diff options
Diffstat (limited to 'indra/llmath/llquaternion.h')
-rwxr-xr-x[-rw-r--r--] | indra/llmath/llquaternion.h | 68 |
1 files changed, 36 insertions, 32 deletions
diff --git a/indra/llmath/llquaternion.h b/indra/llmath/llquaternion.h index ca0dfe206b..aa0b1752f4 100644..100755 --- a/indra/llmath/llquaternion.h +++ b/indra/llmath/llquaternion.h @@ -1,4 +1,4 @@ -/** +/** * @file llquaternion.h * @brief LLQuaternion class header file. * @@ -71,6 +71,9 @@ public: void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization void loadIdentity(); // Loads the quaternion that represents the identity rotation + bool isEqualEps(const LLQuaternion &quat, F32 epsilon) const; + bool isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const; + const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w) const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW]) @@ -239,6 +242,21 @@ inline void LLQuaternion::loadIdentity() mQ[VW] = 1.0f; } +inline bool LLQuaternion::isEqualEps(const LLQuaternion &quat, F32 epsilon) const +{ + return ( fabs(mQ[VX] - quat.mQ[VX]) < epsilon + && fabs(mQ[VY] - quat.mQ[VY]) < epsilon + && fabs(mQ[VZ] - quat.mQ[VZ]) < epsilon + && fabs(mQ[VS] - quat.mQ[VS]) < epsilon ); +} + +inline bool LLQuaternion::isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const +{ + return ( fabs(mQ[VX] - quat.mQ[VX]) > epsilon + || fabs(mQ[VY] - quat.mQ[VY]) > epsilon + || fabs(mQ[VZ] - quat.mQ[VZ]) > epsilon + || fabs(mQ[VS] - quat.mQ[VS]) > epsilon ); +} inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w) { @@ -304,43 +322,29 @@ inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q) return (*this); } -// There may be a cheaper way that avoids the sqrt. -// Does sin_a = VX*VX + VY*VY + VZ*VZ? -// Copied from Matrix and Quaternion FAQ 1.12 inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const { - F32 cos_a = mQ[VW]; - if (cos_a > 1.0f) cos_a = 1.0f; - if (cos_a < -1.0f) cos_a = -1.0f; - - F32 sin_a = (F32) sqrt( 1.0f - cos_a * cos_a ); - - if ( fabs( sin_a ) < 0.0005f ) - sin_a = 1.0f; - else - sin_a = 1.f/sin_a; - - F32 temp_angle = 2.0f * (F32) acos( cos_a ); - if (temp_angle > F_PI) + F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component + if (v > FP_MAG_THRESHOLD) { - // The (angle,axis) pair should never have angles outside [PI, -PI] - // since we want the _shortest_ (angle,axis) solution. - // Since acos is defined for [0, PI], and we multiply by 2.0, we - // can push the angle outside the acceptible range. - // When this happens we set the angle to the other portion of a - // full 2PI rotation, and negate the axis, which reverses the - // direction of the rotation (by the right-hand rule). - *angle = 2.f * F_PI - temp_angle; - *x = - mQ[VX] * sin_a; - *y = - mQ[VY] * sin_a; - *z = - mQ[VZ] * sin_a; + F32 oomag = 1.0f / v; + F32 w = mQ[VW]; + if (w < 0.0f) + { + w = -w; // make VW positive + oomag = -oomag; // invert the axis + } + *x = mQ[VX] * oomag; // normalize the axis + *y = mQ[VY] * oomag; + *z = mQ[VZ] * oomag; + *angle = 2.0f * atan2f(v, w); // get the angle } else { - *angle = temp_angle; - *x = mQ[VX] * sin_a; - *y = mQ[VY] * sin_a; - *z = mQ[VZ] * sin_a; + *angle = 0.0f; // no rotation + *x = 0.0f; // around some dummy axis + *y = 0.0f; + *z = 1.0f; } } |