndices[j*3+1];
+ U16 idx2 = face.mIndices[j*3+2];
+
+ const LLVector4a& v0 = face.mPositions[idx0];
+ const LLVector4a& v1 = face.mPositions[idx1];
+ const LLVector4a& v2 = face.mPositions[idx2];
+
+ F32 a,b,t;
+
+ if (LLTriangleRayIntersect(v0, v1, v2,
+ start, dir, a, b, t))
+ {
+ if ((t >= 0.f) && // if hit is after start
+ (t <= 1.f) && // and before end
+ (t < closest_t)) // and this hit is closer
+ {
+ closest_t = t;
+ hit_face = i;
+
+ if (intersection != NULL)
+ {
+ LLVector4a intersect = dir;
+ intersect.mul(closest_t);
+ intersect.add(start);
+ *intersection = intersect;
+ }
+
+
+ if (tex_coord != NULL)
+ {
+ LLVector2* tc = (LLVector2*) face.mTexCoords;
+ *tex_coord = ((1.f - a - b) * tc[idx0] +
+ a * tc[idx1] +
+ b * tc[idx2]);
+
+ }
+
+ if (normal!= NULL)
+ {
+ LLVector4a* norm = face.mNormals;
+
+ LLVector4a n1,n2,n3;
+ n1 = norm[idx0];
+ n1.mul(1.f-a-b);
+
+ n2 = norm[idx1];
+ n2.mul(a);
+
+ n3 = norm[idx2];
+ n3.mul(b);
+
+ n1.add(n2);
+ n1.add(n3);
+
+ *normal = n1;
+ }
+
+ if (tangent_out != NULL)
+ {
+ LLVector4a* tangents = face.mTangents;
+
+ LLVector4a t1,t2,t3;
+ t1 = tangents[idx0];
+ t1.mul(1.f-a-b);
+
+ t2 = tangents[idx1];
+ t2.mul(a);
+
+ t3 = tangents[idx2];
+ t3.mul(b);
+
+ t1.add(t2);
+ t1.add(t3);
+
+ *tangent_out = t1;
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ if (!face.getOctree())
+ {
+ face.createOctree();
+ }
+
+ LLOctreeTriangleRayIntersect intersect(start, dir, &face, &closest_t, intersection, tex_coord, normal, tangent_out);
+ intersect.traverse(face.getOctree());
+ if (intersect.mHitFace)
+ {
+ hit_face = i;
+ }
+ }
+ }
+ }
+
+
+ return hit_face;
+}
+
+class LLVertexIndexPair
+{
+public:
+ LLVertexIndexPair(const LLVector3 &vertex, const S32 index);
+
+ LLVector3 mVertex;
+ S32 mIndex;
+};
+
+LLVertexIndexPair::LLVertexIndexPair(const LLVector3 &vertex, const S32 index)
+{
+ mVertex = vertex;
+ mIndex = index;
+}
+
+constexpr F32 VERTEX_SLOP = 0.00001f;
+
+struct lessVertex
+{
+ bool operator()(const LLVertexIndexPair *a, const LLVertexIndexPair *b)
+ {
+ const F32 slop = VERTEX_SLOP;
+
+ if (a->mVertex.mV[0] + slop < b->mVertex.mV[0])
+ {
+ return true;
+ }
+ else if (a->mVertex.mV[0] - slop > b->mVertex.mV[0])
+ {
+ return false;
+ }
+
+ if (a->mVertex.mV[1] + slop < b->mVertex.mV[1])
+ {
+ return true;
+ }
+ else if (a->mVertex.mV[1] - slop > b->mVertex.mV[1])
+ {
+ return false;
+ }
+
+ if (a->mVertex.mV[2] + slop < b->mVertex.mV[2])
+ {
+ return true;
+ }
+ else if (a->mVertex.mV[2] - slop > b->mVertex.mV[2])
+ {
+ return false;
+ }
+
+ return false;
+ }
+};
+
+struct lessTriangle
+{
+ bool operator()(const S32 *a, const S32 *b)
+ {
+ if (*a < *b)
+ {
+ return true;
+ }
+ else if (*a > *b)
+ {
+ return false;
+ }
+
+ if (*(a+1) < *(b+1))
+ {
+ return true;
+ }
+ else if (*(a+1) > *(b+1))
+ {
+ return false;
+ }
+
+ if (*(a+2) < *(b+2))
+ {
+ return true;
+ }
+ else if (*(a+2) > *(b+2))
+ {
+ return false;
+ }
+
+ return false;
+ }
+};
+
+bool equalTriangle(const S32 *a, const S32 *b)
+{
+ if ((*a == *b) && (*(a+1) == *(b+1)) && (*(a+2) == *(b+2)))
+ {
+ return true;
+ }
+ return false;
+}
+
+bool LLVolumeParams::importFile(LLFILE *fp)
+{
+ //LL_INFOS() << "importing volume" << LL_ENDL;
+ const S32 BUFSIZE = 16384;
+ char buffer[BUFSIZE]; /* Flawfinder: ignore */
+ // *NOTE: changing the size or type of this buffer will require
+ // changing the sscanf below.
+ char keyword[256]; /* Flawfinder: ignore */
+ keyword[0] = 0;
+
+ while (!feof(fp))
+ {
+ if (fgets(buffer, BUFSIZE, fp) == NULL)
+ {
+ buffer[0] = '\0';
+ }
+
+ sscanf(buffer, " %255s", keyword); /* Flawfinder: ignore */
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("profile", keyword))
+ {
+ mProfileParams.importFile(fp);
+ }
+ else if (!strcmp("path",keyword))
+ {
+ mPathParams.importFile(fp);
+ }
+ else
+ {
+ LL_WARNS() << "unknown keyword " << keyword << " in volume import" << LL_ENDL;
+ }
+ }
+
+ return true;
+}
+
+bool LLVolumeParams::exportFile(LLFILE *fp) const
+{
+ fprintf(fp,"\tshape 0\n");
+ fprintf(fp,"\t{\n");
+ mPathParams.exportFile(fp);
+ mProfileParams.exportFile(fp);
+ fprintf(fp, "\t}\n");
+ return true;
+}
+
+
+bool LLVolumeParams::importLegacyStream(std::istream& input_stream)
+{
+ //LL_INFOS() << "importing volume" << LL_ENDL;
+ const S32 BUFSIZE = 16384;
+ // *NOTE: changing the size or type of this buffer will require
+ // changing the sscanf below.
+ char buffer[BUFSIZE]; /* Flawfinder: ignore */
+ char keyword[256]; /* Flawfinder: ignore */
+ keyword[0] = 0;
+
+ while (input_stream.good())
+ {
+ input_stream.getline(buffer, BUFSIZE);
+ sscanf(buffer, " %255s", keyword);
+ if (!strcmp("{", keyword))
+ {
+ continue;
+ }
+ if (!strcmp("}",keyword))
+ {
+ break;
+ }
+ else if (!strcmp("profile", keyword))
+ {
+ mProfileParams.importLegacyStream(input_stream);
+ }
+ else if (!strcmp("path",keyword))
+ {
+ mPathParams.importLegacyStream(input_stream);
+ }
+ else
+ {
+ LL_WARNS() << "unknown keyword " << keyword << " in volume import" << LL_ENDL;
+ }
+ }
+
+ return true;
+}
+
+bool LLVolumeParams::exportLegacyStream(std::ostream& output_stream) const
+{
+ output_stream <<"\tshape 0\n";
+ output_stream <<"\t{\n";
+ mPathParams.exportLegacyStream(output_stream);
+ mProfileParams.exportLegacyStream(output_stream);
+ output_stream << "\t}\n";
+ return true;
+}
+
+LLSD LLVolumeParams::sculptAsLLSD() const
+{
+ LLSD sd = LLSD();
+ sd["id"] = getSculptID();
+ sd["type"] = getSculptType();
+
+ return sd;
+}
+
+bool LLVolumeParams::sculptFromLLSD(LLSD& sd)
+{
+ setSculptID(sd["id"].asUUID(), (U8)sd["type"].asInteger());
+ return true;
+}
+
+LLSD LLVolumeParams::asLLSD() const
+{
+ LLSD sd = LLSD();
+ sd["path"] = mPathParams;
+ sd["profile"] = mProfileParams;
+ sd["sculpt"] = sculptAsLLSD();
+
+ return sd;
+}
+
+bool LLVolumeParams::fromLLSD(LLSD& sd)
+{
+ mPathParams.fromLLSD(sd["path"]);
+ mProfileParams.fromLLSD(sd["profile"]);
+ sculptFromLLSD(sd["sculpt"]);
+
+ return true;
+}
+
+void LLVolumeParams::reduceS(F32 begin, F32 end)
+{
+ begin = llclampf(begin);
+ end = llclampf(end);
+ if (begin > end)
+ {
+ F32 temp = begin;
+ begin = end;
+ end = temp;
+ }
+ F32 a = mProfileParams.getBegin();
+ F32 b = mProfileParams.getEnd();
+ mProfileParams.setBegin(a + begin * (b - a));
+ mProfileParams.setEnd(a + end * (b - a));
+}
+
+void LLVolumeParams::reduceT(F32 begin, F32 end)
+{
+ begin = llclampf(begin);
+ end = llclampf(end);
+ if (begin > end)
+ {
+ F32 temp = begin;
+ begin = end;
+ end = temp;
+ }
+ F32 a = mPathParams.getBegin();
+ F32 b = mPathParams.getEnd();
+ mPathParams.setBegin(a + begin * (b - a));
+ mPathParams.setEnd(a + end * (b - a));
+}
+
+const F32 MIN_CONCAVE_PROFILE_WEDGE = 0.125f; // 1/8 unity
+const F32 MIN_CONCAVE_PATH_WEDGE = 0.111111f; // 1/9 unity
+
+// returns true if the shape can be approximated with a convex shape
+// for collison purposes
+bool LLVolumeParams::isConvex() const
+{
+ if (!getSculptID().isNull())
+ {
+ // can't determine, be safe and say no:
+ return false;
+ }
+
+ F32 path_length = mPathParams.getEnd() - mPathParams.getBegin();
+ F32 hollow = mProfileParams.getHollow();
+
+ U8 path_type = mPathParams.getCurveType();
+ if ( path_length > MIN_CONCAVE_PATH_WEDGE
+ && ( mPathParams.getTwist() != mPathParams.getTwistBegin()
+ || (hollow > 0.f
+ && LL_PCODE_PATH_LINE != path_type) ) )
+ {
+ // twist along a "not too short" path is concave
+ return false;
+ }
+
+ F32 profile_length = mProfileParams.getEnd() - mProfileParams.getBegin();
+ bool same_hole = hollow == 0.f
+ || (mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK) == LL_PCODE_HOLE_SAME;
+
+ F32 min_profile_wedge = MIN_CONCAVE_PROFILE_WEDGE;
+ U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
+ if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type )
+ {
+ // it is a sphere and spheres get twice the minimum profile wedge
+ min_profile_wedge = 2.f * MIN_CONCAVE_PROFILE_WEDGE;
+ }
+
+ bool convex_profile = ( ( profile_length == 1.f
+ || profile_length <= 0.5f )
+ && hollow == 0.f ) // trivially convex
+ || ( profile_length <= min_profile_wedge
+ && same_hole ); // effectvely convex (even when hollow)
+
+ if (!convex_profile)
+ {
+ // profile is concave
+ return false;
+ }
+
+ if ( LL_PCODE_PATH_LINE == path_type )
+ {
+ // straight paths with convex profile
+ return true;
+ }
+
+ bool concave_path = (path_length < 1.0f) && (path_length > 0.5f);
+ if (concave_path)
+ {
+ return false;
+ }
+
+ // we're left with spheres, toroids and tubes
+ if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type )
+ {
+ // at this stage all spheres must be convex
+ return true;
+ }
+
+ // it's a toroid or tube
+ if ( path_length <= MIN_CONCAVE_PATH_WEDGE )
+ {
+ // effectively convex
+ return true;
+ }
+
+ return false;
+}
+
+// debug
+void LLVolumeParams::setCube()
+{
+ mProfileParams.setCurveType(LL_PCODE_PROFILE_SQUARE);
+ mProfileParams.setBegin(0.f);
+ mProfileParams.setEnd(1.f);
+ mProfileParams.setHollow(0.f);
+
+ mPathParams.setBegin(0.f);
+ mPathParams.setEnd(1.f);
+ mPathParams.setScale(1.f, 1.f);
+ mPathParams.setShear(0.f, 0.f);
+ mPathParams.setCurveType(LL_PCODE_PATH_LINE);
+ mPathParams.setTwistBegin(0.f);
+ mPathParams.setTwistEnd(0.f);
+ mPathParams.setRadiusOffset(0.f);
+ mPathParams.setTaper(0.f, 0.f);
+ mPathParams.setRevolutions(0.f);
+ mPathParams.setSkew(0.f);
+}
+
+LLFaceID LLVolume::generateFaceMask()
+{
+ LLFaceID new_mask = 0x0000;
+
+ switch(mParams.getProfileParams().getCurveType() & LL_PCODE_PROFILE_MASK)
+ {
+ case LL_PCODE_PROFILE_CIRCLE:
+ case LL_PCODE_PROFILE_CIRCLE_HALF:
+ new_mask |= LL_FACE_OUTER_SIDE_0;
+ break;
+ case LL_PCODE_PROFILE_SQUARE:
+ {
+ for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 4.f); side < llceil(mParams.getProfileParams().getEnd() * 4.f); side++)
+ {
+ new_mask |= LL_FACE_OUTER_SIDE_0 << side;
+ }
+ }
+ break;
+ case LL_PCODE_PROFILE_ISOTRI:
+ case LL_PCODE_PROFILE_EQUALTRI:
+ case LL_PCODE_PROFILE_RIGHTTRI:
+ {
+ for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 3.f); side < llceil(mParams.getProfileParams().getEnd() * 3.f); side++)
+ {
+ new_mask |= LL_FACE_OUTER_SIDE_0 << side;
+ }
+ }
+ break;
+ default:
+ LL_ERRS() << "Unknown profile!" << LL_ENDL;
+ break;
+ }
+
+ // handle hollow objects
+ if (mParams.getProfileParams().getHollow() > 0)
+ {
+ new_mask |= LL_FACE_INNER_SIDE;
+ }
+
+ // handle open profile curves
+ if (mProfilep->isOpen())
+ {
+ new_mask |= LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END;
+ }
+
+ // handle open path curves
+ if (mPathp->isOpen())
+ {
+ new_mask |= LL_FACE_PATH_BEGIN | LL_FACE_PATH_END;
+ }
+
+ return new_mask;
+}
+
+bool LLVolume::isFaceMaskValid(LLFaceID face_mask)
+{
+ LLFaceID test_mask = 0;
+ for(S32 i = 0; i < getNumFaces(); i++)
+ {
+ test_mask |= mProfilep->mFaces[i].mFaceID;
+ }
+
+ return test_mask == face_mask;
+}
+
+bool LLVolume::isConvex() const
+{
+ // mParams.isConvex() may return false even though the final
+ // geometry is actually convex due to LOD approximations.
+ // TODO -- provide LLPath and LLProfile with isConvex() methods
+ // that correctly determine convexity. -- Leviathan
+ return mParams.isConvex();
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params)
+{
+ s << "{type=" << (U32) profile_params.mCurveType;
+ s << ", begin=" << profile_params.mBegin;
+ s << ", end=" << profile_params.mEnd;
+ s << ", hollow=" << profile_params.mHollow;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params)
+{
+ s << "{type=" << (U32) path_params.mCurveType;
+ s << ", begin=" << path_params.mBegin;
+ s << ", end=" << path_params.mEnd;
+ s << ", twist=" << path_params.mTwistEnd;
+ s << ", scale=" << path_params.mScale;
+ s << ", shear=" << path_params.mShear;
+ s << ", twist_begin=" << path_params.mTwistBegin;
+ s << ", radius_offset=" << path_params.mRadiusOffset;
+ s << ", taper=" << path_params.mTaper;
+ s << ", revolutions=" << path_params.mRevolutions;
+ s << ", skew=" << path_params.mSkew;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params)
+{
+ s << "{profileparams = " << volume_params.mProfileParams;
+ s << ", pathparams = " << volume_params.mPathParams;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLProfile &profile)
+{
+ s << " {open=" << (U32) profile.mOpen;
+ s << ", dirty=" << profile.mDirty;
+ s << ", totalout=" << profile.mTotalOut;
+ s << ", total=" << profile.mTotal;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLPath &path)
+{
+ s << "{open=" << (U32) path.mOpen;
+ s << ", dirty=" << path.mDirty;
+ s << ", step=" << path.mStep;
+ s << ", total=" << path.mTotal;
+ s << "}";
+ return s;
+}
+
+std::ostream& operator<<(std::ostream &s, const LLVolume &volume)
+{
+ s << "{params = " << volume.getParams();
+ s << ", path = " << *volume.mPathp;
+ s << ", profile = " << *volume.mProfilep;
+ s << "}";
+ return s;
+}
+
+
+std::ostream& operator<<(std::ostream &s, const LLVolume *volumep)
+{
+ s << "{params = " << volumep->getParams();
+ s << ", path = " << *(volumep->mPathp);
+ s << ", profile = " << *(volumep->mProfilep);
+ s << "}";
+ return s;
+}
+
+LLVolumeFace::LLVolumeFace() :
+ mID(0),
+ mTypeMask(0),
+ mBeginS(0),
+ mBeginT(0),
+ mNumS(0),
+ mNumT(0),
+ mNumVertices(0),
+ mNumAllocatedVertices(0),
+ mNumIndices(0),
+ mPositions(NULL),
+ mNormals(NULL),
+ mTangents(NULL),
+ mTexCoords(NULL),
+ mIndices(NULL),
+ mWeights(NULL),
+#if USE_SEPARATE_JOINT_INDICES_AND_WEIGHTS
+ mJustWeights(NULL),
+ mJointIndices(NULL),
+#endif
+ mWeightsScrubbed(false),
+ mOctree(NULL),
+ mOctreeTriangles(NULL),
+ mOptimized(false)
+{
+ mExtents = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*3);
+ mExtents[0].splat(-0.5f);
+ mExtents[1].splat(0.5f);
+ mCenter = mExtents+2;
+}
+
+LLVolumeFace::LLVolumeFace(const LLVolumeFace& src)
+: mID(0),
+ mTypeMask(0),
+ mBeginS(0),
+ mBeginT(0),
+ mNumS(0),
+ mNumT(0),
+ mNumVertices(0),
+ mNumAllocatedVertices(0),
+ mNumIndices(0),
+ mPositions(NULL),
+ mNormals(NULL),
+ mTangents(NULL),
+ mTexCoords(NULL),
+ mIndices(NULL),
+ mWeights(NULL),
+#if USE_SEPARATE_JOINT_INDICES_AND_WEIGHTS
+ mJustWeights(NULL),
+ mJointIndices(NULL),
+#endif
+ mWeightsScrubbed(false),
+ mOctree(NULL),
+ mOctreeTriangles(NULL)
+{
+ mExtents = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*3);
+ mCenter = mExtents+2;
+ *this = src;
+}
+
+LLVolumeFace& LLVolumeFace::operator=(const LLVolumeFace& src)
+{
+ if (&src == this)
+ { //self assignment, do nothing
+ return *this;
+ }
+
+ mID = src.mID;
+ mTypeMask = src.mTypeMask;
+ mBeginS = src.mBeginS;
+ mBeginT = src.mBeginT;
+ mNumS = src.mNumS;
+ mNumT = src.mNumT;
+
+ mExtents[0] = src.mExtents[0];
+ mExtents[1] = src.mExtents[1];
+ *mCenter = *src.mCenter;
+
+ mNumVertices = 0;
+ mNumIndices = 0;
+
+ freeData();
+
+ resizeVertices(src.mNumVertices);
+ resizeIndices(src.mNumIndices);
+
+ if (mNumVertices)
+ {
+ S32 vert_size = mNumVertices*sizeof(LLVector4a);
+ S32 tc_size = (mNumVertices*sizeof(LLVector2)+0xF) & ~0xF;
+
+ LLVector4a::memcpyNonAliased16((F32*) mPositions, (F32*) src.mPositions, vert_size);
+
+ if (src.mNormals)
+ {
+ LLVector4a::memcpyNonAliased16((F32*) mNormals, (F32*) src.mNormals, vert_size);
+ }
+
+ if(src.mTexCoords)
+ {
+ LLVector4a::memcpyNonAliased16((F32*) mTexCoords, (F32*) src.mTexCoords, tc_size);
+ }
+
+ if (src.mTangents)
+ {
+ allocateTangents(src.mNumVertices);
+ LLVector4a::memcpyNonAliased16((F32*) mTangents, (F32*) src.mTangents, vert_size);
+ }
+ else
+ {
+ ll_aligned_free_16(mTangents);
+ mTangents = NULL;
+ }
+
+ if (src.mWeights)
+ {
+ llassert(!mWeights); // don't orphan an old alloc here accidentally
+ allocateWeights(src.mNumVertices);
+ LLVector4a::memcpyNonAliased16((F32*) mWeights, (F32*) src.mWeights, vert_size);
+ mWeightsScrubbed = src.mWeightsScrubbed;
+ }
+ else
+ {
+ ll_aligned_free_16(mWeights);
+ mWeights = NULL;
+ mWeightsScrubbed = false;
+ }
+
+ #if USE_SEPARATE_JOINT_INDICES_AND_WEIGHTS
+ if (src.mJointIndices)
+ {
+ llassert(!mJointIndices); // don't orphan an old alloc here accidentally
+ allocateJointIndices(src.mNumVertices);
+ LLVector4a::memcpyNonAliased16((F32*) mJointIndices, (F32*) src.mJointIndices, src.mNumVertices * sizeof(U8) * 4);
+ }
+ else*/
+ {
+ ll_aligned_free_16(mJointIndices);
+ mJointIndices = NULL;
+ }
+ #endif
+
+ }
+
+ if (mNumIndices)
+ {
+ S32 idx_size = (mNumIndices*sizeof(U16)+0xF) & ~0xF;
+
+ LLVector4a::memcpyNonAliased16((F32*) mIndices, (F32*) src.mIndices, idx_size);
+ }
+ else
+ {
+ ll_aligned_free_16(mIndices);
+ mIndices = NULL;
+ }
+
+ mOptimized = src.mOptimized;
+ mNormalizedScale = src.mNormalizedScale;
+
+ //delete
+ return *this;
+}
+
+LLVolumeFace::~LLVolumeFace()
+{
+ ll_aligned_free_16(mExtents);
+ mExtents = NULL;
+ mCenter = NULL;
+
+ freeData();
+}
+
+void LLVolumeFace::freeData()
+{
+ ll_aligned_free<64>(mPositions);
+ mPositions = NULL;
+
+ //normals and texture coordinates are part of the same buffer as mPositions, do not free them separately
+ mNormals = NULL;
+ mTexCoords = NULL;
+
+ ll_aligned_free_16(mIndices);
+ mIndices = NULL;
+ ll_aligned_free_16(mTangents);
+ mTangents = NULL;
+ ll_aligned_free_16(mWeights);
+ mWeights = NULL;
+
+#if USE_SEPARATE_JOINT_INDICES_AND_WEIGHTS
+ ll_aligned_free_16(mJointIndices);
+ mJointIndices = NULL;
+ ll_aligned_free_16(mJustWeights);
+ mJustWeights = NULL;
+#endif
+
+ destroyOctree();
+}
+
+bool LLVolumeFace::create(LLVolume* volume, bool partial_build)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME
+
+ //tree for this face is no longer valid
+ destroyOctree();
+
+ LL_CHECK_MEMORY
+ bool ret = false ;
+ if (mTypeMask & CAP_MASK)
+ {
+ ret = createCap(volume, partial_build);
+ LL_CHECK_MEMORY
+ }
+ else if ((mTypeMask & END_MASK) || (mTypeMask & SIDE_MASK))
+ {
+ ret = createSide(volume, partial_build);
+ LL_CHECK_MEMORY
+ }
+ else
+ {
+ LL_ERRS() << "Unknown/uninitialized face type!" << LL_ENDL;
+ }
+
+ return ret ;
+}
+
+void LLVolumeFace::getVertexData(U16 index, LLVolumeFace::VertexData& cv)
+{
+ cv.setPosition(mPositions[index]);
+ if (mNormals)
+ {
+ cv.setNormal(mNormals[index]);
+ }
+ else
+ {
+ cv.getNormal().clear();
+ }
+
+ if (mTexCoords)
+ {
+ cv.mTexCoord = mTexCoords[index];
+ }
+ else
+ {
+ cv.mTexCoord.clear();
+ }
+}
+
+bool LLVolumeFace::VertexMapData::operator==(const LLVolumeFace::VertexData& rhs) const
+{
+ return getPosition().equals3(rhs.getPosition()) &&
+ mTexCoord == rhs.mTexCoord &&
+ getNormal().equals3(rhs.getNormal());
+}
+
+bool LLVolumeFace::VertexMapData::ComparePosition::operator()(const LLVector3& a, const LLVector3& b) const
+{
+ if (a.mV[0] != b.mV[0])
+ {
+ return a.mV[0] < b.mV[0];
+ }
+
+ if (a.mV[1] != b.mV[1])
+ {
+ return a.mV[1] < b.mV[1];
+ }
+
+ return a.mV[2] < b.mV[2];
+}
+
+void LLVolumeFace::remap()
+{
+ // Generate a remap buffer
+ std::vector<unsigned int> remap(mNumVertices);
+ S32 remap_vertices_count = LLMeshOptimizer::generateRemapMultiU16(&remap[0],
+ mIndices,
+ mNumIndices,
+ mPositions,
+ mNormals,
+ mTexCoords,
+ mNumVertices);
+
+ // Allocate new buffers
+ S32 size = ((mNumIndices * sizeof(U16)) + 0xF) & ~0xF;
+ U16* remap_indices = (U16*)ll_aligned_malloc_16(size);
+
+ S32 tc_bytes_size = ((remap_vertices_count * sizeof(LLVector2)) + 0xF) & ~0xF;
+ LLVector4a* remap_positions = (LLVector4a*)ll_aligned_malloc<64>(sizeof(LLVector4a) * 2 * remap_vertices_count + tc_bytes_size);
+ LLVector4a* remap_normals = remap_positions + remap_vertices_count;
+ LLVector2* remap_tex_coords = (LLVector2*)(remap_normals + remap_vertices_count);
+
+ // Fill the buffers
+ LLMeshOptimizer::remapIndexBufferU16(remap_indices, mIndices, mNumIndices, &remap[0]);
+ LLMeshOptimizer::remapPositionsBuffer(remap_positions, mPositions, mNumVertices, &remap[0]);
+ LLMeshOptimizer::remapNormalsBuffer(remap_normals, mNormals, mNumVertices, &remap[0]);
+ LLMeshOptimizer::remapUVBuffer(remap_tex_coords, mTexCoords, mNumVertices, &remap[0]);
+
+ // Free unused buffers
+ ll_aligned_free_16(mIndices);
+ ll_aligned_free<64>(mPositions);
+
+ // Tangets are now invalid
+ ll_aligned_free_16(mTangents);
+ mTangents = NULL;
+
+ // Assign new values
+ mIndices = remap_indices;
+ mPositions = remap_positions;
+ mNormals = remap_normals;
+ mTexCoords = remap_tex_coords;
+ mNumVertices = remap_vertices_count;
+ mNumAllocatedVertices = remap_vertices_count;
+}
+
+void LLVolumeFace::optimize(F32 angle_cutoff)
+{
+ LLVolumeFace new_face;
+
+ //map of points to vector of vertices at that point
+ std::map<U64, std::vector<VertexMapData> > point_map;
+
+ LLVector4a range;
+ range.setSub(mExtents[1],mExtents[0]);
+
+ //remove redundant vertices
+ for (U32 i = 0; i < mNumIndices; ++i)
+ {
+ U16 index = mIndices[i];
+
+ if (index >= mNumVertices)
+ {
+ // invalid index
+ // replace with a valid index to avoid crashes
+ index = mNumVertices - 1;
+ mIndices[i] = index;
+
+ // Needs better logging
+ LL_DEBUGS_ONCE("LLVOLUME") << "Invalid index, substituting" << LL_ENDL;
+ }
+
+ LLVolumeFace::VertexData cv;
+ getVertexData(index, cv);
+
+ bool found = false;
+
+ LLVector4a pos;
+ pos.setSub(mPositions[index], mExtents[0]);
+ pos.div(range);
+
+ U64 pos64 = 0;
+
+ pos64 = (U16) (pos[0]*65535);
+ pos64 = pos64 | (((U64) (pos[1]*65535)) << 16);
+ pos64 = pos64 | (((U64) (pos[2]*65535)) << 32);
+
+ std::map<U64, std::vector<VertexMapData> >::iterator point_iter = point_map.find(pos64);
+
+ if (point_iter != point_map.end())
+ { //duplicate point might exist
+ for (U32 j = 0; j < point_iter->second.size(); ++j)
+ {
+ LLVolumeFace::VertexData& tv = (point_iter->second)[j];
+ if (tv.compareNormal(cv, angle_cutoff))
+ {
+ found = true;
+ new_face.pushIndex((point_iter->second)[j].mIndex);
+ break;
+ }
+ }
+ }
+
+ if (!found)
+ {
+ new_face.pushVertex(cv);
+ U16 index = (U16) new_face.mNumVertices-1;
+ new_face.pushIndex(index);
+
+ VertexMapData d;
+ d.setPosition(cv.getPosition());
+ d.mTexCoord = cv.mTexCoord;
+ d.setNormal(cv.getNormal());
+ d.mIndex = index;
+ if (point_iter != point_map.end())
+ {
+ point_iter->second.push_back(d);
+ }
+ else
+ {
+ point_map[pos64].push_back(d);
+ }
+ }
+ }
+
+
+ if (angle_cutoff > 1.f && !mNormals)
+ {
+ // Now alloc'd with positions
+ //ll_aligned_free_16(new_face.mNormals);
+ new_face.mNormals = NULL;
+ }
+
+ if (!mTexCoords)
+ {
+ // Now alloc'd with positions
+ //ll_aligned_free_16(new_face.mTexCoords);
+ new_face.mTexCoords = NULL;
+ }
+
+ // Only swap data if we've actually optimized the mesh
+ //
+ if (new_face.mNumVertices <= mNumVertices)
+ {
+ llassert(new_face.mNumIndices == mNumIndices);
+ swapData(new_face);
+ }
+
+}
+
+class LLVCacheTriangleData;
+
+class LLVCacheVertexData
+{
+public:
+ S32 mIdx;
+ S32 mCacheTag;
+ F64 mScore;
+ U32 mActiveTriangles;
+ std::vector<LLVCacheTriangleData*> mTriangles;
+
+ LLVCacheVertexData()
+ {
+ mCacheTag = -1;
+ mScore = 0.0;
+ mActiveTriangles = 0;
+ mIdx = -1;
+ }
+};
+
+class LLVCacheTriangleData
+{
+public:
+ bool mActive;
+ F64 mScore;
+ LLVCacheVertexData* mVertex[3];
+
+ LLVCacheTriangleData()
+ {
+ mActive = true;
+ mScore = 0.0;
+ mVertex[0] = mVertex[1] = mVertex[2] = NULL;
+ }
+
+ void complete()
+ {
+ mActive = false;
+ for (S32 i = 0; i < 3; ++i)
+ {
+ if (mVertex[i])
+ {
+ llassert(mVertex[i]->mActiveTriangles > 0);
+ mVertex[i]->mActiveTriangles--;
+ }
+ }
+ }
+
+ bool operator<(const LLVCacheTriangleData& rhs) const
+ { //highest score first
+ return rhs.mScore < mScore;
+ }
+};
+
+constexpr F64 FindVertexScore_CacheDecayPower = 1.5;
+constexpr F64 FindVertexScore_LastTriScore = 0.75;
+constexpr F64 FindVertexScore_ValenceBoostScale = 2.0;
+constexpr F64 FindVertexScore_ValenceBoostPower = 0.5;
+constexpr U32 MaxSizeVertexCache = 32;
+constexpr F64 FindVertexScore_Scaler = 1.0/(MaxSizeVertexCache-3);
+
+F64 find_vertex_score(LLVCacheVertexData& data)
+{
+ F64 score = -1.0;
+
+ score = 0.0;
+
+ S32 cache_idx = data.mCacheTag;
+
+ if (cache_idx < 0)
+ {
+ //not in cache
+ }
+ else
+ {
+ if (cache_idx < 3)
+ { //vertex was in the last triangle
+ score = FindVertexScore_LastTriScore;
+ }
+ else
+ { //more points for being higher in the cache
+ score = 1.0-((cache_idx-3)*FindVertexScore_Scaler);
+ score = pow(score, FindVertexScore_CacheDecayPower);
+ }
+ }
+
+ //bonus points for having low valence
+ F64 valence_boost = pow((F64)data.mActiveTriangles, -FindVertexScore_ValenceBoostPower);
+ score += FindVertexScore_ValenceBoostScale * valence_boost;
+
+ return score;
+}
+
+class LLVCacheFIFO
+{
+public:
+ LLVCacheVertexData* mCache[MaxSizeVertexCache];
+ U32 mMisses;
+
+ LLVCacheFIFO()
+ {
+ mMisses = 0;
+ for (U32 i = 0; i < MaxSizeVertexCache; ++i)
+ {
+ mCache[i] = NULL;
+ }
+ }
+
+ void addVertex(LLVCacheVertexData* data)
+ {
+ if (data->mCacheTag == -1)
+ {
+ mMisses++;
+
+ S32 end = MaxSizeVertexCache-1;
+
+ if (mCache[end])
+ {
+ mCache[end]->mCacheTag = -1;
+ }
+
+ for (S32 i = end; i > 0; --i)
+ {
+ mCache[i] = mCache[i-1];
+ if (mCache[i])
+ {
+ mCache[i]->mCacheTag = i;
+ }
+ }
+
+ mCache[0] = data;
+ data->mCacheTag = 0;
+ }
+ }
+};
+
+class LLVCacheLRU
+{
+public:
+ LLVCacheVertexData* mCache[MaxSizeVertexCache+3];
+
+ LLVCacheTriangleData* mBestTriangle;
+
+ U32 mMisses;
+
+ LLVCacheLRU()
+ {
+ for (U32 i = 0; i < MaxSizeVertexCache+3; ++i)
+ {
+ mCache[i] = NULL;
+ }
+
+ mBestTriangle = NULL;
+ mMisses = 0;
+ }
+
+ void addVertex(LLVCacheVertexData* data)
+ {
+ S32 end = MaxSizeVertexCache+2;
+ if (data->mCacheTag != -1)
+ { //just moving a vertex to the front of the cache
+ end = data->mCacheTag;
+ }
+ else
+ {
+ mMisses++;
+ if (mCache[end])
+ { //adding a new vertex, vertex at end of cache falls off
+ mCache[end]->mCacheTag = -1;
+ }
+ }
+
+ for (S32 i = end; i > 0; --i)
+ { //adjust cache pointers and tags
+ mCache[i] = mCache[i-1];
+
+ if (mCache[i])
+ {
+ mCache[i]->mCacheTag = i;
+ }
+ }
+
+ mCache[0] = data;
+ mCache[0]->mCacheTag = 0;
+ }
+
+ void addTriangle(LLVCacheTriangleData* data)
+ {
+ addVertex(data->mVertex[0]);
+ addVertex(data->mVertex[1]);
+ addVertex(data->mVertex[2]);
+ }
+
+ void updateScores()
+ {
+ LLVCacheVertexData** data_iter = mCache+MaxSizeVertexCache;
+ LLVCacheVertexData** end_data = mCache+MaxSizeVertexCache+3;
+
+ while(data_iter != end_data)
+ {
+ LLVCacheVertexData* data = *data_iter++;
+ //trailing 3 vertices aren't actually in the cache for scoring purposes
+ if (data)
+ {
+ data->mCacheTag = -1;
+ }
+ }
+
+ data_iter = mCache;
+ end_data = mCache+MaxSizeVertexCache;
+
+ while (data_iter != end_data)
+ { //update scores of vertices in cache
+ LLVCacheVertexData* data = *data_iter++;
+ if (data)
+ {
+ data->mScore = find_vertex_score(*data);
+ }
+ }
+
+ mBestTriangle = NULL;
+ //update triangle scores
+ data_iter = mCache;
+ end_data = mCache+MaxSizeVertexCache+3;
+
+ while (data_iter != end_data)
+ {
+ LLVCacheVertexData* data = *data_iter++;
+ if (data)
+ {
+ for (std::vector<LLVCacheTriangleData*>::iterator iter = data->mTriangles.begin(), end_iter = data->mTriangles.end(); iter != end_iter; ++iter)
+ {
+ LLVCacheTriangleData* tri = *iter;
+ if (tri->mActive)
+ {
+ tri->mScore = tri->mVertex[0] ? tri->mVertex[0]->mScore : 0;
+ tri->mScore += tri->mVertex[1] ? tri->mVertex[1]->mScore : 0;
+ tri->mScore += tri->mVertex[2] ? tri->mVertex[2]->mScore : 0;
+
+ if (!mBestTriangle || mBestTriangle->mScore < tri->mScore)
+ {
+ mBestTriangle = tri;
+ }
+ }
+ }
+ }
+ }
+
+ //knock trailing 3 vertices off the cache
+ data_iter = mCache+MaxSizeVertexCache;
+ end_data = mCache+MaxSizeVertexCache+3;
+ while (data_iter != end_data)
+ {
+ LLVCacheVertexData* data = *data_iter;
+ if (data)
+ {
+ llassert(data->mCacheTag == -1);
+ *data_iter = NULL;
+ }
+ ++data_iter;
+ }
+ }
+};
+
+// data structures for tangent generation
+
+struct MikktData
+{
+ LLVolumeFace* face;
+ std::vector<LLVector3> p;
+ std::vector<LLVector3> n;
+ std::vector<LLVector2> tc;
+ std::vector<LLVector4> w;
+ std::vector<LLVector4> t;
+
+ MikktData(LLVolumeFace* f)
+ : face(f)
+ {
+ U32 count = face->mNumIndices;
+
+ p.resize(count);
+ n.resize(count);
+ tc.resize(count);
+ t.resize(count);
+
+ if (face->mWeights)
+ {
+ w.resize(count);
+ }
+
+
+ LLVector3 inv_scale(1.f / face->mNormalizedScale.mV[0], 1.f / face->mNormalizedScale.mV[1], 1.f / face->mNormalizedScale.mV[2]);
+
+
+ for (int i = 0; i < face->mNumIndices; ++i)
+ {
+ U32 idx = face->mIndices[i];
+
+ p[i].set(face->mPositions[idx].getF32ptr());
+ p[i].scaleVec(face->mNormalizedScale); //put mesh in original coordinate frame when reconstructing tangents
+ n[i].set(face->mNormals[idx].getF32ptr());
+ n[i].scaleVec(inv_scale);
+ n[i].normalize();
+ tc[i].set(face->mTexCoords[idx]);
+
+ if (idx >= face->mNumVertices)
+ {
+ // invalid index
+ // replace with a valid index to avoid crashes
+ idx = face->mNumVertices - 1;
+ face->mIndices[i] = idx;
+
+ // Needs better logging
+ LL_DEBUGS_ONCE("LLVOLUME") << "Invalid index, substituting" << LL_ENDL;
+ }
+
+ if (face->mWeights)
+ {
+ w[i].set(face->mWeights[idx].getF32ptr());
+ }
+ }
+ }
+};
+
+
+bool LLVolumeFace::cacheOptimize(bool gen_tangents)
+{ //optimize for vertex cache according to Forsyth method:
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME;
+ llassert(!mOptimized);
+ mOptimized = true;
+
+ if (gen_tangents && mNormals && mTexCoords)
+ { // generate mikkt space tangents before cache optimizing since the index buffer may change
+ // a bit of a hack to do this here, but this function gets called exactly once for the lifetime of a mesh
+ // and is executed on a background thread
+ SMikkTSpaceInterface ms;
+
+ ms.m_getNumFaces = [](const SMikkTSpaceContext* pContext)
+ {
+ MikktData* data = (MikktData*)pContext->m_pUserData;
+ LLVolumeFace* face = data->face;
+ return face->mNumIndices / 3;
+ };
+
+ ms.m_getNumVerticesOfFace = [](const SMikkTSpaceContext* pContext, const int iFace)
+ {
+ return 3;
+ };
+
+ ms.m_getPosition = [](const SMikkTSpaceContext* pContext, float fvPosOut[], const int iFace, const int iVert)
+ {
+ MikktData* data = (MikktData*)pContext->m_pUserData;
+ F32* v = data->p[iFace * 3 + iVert].mV;
+ fvPosOut[0] = v[0];
+ fvPosOut[1] = v[1];
+ fvPosOut[2] = v[2];
+ };
+
+ ms.m_getNormal = [](const SMikkTSpaceContext* pContext, float fvNormOut[], const int iFace, const int iVert)
+ {
+ MikktData* data = (MikktData*)pContext->m_pUserData;
+ F32* n = data->n[iFace * 3 + iVert].mV;
+ fvNormOut[0] = n[0];
+ fvNormOut[1] = n[1];
+ fvNormOut[2] = n[2];
+ };
+
+ ms.m_getTexCoord = [](const SMikkTSpaceContext* pContext, float fvTexcOut[], const int iFace, const int iVert)
+ {
+ MikktData* data = (MikktData*)pContext->m_pUserData;
+ F32* tc = data->tc[iFace * 3 + iVert].mV;
+ fvTexcOut[0] = tc[0];
+ fvTexcOut[1] = tc[1];
+ };
+
+ ms.m_setTSpaceBasic = [](const SMikkTSpaceContext* pContext, const float fvTangent[], const float fSign, const int iFace, const int iVert)
+ {
+ MikktData* data = (MikktData*)pContext->m_pUserData;
+ S32 i = iFace * 3 + iVert;
+
+ data->t[i].set(fvTangent);
+ data->t[i].mV[3] = fSign;
+ };
+
+ ms.m_setTSpace = nullptr;
+
+ MikktData data(this);
+
+ SMikkTSpaceContext ctx = { &ms, &data };
+
+ genTangSpaceDefault(&ctx);
+
+ //re-weld
+ meshopt_Stream mos[] =
+ {
+ { &data.p[0], sizeof(LLVector3), sizeof(LLVector3) },
+ { &data.n[0], sizeof(LLVector3), sizeof(LLVector3) },
+ { &data.t[0], sizeof(LLVector4), sizeof(LLVector4) },
+ { &data.tc[0], sizeof(LLVector2), sizeof(LLVector2) },
+ { data.w.empty() ? nullptr : &data.w[0], sizeof(LLVector4), sizeof(LLVector4) }
+ };
+
+ std::vector<U32> remap;
+ remap.resize(data.p.size());
+
+ U32 stream_count = data.w.empty() ? 4 : 5;
+
+ size_t vert_count = meshopt_generateVertexRemapMulti(&remap[0], nullptr, data.p.size(), data.p.size(), mos, stream_count);
+
+ if (vert_count < 65535 && vert_count != 0)
+ {
+ std::vector<U32> indices;
+ indices.resize(mNumIndices);
+
+ //copy results back into volume
+ resizeVertices(vert_count);
+
+ if (!data.w.empty())
+ {
+ allocateWeights(vert_count);
+ }
+
+ allocateTangents(mNumVertices);
+
+ for (int i = 0; i < mNumIndices; ++i)
+ {
+ U32 src_idx = i;
+ U32 dst_idx = remap[i];
+ if (dst_idx >= mNumVertices)
+ {
+ dst_idx = mNumVertices - 1;
+ // Shouldn't happen, figure out what gets returned in remap and why.
+ llassert(false);
+ LL_DEBUGS_ONCE("LLVOLUME") << "Invalid destination index, substituting" << LL_ENDL;
+ }
+ mIndices[i] = dst_idx;
+
+ mPositions[dst_idx].load3(data.p[src_idx].mV);
+ mNormals[dst_idx].load3(data.n[src_idx].mV);
+ mTexCoords[dst_idx] = data.tc[src_idx];
+
+ mTangents[dst_idx].loadua(data.t[src_idx].mV);
+
+ if (mWeights)
+ {
+ mWeights[dst_idx].loadua(data.w[src_idx].mV);
+ }
+ }
+
+ // put back in normalized coordinate frame
+ LLVector4a inv_scale(1.f/mNormalizedScale.mV[0], 1.f / mNormalizedScale.mV[1], 1.f / mNormalizedScale.mV[2]);
+ LLVector4a scale;
+ scale.load3(mNormalizedScale.mV);
+ scale.getF32ptr()[3] = 1.f;
+
+ for (int i = 0; i < mNumVertices; ++i)
+ {
+ mPositions[i].mul(inv_scale);
+ mNormals[i].mul(scale);
+ mNormals[i].normalize3();
+ F32 w = mTangents[i].getF32ptr()[3];
+ mTangents[i].mul(scale);
+ mTangents[i].normalize3();
+ mTangents[i].getF32ptr()[3] = w;
+ }
+ }
+ else
+ {
+ if (vert_count == 0)
+ {
+ LL_WARNS_ONCE("LLVOLUME") << "meshopt_generateVertexRemapMulti failed to process a model or model was invalid" << LL_ENDL;
+ }
+ // blew past the max vertex size limit, use legacy tangent generation which never adds verts
+ createTangents();
+ }
+ }
+
+ // cache optimize index buffer
+
+ // meshopt needs scratch space, do some pointer shuffling to avoid an extra index buffer copy
+ U16* src_indices = mIndices;
+ mIndices = nullptr;
+ resizeIndices(mNumIndices);
+
+ meshopt_optimizeVertexCache<U16>(mIndices, src_indices, mNumIndices, mNumVertices);
+
+ ll_aligned_free_16(src_indices);
+
+ return true;
+}
+
+void LLVolumeFace::createOctree(F32 scaler, const LLVector4a& center, const LLVector4a& size)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME
+
+ if (getOctree())
+ {
+ return;
+ }
+
+ llassert(mNumIndices % 3 == 0);
+
+ mOctree = new LLOctreeRoot<LLVolumeTriangle, LLVolumeTriangle*>(center, size, NULL);
+ new LLVolumeOctreeListener(mOctree);
+ const U32 num_triangles = mNumIndices / 3;
+ // Initialize all the triangles we need
+ mOctreeTriangles = new LLVolumeTriangle[num_triangles];
+
+ for (U32 triangle_index = 0; triangle_index < num_triangles; ++triangle_index)
+ { //for each triangle
+ const U32 index = triangle_index * 3;
+ LLVolumeTriangle* tri = &mOctreeTriangles[triangle_index];
+
+ const LLVector4a& v0 = mPositions[mIndices[index]];
+ const LLVector4a& v1 = mPositions[mIndices[index + 1]];
+ const LLVector4a& v2 = mPositions[mIndices[index + 2]];
+
+ //store pointers to vertex data
+ tri->mV[0] = &v0;
+ tri->mV[1] = &v1;
+ tri->mV[2] = &v2;
+
+ //store indices
+ tri->mIndex[0] = mIndices[index];
+ tri->mIndex[1] = mIndices[index + 1];
+ tri->mIndex[2] = mIndices[index + 2];
+
+ //get minimum point
+ LLVector4a min = v0;
+ min.setMin(min, v1);
+ min.setMin(min, v2);
+
+ //get maximum point
+ LLVector4a max = v0;
+ max.setMax(max, v1);
+ max.setMax(max, v2);
+
+ //compute center
+ LLVector4a center;
+ center.setAdd(min, max);
+ center.mul(0.5f);
+
+ tri->mPositionGroup = center;
+
+ //compute "radius"
+ LLVector4a size;
+ size.setSub(max,min);
+
+ tri->mRadius = size.getLength3().getF32() * scaler;
+
+ //insert
+ mOctree->insert(tri);
+ }
+
+ //remove unneeded octree layers
+ while (!mOctree->balance()) { }
+
+ //calculate AABB for each node
+ LLVolumeOctreeRebound rebound(this);
+ rebound.traverse(mOctree);
+
+ if (gDebugGL)
+ {
+ LLVolumeOctreeValidate validate;
+ validate.traverse(mOctree);
+ }
+}
+
+void LLVolumeFace::destroyOctree()
+{
+ delete mOctree;
+ mOctree = NULL;
+ delete[] mOctreeTriangles;
+ mOctreeTriangles = NULL;
+}
+
+const LLOctreeNode<LLVolumeTriangle, LLVolumeTriangle*>* LLVolumeFace::getOctree() const
+{
+ return mOctree;
+}
+
+
+void LLVolumeFace::swapData(LLVolumeFace& rhs)
+{
+ llswap(rhs.mPositions, mPositions);
+ llswap(rhs.mNormals, mNormals);
+ llswap(rhs.mTangents, mTangents);
+ llswap(rhs.mTexCoords, mTexCoords);
+ llswap(rhs.mIndices,mIndices);
+ llswap(rhs.mNumVertices, mNumVertices);
+ llswap(rhs.mNumIndices, mNumIndices);
+}
+
+void LerpPlanarVertex(LLVolumeFace::VertexData& v0,
+ LLVolumeFace::VertexData& v1,
+ LLVolumeFace::VertexData& v2,
+ LLVolumeFace::VertexData& vout,
+ F32 coef01,
+ F32 coef02)
+{
+
+ LLVector4a lhs;
+ lhs.setSub(v1.getPosition(), v0.getPosition());
+ lhs.mul(coef01);
+ LLVector4a rhs;
+ rhs.setSub(v2.getPosition(), v0.getPosition());
+ rhs.mul(coef02);
+
+ rhs.add(lhs);
+ rhs.add(v0.getPosition());
+
+ vout.setPosition(rhs);
+
+ vout.mTexCoord = v0.mTexCoord + ((v1.mTexCoord-v0.mTexCoord)*coef01)+((v2.mTexCoord-v0.mTexCoord)*coef02);
+ vout.setNormal(v0.getNormal());
+}
+
+bool LLVolumeFace::createUnCutCubeCap(LLVolume* volume, bool partial_build)
+{
+ LL_CHECK_MEMORY
+
+ const LLAlignedArray<LLVector4a,64>& mesh = volume->getMesh();
+ const LLAlignedArray<LLVector4a,64>& profile = volume->getProfile().mProfile;
+ S32 max_s = volume->getProfile().getTotal();
+ S32 max_t = volume->getPath().mPath.size();
+
+ // S32 i;
+ S32 grid_size = (profile.size()-1)/4;
+ // VFExtents change
+ LLVector4a& min = mExtents[0];
+ LLVector4a& max = mExtents[1];
+
+ S32 offset = 0;
+ if (mTypeMask & TOP_MASK)
+ {
+ offset = (max_t-1) * max_s;
+ }
+ else
+ {
+ offset = mBeginS;
+ }
+
+ {
+ VertexData corners[4];
+ VertexData baseVert;
+ for(S32 t = 0; t < 4; t++)
+ {
+ corners[t].getPosition().load4a(mesh[offset + (grid_size*t)].getF32ptr());
+ corners[t].mTexCoord.mV[0] = profile[grid_size*t][0]+0.5f;
+ corners[t].mTexCoord.mV[1] = 0.5f - profile[grid_size*t][1];
+ }
+
+ {
+ LLVector4a lhs;
+ lhs.setSub(corners[1].getPosition(), corners[0].getPosition());
+ LLVector4a rhs;
+ rhs.setSub(corners[2].getPosition(), corners[1].getPosition());
+ baseVert.getNormal().setCross3(lhs, rhs);
+ baseVert.getNormal().normalize3fast();
+ }
+
+ if(!(mTypeMask & TOP_MASK))
+ {
+ baseVert.getNormal().mul(-1.0f);
+ }
+ else
+ {
+ //Swap the UVs on the U(X) axis for top face
+ LLVector2 swap;
+ swap = corners[0].mTexCoord;
+ corners[0].mTexCoord=corners[3].mTexCoord;
+ corners[3].mTexCoord=swap;
+ swap = corners[1].mTexCoord;
+ corners[1].mTexCoord=corners[2].mTexCoord;
+ corners[2].mTexCoord=swap;
+ }
+
+ S32 size = (grid_size+1)*(grid_size+1);
+ resizeVertices(size);
+
+ LLVector4a* pos = (LLVector4a*) mPositions;
+ LLVector4a* norm = (LLVector4a*) mNormals;
+ LLVector2* tc = (LLVector2*) mTexCoords;
+
+ for(int gx = 0;gx<grid_size+1;gx++)
+ {
+ for(int gy = 0;gy<grid_size+1;gy++)
+ {
+ VertexData newVert;
+ LerpPlanarVertex(
+ corners[0],
+ corners[1],
+ corners[3],
+ newVert,
+ (F32)gx/(F32)grid_size,
+ (F32)gy/(F32)grid_size);
+
+ *pos++ = newVert.getPosition();
+ *norm++ = baseVert.getNormal();
+ *tc++ = newVert.mTexCoord;
+
+ if (gx == 0 && gy == 0)
+ {
+ min = newVert.getPosition();
+ max = min;
+ }
+ else
+ {
+ min.setMin(min, newVert.getPosition());
+ max.setMax(max, newVert.getPosition());
+ }
+ }
+ }
+
+ mCenter->setAdd(min, max);
+ mCenter->mul(0.5f);
+ }
+
+ if (!partial_build)
+ {
+ resizeIndices(grid_size*grid_size*6);
+ if (!volume->isMeshAssetLoaded())
+ {
+ S32 size = grid_size * grid_size * 6;
+ try
+ {
+ mEdge.resize(size);
+ }
+ catch (std::bad_alloc&)
+ {
+ LL_WARNS("LLVOLUME") << "Resize of mEdge to " << size << " failed" << LL_ENDL;
+ return false;
+ }
+ }
+
+ U16* out = mIndices;
+
+ S32 idxs[] = {0,1,(grid_size+1)+1,(grid_size+1)+1,(grid_size+1),0};
+
+ int cur_edge = 0;
+
+ for(S32 gx = 0;gx<grid_size;gx++)
+ {
+
+ for(S32 gy = 0;gy<grid_size;gy++)
+ {
+ if (mTypeMask & TOP_MASK)
+ {
+ for(S32 i=5;i>=0;i--)
+ {
+ *out++ = ((gy*(grid_size+1))+gx+idxs[i]);
+ }
+
+ S32 edge_value = grid_size * 2 * gy + gx * 2;
+
+ if (gx > 0)
+ {
+ mEdge[cur_edge++] = edge_value;
+ }
+ else
+ {
+ mEdge[cur_edge++] = -1; // Mark face to higlight it
+ }
+
+ if (gy < grid_size - 1)
+ {
+ mEdge[cur_edge++] = edge_value;
+ }
+ else
+ {
+ mEdge[cur_edge++] = -1;
+ }
+
+ mEdge[cur_edge++] = edge_value;
+
+ if (gx < grid_size - 1)
+ {
+ mEdge[cur_edge++] = edge_value;
+ }
+ else
+ {
+ mEdge[cur_edge++] = -1;
+ }
+
+ if (gy > 0)
+ {
+ mEdge[cur_edge++] = edge_value;
+ }
+ else
+ {
+ mEdge[cur_edge++] = -1;
+ }
+
+ mEdge[cur_edge++] = edge_value;
+ }
+ else
+ {
+ for(S32 i=0;i<6;i++)
+ {
+ *out++ = ((gy*(grid_size+1))+gx+idxs[i]);
+ }
+
+ S32 edge_value = grid_size * 2 * gy + gx * 2;
+
+ if (gy > 0)
+ {
+ mEdge[cur_edge++] = edge_value;
+ }
+ else
+ {
+ mEdge[cur_edge++] = -1;
+ }
+
+ if (gx < grid_size - 1)
+ {
+ mEdge[cur_edge++] = edge_value;
+ }
+ else
+ {
+ mEdge[cur_edge++] = -1;
+ }
+
+ mEdge[cur_edge++] = edge_value;
+
+ if (gy < grid_size - 1)
+ {
+ mEdge[cur_edge++] = edge_value;
+ }
+ else
+ {
+ mEdge[cur_edge++] = -1;
+ }
+
+ if (gx > 0)
+ {
+ mEdge[cur_edge++] = edge_value;
+ }
+ else
+ {
+ mEdge[cur_edge++] = -1;
+ }
+
+ mEdge[cur_edge++] = edge_value;
+ }
+ }
+ }
+ }
+
+ LL_CHECK_MEMORY
+ return true;
+}
+
+
+bool LLVolumeFace::createCap(LLVolume* volume, bool partial_build)
+{
+ if (!(mTypeMask & HOLLOW_MASK) &&
+ !(mTypeMask & OPEN_MASK) &&
+ ((volume->getParams().getPathParams().getBegin()==0.0f)&&
+ (volume->getParams().getPathParams().getEnd()==1.0f))&&
+ (volume->getParams().getProfileParams().getCurveType()==LL_PCODE_PROFILE_SQUARE &&
+ volume->getParams().getPathParams().getCurveType()==LL_PCODE_PATH_LINE)
+ ){
+ return createUnCutCubeCap(volume, partial_build);
+ }
+
+ S32 num_vertices = 0, num_indices = 0;
+
+ const LLAlignedArray<LLVector4a,64>& mesh = volume->getMesh();
+ const LLAlignedArray<LLVector4a,64>& profile = volume->getProfile().mProfile;
+
+ // All types of caps have the same number of vertices and indices
+ num_vertices = profile.size();
+ num_indices = (profile.size() - 2)*3;
+
+ if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK))
+ {
+ resizeVertices(num_vertices+1);
+
+ //if (!partial_build)
+ {
+ resizeIndices(num_indices+3);
+ }
+ }
+ else
+ {
+ resizeVertices(num_vertices);
+ //if (!partial_build)
+ {
+ resizeIndices(num_indices);
+ }
+ }
+
+ LL_CHECK_MEMORY;
+
+ S32 max_s = volume->getProfile().getTotal();
+ S32 max_t = volume->getPath().mPath.size();
+
+ mCenter->clear();
+
+ S32 offset = 0;
+ if (mTypeMask & TOP_MASK)
+ {
+ offset = (max_t-1) * max_s;
+ }
+ else
+ {
+ offset = mBeginS;
+ }
+
+ // Figure out the normal, assume all caps are flat faces.
+ // Cross product to get normals.
+
+ LLVector2 cuv;
+ LLVector2 min_uv, max_uv;
+ // VFExtents change
+ LLVector4a& min = mExtents[0];
+ LLVector4a& max = mExtents[1];
+
+ LLVector2* tc = (LLVector2*) mTexCoords;
+ LLVector4a* pos = (LLVector4a*) mPositions;
+ LLVector4a* norm = (LLVector4a*) mNormals;
+
+ // Copy the vertices into the array
+
+ const LLVector4a* src = mesh.mArray+offset;
+ const LLVector4a* end = src+num_vertices;
+
+ min = *src;
+ max = min;
+
+
+ const LLVector4a* p = profile.mArray;
+
+ if (mTypeMask & TOP_MASK)
+ {
+ min_uv.set((*p)[0]+0.5f,
+ (*p)[1]+0.5f);
+
+ max_uv = min_uv;
+
+ while(src < end)
+ {
+ tc->mV[0] = (*p)[0]+0.5f;
+ tc->mV[1] = (*p)[1]+0.5f;
+
+ llassert(src->isFinite3()); // MAINT-5660; don't know why this happens, does not affect Release builds
+ update_min_max(min,max,*src);
+ update_min_max(min_uv, max_uv, *tc);
+
+ *pos = *src;
+
+ llassert(pos->isFinite3());
+
+ ++p;
+ ++tc;
+ ++src;
+ ++pos;
+ }
+ }
+ else
+ {
+
+ min_uv.set((*p)[0]+0.5f,
+ 0.5f - (*p)[1]);
+ max_uv = min_uv;
+
+ while(src < end)
+ {
+ // Mirror for underside.
+ tc->mV[0] = (*p)[0]+0.5f;
+ tc->mV[1] = 0.5f - (*p)[1];
+
+ llassert(src->isFinite3());
+ update_min_max(min,max,*src);
+ update_min_max(min_uv, max_uv, *tc);
+
+ *pos = *src;
+
+ llassert(pos->isFinite3());
+
+ ++p;
+ ++tc;
+ ++src;
+ ++pos;
+ }
+ }
+
+ LL_CHECK_MEMORY
+
+ mCenter->setAdd(min, max);
+ mCenter->mul(0.5f);
+
+ cuv = (min_uv + max_uv)*0.5f;
+
+
+ VertexData vd;
+ vd.setPosition(*mCenter);
+ vd.mTexCoord = cuv;
+
+ if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK))
+ {
+ *pos++ = *mCenter;
+ *tc++ = cuv;
+ num_vertices++;
+ }
+
+ LL_CHECK_MEMORY
+
+ //if (partial_build)
+ //{
+ // return true;
+ //}
+
+ if (mTypeMask & HOLLOW_MASK)
+ {
+ if (mTypeMask & TOP_MASK)
+ {
+ // HOLLOW TOP
+ // Does it matter if it's open or closed? - djs
+
+ S32 pt1 = 0, pt2 = num_vertices - 1;
+ S32 i = 0;
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ const LLVector4a& p1 = profile[pt1];
+ const LLVector4a& p2 = profile[pt2];
+ const LLVector4a& pa = profile[pt1+1];
+ const LLVector4a& pb = profile[pt2-1];
+
+ const F32* p1V = p1.getF32ptr();
+ const F32* p2V = p2.getF32ptr();
+ const F32* paV = pa.getF32ptr();
+ const F32* pbV = pb.getF32ptr();
+
+ //p1.mV[VZ] = 0.f;
+ //p2.mV[VZ] = 0.f;
+ //pa.mV[VZ] = 0.f;
+ //pb.mV[VZ] = 0.f;
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1V[0]*paV[1] - paV[0]*p1V[1]) +
+ (paV[0]*p2V[1] - p2V[0]*paV[1]) +
+ (p2V[0]*p1V[1] - p1V[0]*p2V[1]);
+
+ area_1ba = (p1V[0]*pbV[1] - pbV[0]*p1V[1]) +
+ (pbV[0]*paV[1] - paV[0]*pbV[1]) +
+ (paV[0]*p1V[1] - p1V[0]*paV[1]);
+
+ area_21b = (p2V[0]*p1V[1] - p1V[0]*p2V[1]) +
+ (p1V[0]*pbV[1] - pbV[0]*p1V[1]) +
+ (pbV[0]*p2V[1] - p2V[0]*pbV[1]);
+
+ area_2ab = (p2V[0]*paV[1] - paV[0]*p2V[1]) +
+ (paV[0]*pbV[1] - pbV[0]*paV[1]) +
+ (pbV[0]*p2V[1] - p2V[0]*pbV[1]);
+
+ bool use_tri1a2 = true;
+ bool tri_1a2 = true;
+ bool tri_21b = true;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = false;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = false;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = false;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = false;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = false;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = true;
+ }
+ else
+ {
+ LLVector4a d1;
+ d1.setSub(p1, pa);
+
+ LLVector4a d2;
+ d2.setSub(p2, pb);
+
+ if (d1.dot3(d1) < d2.dot3(d2))
+ {
+ use_tri1a2 = true;
+ }
+ else
+ {
+ use_tri1a2 = false;
+ }
+ }
+
+ if (use_tri1a2)
+ {
+ mIndices[i++] = pt1;
+ mIndices[i++] = pt1 + 1;
+ mIndices[i++] = pt2;
+ pt1++;
+ }
+ else
+ {
+ mIndices[i++] = pt1;
+ mIndices[i++] = pt2 - 1;
+ mIndices[i++] = pt2;
+ pt2--;
+ }
+ }
+ }
+ else
+ {
+ // HOLLOW BOTTOM
+ // Does it matter if it's open or closed? - djs
+
+ llassert(mTypeMask & BOTTOM_MASK);
+ S32 pt1 = 0, pt2 = num_vertices - 1;
+
+ S32 i = 0;
+ while (pt2 - pt1 > 1)
+ {
+ // Use the profile points instead of the mesh, since you want
+ // the un-transformed profile distances.
+ const LLVector4a& p1 = profile[pt1];
+ const LLVector4a& p2 = profile[pt2];
+ const LLVector4a& pa = profile[pt1+1];
+ const LLVector4a& pb = profile[pt2-1];
+
+ const F32* p1V = p1.getF32ptr();
+ const F32* p2V = p2.getF32ptr();
+ const F32* paV = pa.getF32ptr();
+ const F32* pbV = pb.getF32ptr();
+
+ // Use area of triangle to determine backfacing
+ F32 area_1a2, area_1ba, area_21b, area_2ab;
+ area_1a2 = (p1V[0]*paV[1] - paV[0]*p1V[1]) +
+ (paV[0]*p2V[1] - p2V[0]*paV[1]) +
+ (p2V[0]*p1V[1] - p1V[0]*p2V[1]);
+
+ area_1ba = (p1V[0]*pbV[1] - pbV[0]*p1V[1]) +
+ (pbV[0]*paV[1] - paV[0]*pbV[1]) +
+ (paV[0]*p1V[1] - p1V[0]*paV[1]);
+
+ area_21b = (p2V[0]*p1V[1] - p1V[0]*p2V[1]) +
+ (p1V[0]*pbV[1] - pbV[0]*p1V[1]) +
+ (pbV[0]*p2V[1] - p2V[0]*pbV[1]);
+
+ area_2ab = (p2V[0]*paV[1] - paV[0]*p2V[1]) +
+ (paV[0]*pbV[1] - pbV[0]*paV[1]) +
+ (pbV[0]*p2V[1] - p2V[0]*pbV[1]);
+
+ bool use_tri1a2 = true;
+ bool tri_1a2 = true;
+ bool tri_21b = true;
+
+ if (area_1a2 < 0)
+ {
+ tri_1a2 = false;
+ }
+ if (area_2ab < 0)
+ {
+ // Can't use, because it contains point b
+ tri_1a2 = false;
+ }
+ if (area_21b < 0)
+ {
+ tri_21b = false;
+ }
+ if (area_1ba < 0)
+ {
+ // Can't use, because it contains point b
+ tri_21b = false;
+ }
+
+ if (!tri_1a2)
+ {
+ use_tri1a2 = false;
+ }
+ else if (!tri_21b)
+ {
+ use_tri1a2 = true;
+ }
+ else
+ {
+ LLVector4a d1;
+ d1.setSub(p1,pa);
+ LLVector4a d2;
+ d2.setSub(p2,pb);
+
+ if (d1.dot3(d1) < d2.dot3(d2))
+ {
+ use_tri1a2 = true;
+ }
+ else
+ {
+ use_tri1a2 = false;
+ }
+ }
+
+ // Flipped backfacing from top
+ if (use_tri1a2)
+ {
+ mIndices[i++] = pt1;
+ mIndices[i++] = pt2;
+ mIndices[i++] = pt1 + 1;
+ pt1++;
+ }
+ else
+ {
+ mIndices[i++] = pt1;
+ mIndices[i++] = pt2;
+ mIndices[i++] = pt2 - 1;
+ pt2--;
+ }
+ }
+ }
+ }
+ else
+ {
+ // Not hollow, generate the triangle fan.
+ U16 v1 = 2;
+ U16 v2 = 1;
+
+ if (mTypeMask & TOP_MASK)
+ {
+ v1 = 1;
+ v2 = 2;
+ }
+
+ for (S32 i = 0; i < (num_vertices - 2); i++)
+ {
+ mIndices[3*i] = num_vertices - 1;
+ mIndices[3*i+v1] = i;
+ mIndices[3*i+v2] = i + 1;
+ }
+
+
+ }
+
+ LLVector4a d0,d1;
+ LL_CHECK_MEMORY
+
+
+ d0.setSub(mPositions[mIndices[1]], mPositions[mIndices[0]]);
+ d1.setSub(mPositions[mIndices[2]], mPositions[mIndices[0]]);
+
+ LLVector4a normal;
+ normal.setCross3(d0,d1);
+
+ if (normal.dot3(normal).getF32() > F_APPROXIMATELY_ZERO)
+ {
+ normal.normalize3fast();
+ }
+ else
+ { //degenerate, make up a value
+ if(normal.getF32ptr()[2] >= 0)
+ normal.set(0.f,0.f,1.f);
+ else
+ normal.set(0.f,0.f,-1.f);
+ }
+
+ llassert(llfinite(normal.getF32ptr()[0]));
+ llassert(llfinite(normal.getF32ptr()[1]));
+ llassert(llfinite(normal.getF32ptr()[2]));
+
+ llassert(!llisnan(normal.getF32ptr()[0]));
+ llassert(!llisnan(normal.getF32ptr()[1]));
+ llassert(!llisnan(normal.getF32ptr()[2]));
+
+ for (S32 i = 0; i < num_vertices; i++)
+ {
+ norm[i].load4a(normal.getF32ptr());
+ }
+
+ return true;
+}
+
+void CalculateTangentArray(U32 vertexCount, const LLVector4a *vertex, const LLVector4a *normal,
+ const LLVector2 *texcoord, U32 triangleCount, const U16* index_array, LLVector4a *tangent);
+
+void LLVolumeFace::createTangents()
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME;
+
+ if (!mTangents)
+ {
+ allocateTangents(mNumVertices);
+
+ //generate tangents
+ LLVector4a* ptr = (LLVector4a*)mTangents;
+
+ LLVector4a* end = mTangents + mNumVertices;
+ while (ptr < end)
+ {
+ (*ptr++).clear();
+ }
+
+ CalculateTangentArray(mNumVertices, mPositions, mNormals, mTexCoords, mNumIndices / 3, mIndices, mTangents);
+
+ //normalize normals
+ for (U32 i = 0; i < mNumVertices; i++)
+ {
+ //bump map/planar projection code requires normals to be normalized
+ mNormals[i].normalize3fast();
+ }
+ }
+
+}
+
+void LLVolumeFace::resizeVertices(S32 num_verts)
+{
+ ll_aligned_free<64>(mPositions);
+ //DO NOT free mNormals and mTexCoords as they are part of mPositions buffer
+ ll_aligned_free_16(mTangents);
+
+ mTangents = NULL;
+
+ if (num_verts)
+ {
+ //pad texture coordinate block end to allow for QWORD reads
+ S32 tc_size = ((num_verts*sizeof(LLVector2)) + 0xF) & ~0xF;
+
+ mPositions = (LLVector4a*) ll_aligned_malloc<64>(sizeof(LLVector4a)*2*num_verts+tc_size);
+ mNormals = mPositions+num_verts;
+ mTexCoords = (LLVector2*) (mNormals+num_verts);
+
+ ll_assert_aligned(mPositions, 64);
+ }
+ else
+ {
+ mPositions = NULL;
+ mNormals = NULL;
+ mTexCoords = NULL;
+ }
+
+
+ if (mPositions)
+ {
+ mNumVertices = num_verts;
+ mNumAllocatedVertices = num_verts;
+ }
+ else
+ {
+ // Either num_verts is zero or allocation failure
+ mNumVertices = 0;
+ mNumAllocatedVertices = 0;
+ }
+
+ // Force update
+ mJointRiggingInfoTab.clear();
+}
+
+void LLVolumeFace::pushVertex(const LLVolumeFace::VertexData& cv)
+{
+ pushVertex(cv.getPosition(), cv.getNormal(), cv.mTexCoord);
+}
+
+void LLVolumeFace::pushVertex(const LLVector4a& pos, const LLVector4a& norm, const LLVector2& tc)
+{
+ S32 new_verts = mNumVertices+1;
+
+ if (new_verts > mNumAllocatedVertices)
+ {
+ // double buffer size on expansion
+ new_verts *= 2;
+
+ S32 new_tc_size = ((new_verts*8)+0xF) & ~0xF;
+ S32 old_tc_size = ((mNumVertices*8)+0xF) & ~0xF;
+
+ S32 old_vsize = mNumVertices*16;
+
+ S32 new_size = new_verts*16*2+new_tc_size;
+
+ LLVector4a* old_buf = mPositions;
+
+ mPositions = (LLVector4a*) ll_aligned_malloc<64>(new_size);
+ mNormals = mPositions+new_verts;
+ mTexCoords = (LLVector2*) (mNormals+new_verts);
+
+ if (old_buf != NULL)
+ {
+ // copy old positions into new buffer
+ LLVector4a::memcpyNonAliased16((F32*)mPositions, (F32*)old_buf, old_vsize);
+
+ // normals
+ LLVector4a::memcpyNonAliased16((F32*)mNormals, (F32*)(old_buf + mNumVertices), old_vsize);
+
+ // tex coords
+ LLVector4a::memcpyNonAliased16((F32*)mTexCoords, (F32*)(old_buf + mNumVertices * 2), old_tc_size);
+ }
+
+ // just clear tangents
+ ll_aligned_free_16(mTangents);
+ mTangents = NULL;
+ ll_aligned_free<64>(old_buf);
+
+ mNumAllocatedVertices = new_verts;
+
+ }
+
+ mPositions[mNumVertices] = pos;
+ mNormals[mNumVertices] = norm;
+ mTexCoords[mNumVertices] = tc;
+
+ mNumVertices++;
+}
+
+void LLVolumeFace::allocateTangents(S32 num_verts)
+{
+ ll_aligned_free_16(mTangents);
+ mTangents = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
+}
+
+void LLVolumeFace::allocateWeights(S32 num_verts)
+{
+ ll_aligned_free_16(mWeights);
+ mWeights = (LLVector4a*)ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
+
+}
+
+void LLVolumeFace::allocateJointIndices(S32 num_verts)
+{
+#if USE_SEPARATE_JOINT_INDICES_AND_WEIGHTS
+ ll_aligned_free_16(mJointIndices);
+ ll_aligned_free_16(mJustWeights);
+
+ mJointIndices = (U8*)ll_aligned_malloc_16(sizeof(U8) * 4 * num_verts);
+ mJustWeights = (LLVector4a*)ll_aligned_malloc_16(sizeof(LLVector4a) * num_verts);
+#endif
+}
+
+void LLVolumeFace::resizeIndices(S32 num_indices)
+{
+ ll_aligned_free_16(mIndices);
+ llassert(num_indices % 3 == 0);
+
+ if (num_indices)
+ {
+ //pad index block end to allow for QWORD reads
+ S32 size = ((num_indices*sizeof(U16)) + 0xF) & ~0xF;
+
+ mIndices = (U16*) ll_aligned_malloc_16(size);
+ }
+ else
+ {
+ mIndices = NULL;
+ }
+
+ if (mIndices)
+ {
+ mNumIndices = num_indices;
+ }
+ else
+ {
+ // Either num_indices is zero or allocation failure
+ mNumIndices = 0;
+ }
+}
+
+void LLVolumeFace::pushIndex(const U16& idx)
+{
+ S32 new_count = mNumIndices + 1;
+ S32 new_size = ((new_count*2)+0xF) & ~0xF;
+
+ S32 old_size = ((mNumIndices*2)+0xF) & ~0xF;
+ if (new_size != old_size)
+ {
+ mIndices = (U16*) ll_aligned_realloc_16(mIndices, new_size, old_size);
+ ll_assert_aligned(mIndices,16);
+ }
+
+ mIndices[mNumIndices++] = idx;
+}
+
+void LLVolumeFace::fillFromLegacyData(std::vector<LLVolumeFace::VertexData>& v, std::vector<U16>& idx)
+{
+ resizeVertices(v.size());
+ resizeIndices(idx.size());
+
+ for (U32 i = 0; i < v.size(); ++i)
+ {
+ mPositions[i] = v[i].getPosition();
+ mNormals[i] = v[i].getNormal();
+ mTexCoords[i] = v[i].mTexCoord;
+ }
+
+ for (U32 i = 0; i < idx.size(); ++i)
+ {
+ mIndices[i] = idx[i];
+ }
+}
+
+bool LLVolumeFace::createSide(LLVolume* volume, bool partial_build)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME
+
+ LL_CHECK_MEMORY
+ bool flat = mTypeMask & FLAT_MASK;
+
+ U8 sculpt_type = volume->getParams().getSculptType();
+ U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK;
+ bool sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT;
+ bool sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR;
+ bool sculpt_reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror); // XOR
+
+ S32 num_vertices, num_indices;
+
+ const LLAlignedArray<LLVector4a,64>& mesh = volume->getMesh();
+ const LLAlignedArray<LLVector4a,64>& profile = volume->getProfile().mProfile;
+ const LLAlignedArray<LLPath::PathPt,64>& path_data = volume->getPath().mPath;
+
+ S32 max_s = volume->getProfile().getTotal();
+
+ S32 s, t, i;
+ F32 ss, tt;
+
+ num_vertices = mNumS*mNumT;
+ num_indices = (mNumS-1)*(mNumT-1)*6;
+
+ partial_build = (num_vertices > mNumVertices || num_indices > mNumIndices) ? false : partial_build;
+
+ if (!partial_build)
+ {
+ resizeVertices(num_vertices);
+ resizeIndices(num_indices);
+
+ if (!volume->isMeshAssetLoaded())
+ {
+ try
+ {
+ mEdge.resize(num_indices);
+ }
+ catch (std::bad_alloc&)
+ {
+ LL_WARNS("LLVOLUME") << "Resize of mEdge to " << num_indices << " failed" << LL_ENDL;
+ return false;
+ }
+ }
+ }
+
+ LL_CHECK_MEMORY
+
+ LLVector4a* pos = (LLVector4a*) mPositions;
+ LLVector2* tc = (LLVector2*) mTexCoords;
+ F32 begin_stex = floorf(profile[mBeginS][2]);
+ S32 num_s = ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2) ? mNumS/2 : mNumS;
+
+ S32 cur_vertex = 0;
+ S32 end_t = mBeginT+mNumT;
+ bool test = (mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2;
+
+ // Copy the vertices into the array
+ for (t = mBeginT; t < end_t; t++)
+ {
+ tt = path_data[t].mTexT;
+ for (s = 0; s < num_s; s++)
+ {
+ if (mTypeMask & END_MASK)
+ {
+ if (s)
+ {
+ ss = 1.f;
+ }
+ else
+ {
+ ss = 0.f;
+ }
+ }
+ else
+ {
+ // Get s value for tex-coord.
+ S32 index = mBeginS + s;
+ if (index >= profile.size())
+ {
+ // edge?
+ ss = flat ? 1.f - begin_stex : 1.f;
+ }
+ else if (!flat)
+ {
+ ss = profile[index][2];
+ }
+ else
+ {
+ ss = profile[index][2] - begin_stex;
+ }
+ }
+
+ if (sculpt_reverse_horizontal)
+ {
+ ss = 1.f - ss;
+ }
+
+ // Check to see if this triangle wraps around the array.
+ if (mBeginS + s >= max_s)
+ {
+ // We're wrapping
+ i = mBeginS + s + max_s*(t-1);
+ }
+ else
+ {
+ i = mBeginS + s + max_s*t;
+ }
+
+ mesh[i].store4a((F32*)(pos+cur_vertex));
+ tc[cur_vertex].set(ss,tt);
+
+ cur_vertex++;
+
+ if (test && s > 0)
+ {
+ mesh[i].store4a((F32*)(pos+cur_vertex));
+ tc[cur_vertex].set(ss,tt);
+ cur_vertex++;
+ }
+ }
+
+ if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2)
+ {
+ if (mTypeMask & OPEN_MASK)
+ {
+ s = num_s-1;
+ }
+ else
+ {
+ s = 0;
+ }
+
+ i = mBeginS + s + max_s*t;
+ ss = profile[mBeginS + s][2] - begin_stex;
+
+ mesh[i].store4a((F32*)(pos+cur_vertex));
+ tc[cur_vertex].set(ss,tt);
+
+ cur_vertex++;
+ }
+ }
+ LL_CHECK_MEMORY
+
+ mCenter->clear();
+
+ LLVector4a* cur_pos = pos;
+ LLVector4a* end_pos = pos + mNumVertices;
+
+ //get bounding box for this side
+ LLVector4a face_min;
+ LLVector4a face_max;
+
+ face_min = face_max = *cur_pos++;
+
+ while (cur_pos < end_pos)
+ {
+ update_min_max(face_min, face_max, *cur_pos++);
+ }
+ // VFExtents change
+ mExtents[0] = face_min;
+ mExtents[1] = face_max;
+
+ U32 tc_count = mNumVertices;
+ if (tc_count%2 == 1)
+ { //odd number of texture coordinates, duplicate last entry to padded end of array
+ tc_count++;
+ mTexCoords[mNumVertices] = mTexCoords[mNumVertices-1];
+ }
+
+ LLVector4a* cur_tc = (LLVector4a*) mTexCoords;
+ LLVector4a* end_tc = (LLVector4a*) (mTexCoords+tc_count);
+
+ LLVector4a tc_min;
+ LLVector4a tc_max;
+
+ tc_min = tc_max = *cur_tc++;
+
+ while (cur_tc < end_tc)
+ {
+ update_min_max(tc_min, tc_max, *cur_tc++);
+ }
+
+ F32* minp = tc_min.getF32ptr();
+ F32* maxp = tc_max.getF32ptr();
+
+ mTexCoordExtents[0].mV[0] = llmin(minp[0], minp[2]);
+ mTexCoordExtents[0].mV[1] = llmin(minp[1], minp[3]);
+ mTexCoordExtents[1].mV[0] = llmax(maxp[0], maxp[2]);
+ mTexCoordExtents[1].mV[1] = llmax(maxp[1], maxp[3]);
+
+ mCenter->setAdd(face_min, face_max);
+ mCenter->mul(0.5f);
+
+ S32 cur_index = 0;
+ S32 cur_edge = 0;
+ bool flat_face = mTypeMask & FLAT_MASK;
+
+ if (!partial_build)
+ {
+ // Now we generate the indices.
+ for (t = 0; t < (mNumT-1); t++)
+ {
+ for (s = 0; s < (mNumS-1); s++)
+ {
+ mIndices[cur_index++] = s + mNumS*t; //bottom left
+ mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right
+ mIndices[cur_index++] = s + mNumS*(t+1); //top left
+ mIndices[cur_index++] = s + mNumS*t; //bottom left
+ mIndices[cur_index++] = s+1 + mNumS*t; //bottom right
+ mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right
+
+ // bottom left/top right neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*t+s*2+1;
+
+ if (t < mNumT-2)
+ { // top right/top left neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*(t+1)+s*2+1;
+ }
+ else if (mNumT <= 3 || volume->getPath().isOpen())
+ { // no neighbor
+ mEdge[cur_edge++] = -1;
+ }
+ else
+ { // wrap on T
+ mEdge[cur_edge++] = s*2+1;
+ }
+
+ if (s > 0)
+ { // top left/bottom left neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*t+s*2-1;
+ }
+ else if (flat_face || volume->getProfile().isOpen())
+ { // no neighbor
+ mEdge[cur_edge++] = -1;
+ }
+ else
+ { // wrap on S
+ mEdge[cur_edge++] = (mNumS-1)*2*t+(mNumS-2)*2+1;
+ }
+
+ if (t > 0)
+ { // bottom left/bottom right neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*(t-1)+s*2;
+ }
+ else if (mNumT <= 3 || volume->getPath().isOpen())
+ { // no neighbor
+ mEdge[cur_edge++] = -1;
+ }
+ else
+ { // wrap on T
+ mEdge[cur_edge++] = (mNumS-1)*2*(mNumT-2)+s*2;
+ }
+
+ if (s < mNumS-2)
+ { // bottom right/top right neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*t+(s+1)*2;
+ }
+ else if (flat_face || volume->getProfile().isOpen())
+ { // no neighbor
+ mEdge[cur_edge++] = -1;
+ }
+ else
+ { // wrap on S
+ mEdge[cur_edge++] = (mNumS-1)*2*t;
+ }
+
+ // top right/bottom left neighbor face
+ mEdge[cur_edge++] = (mNumS-1)*2*t+s*2;
+ }
+ }
+ }
+
+ LL_CHECK_MEMORY
+
+ //clear normals
+ F32* dst = (F32*) mNormals;
+ F32* end = (F32*) (mNormals+mNumVertices);
+ LLVector4a zero = LLVector4a::getZero();
+
+ while (dst < end)
+ {
+ zero.store4a(dst);
+ dst += 4;
+ }
+
+ LL_CHECK_MEMORY
+
+ //generate normals
+ U32 count = mNumIndices/3;
+
+ LLVector4a* norm = mNormals;
+
+ static thread_local LLAlignedArray<LLVector4a, 64> triangle_normals;
+ try
+ {
+ triangle_normals.resize(count);
+ }
+ catch (std::bad_alloc&)
+ {
+ LL_WARNS("LLVOLUME") << "Resize of triangle_normals to " << count << " failed" << LL_ENDL;
+ return false;
+ }
+ LLVector4a* output = triangle_normals.mArray;
+ LLVector4a* end_output = output+count;
+
+ U16* idx = mIndices;
+
+ while (output < end_output)
+ {
+ LLVector4a b,v1,v2;
+ b.load4a((F32*) (pos+idx[0]));
+ v1.load4a((F32*) (pos+idx[1]));
+ v2.load4a((F32*) (pos+idx[2]));
+
+ //calculate triangle normal
+ LLVector4a a;
+
+ a.setSub(b, v1);
+ b.sub(v2);
+
+
+ LLQuad& vector1 = *((LLQuad*) &v1);
+ LLQuad& vector2 = *((LLQuad*) &v2);
+
+ LLQuad& amQ = *((LLQuad*) &a);
+ LLQuad& bmQ = *((LLQuad*) &b);
+
+ //v1.setCross3(t,v0);
+ //setCross3(const LLVector4a& a, const LLVector4a& b)
+ // Vectors are stored in memory in w, z, y, x order from high to low
+ // Set vector1 = { a[W], a[X], a[Z], a[Y] }
+ vector1 = _mm_shuffle_ps( amQ, amQ, _MM_SHUFFLE( 3, 0, 2, 1 ));
+ // Set vector2 = { b[W], b[Y], b[X], b[Z] }
+ vector2 = _mm_shuffle_ps( bmQ, bmQ, _MM_SHUFFLE( 3, 1, 0, 2 ));
+ // mQ = { a[W]*b[W], a[X]*b[Y], a[Z]*b[X], a[Y]*b[Z] }
+ vector2 = _mm_mul_ps( vector1, vector2 );
+ // vector3 = { a[W], a[Y], a[X], a[Z] }
+ amQ = _mm_shuffle_ps( amQ, amQ, _MM_SHUFFLE( 3, 1, 0, 2 ));
+ // vector4 = { b[W], b[X], b[Z], b[Y] }
+ bmQ = _mm_shuffle_ps( bmQ, bmQ, _MM_SHUFFLE( 3, 0, 2, 1 ));
+ // mQ = { 0, a[X]*b[Y] - a[Y]*b[X], a[Z]*b[X] - a[X]*b[Z], a[Y]*b[Z] - a[Z]*b[Y] }
+ vector1 = _mm_sub_ps( vector2, _mm_mul_ps( amQ, bmQ ));
+
+ llassert(v1.isFinite3());
+
+ v1.store4a((F32*) output);
+
+
+ output++;
+ idx += 3;
+ }
+
+ idx = mIndices;
+
+ LLVector4a* src = triangle_normals.mArray;
+
+ for (U32 i = 0; i < count; i++) //for each triangle
+ {
+ LLVector4a c;
+ c.load4a((F32*) (src++));
+
+ LLVector4a* n0p = norm+idx[0];
+ LLVector4a* n1p = norm+idx[1];
+ LLVector4a* n2p = norm+idx[2];
+
+ idx += 3;
+
+ LLVector4a n0,n1,n2;
+ n0.load4a((F32*) n0p);
+ n1.load4a((F32*) n1p);
+ n2.load4a((F32*) n2p);
+
+ n0.add(c);
+ n1.add(c);
+ n2.add(c);
+
+ llassert(c.isFinite3());
+
+ //even out quad contributions
+ switch (i%2+1)
+ {
+ case 0: n0.add(c); break;
+ case 1: n1.add(c); break;
+ case 2: n2.add(c); break;
+ };
+
+ n0.store4a((F32*) n0p);
+ n1.store4a((F32*) n1p);
+ n2.store4a((F32*) n2p);
+ }
+
+ LL_CHECK_MEMORY
+
+ // adjust normals based on wrapping and stitching
+
+ LLVector4a top;
+ top.setSub(pos[0], pos[mNumS*(mNumT-2)]);
+ bool s_bottom_converges = (top.dot3(top) < 0.000001f);
+
+ top.setSub(pos[mNumS-1], pos[mNumS*(mNumT-2)+mNumS-1]);
+ bool s_top_converges = (top.dot3(top) < 0.000001f);
+
+ if (sculpt_stitching == LL_SCULPT_TYPE_NONE) // logic for non-sculpt volumes
+ {
+ if (!volume->getPath().isOpen())
+ { //wrap normals on T
+ for (S32 i = 0; i < mNumS; i++)
+ {
+ LLVector4a n;
+ n.setAdd(norm[i], norm[mNumS*(mNumT-1)+i]);
+ norm[i] = n;
+ norm[mNumS*(mNumT-1)+i] = n;
+ }
+ }
+
+ if (!volume->getProfile().isOpen() && !s_bottom_converges)
+ { //wrap normals on S
+ for (S32 i = 0; i < mNumT; i++)
+ {
+ LLVector4a n;
+ n.setAdd(norm[mNumS*i], norm[mNumS*i+mNumS-1]);
+ norm[mNumS * i] = n;
+ norm[mNumS * i+mNumS-1] = n;
+ }
+ }
+
+ if (volume->getPathType() == LL_PCODE_PATH_CIRCLE &&
+ ((volume->getProfileType() & LL_PCODE_PROFILE_MASK) == LL_PCODE_PROFILE_CIRCLE_HALF))
+ {
+ if (s_bottom_converges)
+ { //all lower S have same normal
+ for (S32 i = 0; i < mNumT; i++)
+ {
+ norm[mNumS*i].set(1,0,0);
+ }
+ }
+
+ if (s_top_converges)
+ { //all upper S have same normal
+ for (S32 i = 0; i < mNumT; i++)
+ {
+ norm[mNumS*i+mNumS-1].set(-1,0,0);
+ }
+ }
+ }
+ }
+ else // logic for sculpt volumes
+ {
+ bool average_poles = false;
+ bool wrap_s = false;
+ bool wrap_t = false;
+
+ if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE)
+ average_poles = true;
+
+ if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) ||
+ (sculpt_stitching == LL_SCULPT_TYPE_TORUS) ||
+ (sculpt_stitching == LL_SCULPT_TYPE_CYLINDER))
+ wrap_s = true;
+
+ if (sculpt_stitching == LL_SCULPT_TYPE_TORUS)
+ wrap_t = true;
+
+
+ if (average_poles)
+ {
+ // average normals for north pole
+
+ LLVector4a average;
+ average.clear();
+
+ for (S32 i = 0; i < mNumS; i++)
+ {
+ average.add(norm[i]);
+ }
+
+ // set average
+ for (S32 i = 0; i < mNumS; i++)
+ {
+ norm[i] = average;
+ }
+
+ // average normals for south pole
+
+ average.clear();
+
+ for (S32 i = 0; i < mNumS; i++)
+ {
+ average.add(norm[i + mNumS * (mNumT - 1)]);
+ }
+
+ // set average
+ for (S32 i = 0; i < mNumS; i++)
+ {
+ norm[i + mNumS * (mNumT - 1)] = average;
+ }
+
+ }
+
+
+ if (wrap_s)
+ {
+ for (S32 i = 0; i < mNumT; i++)
+ {
+ LLVector4a n;
+ n.setAdd(norm[mNumS*i], norm[mNumS*i+mNumS-1]);
+ norm[mNumS * i] = n;
+ norm[mNumS * i+mNumS-1] = n;
+ }
+ }
+
+ if (wrap_t)
+ {
+ for (S32 i = 0; i < mNumS; i++)
+ {
+ LLVector4a n;
+ n.setAdd(norm[i], norm[mNumS*(mNumT-1)+i]);
+ norm[i] = n;
+ norm[mNumS*(mNumT-1)+i] = n;
+ }
+ }
+
+ }
+
+ LL_CHECK_MEMORY
+
+ return true;
+}
+
+//adapted from Lengyel, Eric. "Computing Tangent Space Basis Vectors for an Arbitrary Mesh". Terathon Software 3D Graphics Library, 2001. http://www.terathon.com/code/tangent.html
+void CalculateTangentArray(U32 vertexCount, const LLVector4a *vertex, const LLVector4a *normal,
+ const LLVector2 *texcoord, U32 triangleCount, const U16* index_array, LLVector4a *tangent)
+{
+ LL_PROFILE_ZONE_SCOPED_CATEGORY_VOLUME
+
+ //LLVector4a *tan1 = new LLVector4a[vertexCount * 2];
+ LLVector4a* tan1 = (LLVector4a*) ll_aligned_malloc_16(vertexCount*2*sizeof(LLVector4a));
+ // new(tan1) LLVector4a;
+
+ LLVector4a* tan2 = tan1 + vertexCount;
+
+ U32 count = vertexCount * 2;
+ for (U32 i = 0; i < count; i++)
+ {
+ tan1[i].clear();
+ }
+
+ for (U32 a = 0; a < triangleCount; a++)
+ {
+ U32 i1 = *index_array++;
+ U32 i2 = *index_array++;
+ U32 i3 = *index_array++;
+
+ const LLVector4a& v1 = vertex[i1];
+ const LLVector4a& v2 = vertex[i2];
+ const LLVector4a& v3 = vertex[i3];
+
+ const LLVector2& w1 = texcoord[i1];
+ const LLVector2& w2 = texcoord[i2];
+ const LLVector2& w3 = texcoord[i3];
+
+ const F32* v1ptr = v1.getF32ptr();
+ const F32* v2ptr = v2.getF32ptr();
+ const F32* v3ptr = v3.getF32ptr();
+
+ float x1 = v2ptr[0] - v1ptr[0];
+ float x2 = v3ptr[0] - v1ptr[0];
+ float y1 = v2ptr[1] - v1ptr[1];
+ float y2 = v3ptr[1] - v1ptr[1];
+ float z1 = v2ptr[2] - v1ptr[2];
+ float z2 = v3ptr[2] - v1ptr[2];
+
+ float s1 = w2.mV[0] - w1.mV[0];
+ float s2 = w3.mV[0] - w1.mV[0];
+ float t1 = w2.mV[1] - w1.mV[1];
+ float t2 = w3.mV[1] - w1.mV[1];
+
+ F32 rd = s1*t2-s2*t1;
+
+ float r = ((rd*rd) > FLT_EPSILON) ? (1.0f / rd)
+ : ((rd > 0.0f) ? 1024.f : -1024.f); //some made up large ratio for division by zero
+
+ llassert(llfinite(r));
+ llassert(!llisnan(r));
+
+ LLVector4a sdir((t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r,
+ (t2 * z1 - t1 * z2) * r);
+ LLVector4a tdir((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r,
+ (s1 * z2 - s2 * z1) * r);
+
+ tan1[i1].add(sdir);
+ tan1[i2].add(sdir);
+ tan1[i3].add(sdir);
+
+ tan2[i1].add(tdir);
+ tan2[i2].add(tdir);
+ tan2[i3].add(tdir);
+ }
+
+ for (U32 a = 0; a < vertexCount; a++)
+ {
+ LLVector4a n = normal[a];
+
+ const LLVector4a& t = tan1[a];
+
+ LLVector4a ncrosst;
+ ncrosst.setCross3(n,t);
+
+ // Gram-Schmidt orthogonalize
+ n.mul(n.dot3(t).getF32());
+
+ LLVector4a tsubn;
+ tsubn.setSub(t,n);
+
+ if (tsubn.dot3(tsubn).getF32() > F_APPROXIMATELY_ZERO)
+ {
+ tsubn.normalize3fast();
+
+ // Calculate handedness
+ F32 handedness = ncrosst.dot3(tan2[a]).getF32() < 0.f ? -1.f : 1.f;
+
+ tsubn.getF32ptr()[3] = handedness;
+
+ tangent[a] = tsubn;
+ }
+ else
+ { //degenerate, make up a value
+ tangent[a].set(0,0,1,1);
+ }
+ }
+
+ ll_aligned_free_16(tan1);
+}
+
+
|