summaryrefslogtreecommitdiff
path: root/indra/llmath/llquaternion.h
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llmath/llquaternion.h')
-rwxr-xr-x[-rw-r--r--]indra/llmath/llquaternion.h68
1 files changed, 36 insertions, 32 deletions
diff --git a/indra/llmath/llquaternion.h b/indra/llmath/llquaternion.h
index ca0dfe206b..aa0b1752f4 100644..100755
--- a/indra/llmath/llquaternion.h
+++ b/indra/llmath/llquaternion.h
@@ -1,4 +1,4 @@
-/**
+/**
* @file llquaternion.h
* @brief LLQuaternion class header file.
*
@@ -71,6 +71,9 @@ public:
void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization
void loadIdentity(); // Loads the quaternion that represents the identity rotation
+ bool isEqualEps(const LLQuaternion &quat, F32 epsilon) const;
+ bool isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const;
+
const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w)
const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion
const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW])
@@ -239,6 +242,21 @@ inline void LLQuaternion::loadIdentity()
mQ[VW] = 1.0f;
}
+inline bool LLQuaternion::isEqualEps(const LLQuaternion &quat, F32 epsilon) const
+{
+ return ( fabs(mQ[VX] - quat.mQ[VX]) < epsilon
+ && fabs(mQ[VY] - quat.mQ[VY]) < epsilon
+ && fabs(mQ[VZ] - quat.mQ[VZ]) < epsilon
+ && fabs(mQ[VS] - quat.mQ[VS]) < epsilon );
+}
+
+inline bool LLQuaternion::isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const
+{
+ return ( fabs(mQ[VX] - quat.mQ[VX]) > epsilon
+ || fabs(mQ[VY] - quat.mQ[VY]) > epsilon
+ || fabs(mQ[VZ] - quat.mQ[VZ]) > epsilon
+ || fabs(mQ[VS] - quat.mQ[VS]) > epsilon );
+}
inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w)
{
@@ -304,43 +322,29 @@ inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q)
return (*this);
}
-// There may be a cheaper way that avoids the sqrt.
-// Does sin_a = VX*VX + VY*VY + VZ*VZ?
-// Copied from Matrix and Quaternion FAQ 1.12
inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const
{
- F32 cos_a = mQ[VW];
- if (cos_a > 1.0f) cos_a = 1.0f;
- if (cos_a < -1.0f) cos_a = -1.0f;
-
- F32 sin_a = (F32) sqrt( 1.0f - cos_a * cos_a );
-
- if ( fabs( sin_a ) < 0.0005f )
- sin_a = 1.0f;
- else
- sin_a = 1.f/sin_a;
-
- F32 temp_angle = 2.0f * (F32) acos( cos_a );
- if (temp_angle > F_PI)
+ F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component
+ if (v > FP_MAG_THRESHOLD)
{
- // The (angle,axis) pair should never have angles outside [PI, -PI]
- // since we want the _shortest_ (angle,axis) solution.
- // Since acos is defined for [0, PI], and we multiply by 2.0, we
- // can push the angle outside the acceptible range.
- // When this happens we set the angle to the other portion of a
- // full 2PI rotation, and negate the axis, which reverses the
- // direction of the rotation (by the right-hand rule).
- *angle = 2.f * F_PI - temp_angle;
- *x = - mQ[VX] * sin_a;
- *y = - mQ[VY] * sin_a;
- *z = - mQ[VZ] * sin_a;
+ F32 oomag = 1.0f / v;
+ F32 w = mQ[VW];
+ if (w < 0.0f)
+ {
+ w = -w; // make VW positive
+ oomag = -oomag; // invert the axis
+ }
+ *x = mQ[VX] * oomag; // normalize the axis
+ *y = mQ[VY] * oomag;
+ *z = mQ[VZ] * oomag;
+ *angle = 2.0f * atan2f(v, w); // get the angle
}
else
{
- *angle = temp_angle;
- *x = mQ[VX] * sin_a;
- *y = mQ[VY] * sin_a;
- *z = mQ[VZ] * sin_a;
+ *angle = 0.0f; // no rotation
+ *x = 0.0f; // around some dummy axis
+ *y = 0.0f;
+ *z = 1.0f;
}
}