summaryrefslogtreecommitdiff
path: root/indra/llmath/llquaternion.h
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llmath/llquaternion.h')
-rw-r--r--indra/llmath/llquaternion.h736
1 files changed, 368 insertions, 368 deletions
diff --git a/indra/llmath/llquaternion.h b/indra/llmath/llquaternion.h
index 51ce163b4e..fbe4da97f7 100644
--- a/indra/llmath/llquaternion.h
+++ b/indra/llmath/llquaternion.h
@@ -5,21 +5,21 @@
* $LicenseInfo:firstyear=2000&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
- *
+ *
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
- *
+ *
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
- *
+ *
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
+ *
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
@@ -40,137 +40,137 @@ class LLVector3d;
class LLMatrix4;
class LLMatrix3;
-// NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!!
-// Moreover, it is written assuming that all vectors and matricies
-// passed as arguments are normalized and unitary respectively.
-// VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail.
+// NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!!
+// Moreover, it is written assuming that all vectors and matricies
+// passed as arguments are normalized and unitary respectively.
+// VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail.
static const U32 LENGTHOFQUAT = 4;
class LLQuaternion
{
public:
- F32 mQ[LENGTHOFQUAT];
-
- static const LLQuaternion DEFAULT;
-
- LLQuaternion(); // Initializes Quaternion to (0,0,0,1)
- explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4
- explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3
- LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normalize(x, y, z, w)
- LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
- LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
- LLQuaternion(const F32 *q); // Initializes Quaternion to normalize(x, y, z, w)
- LLQuaternion(const LLVector3 &x_axis,
- const LLVector3 &y_axis,
- const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis]
+ F32 mQ[LENGTHOFQUAT];
+
+ static const LLQuaternion DEFAULT;
+
+ LLQuaternion(); // Initializes Quaternion to (0,0,0,1)
+ explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4
+ explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3
+ LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normalize(x, y, z, w)
+ LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
+ LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
+ LLQuaternion(const F32 *q); // Initializes Quaternion to normalize(x, y, z, w)
+ LLQuaternion(const LLVector3 &x_axis,
+ const LLVector3 &y_axis,
+ const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis]
explicit LLQuaternion(const LLSD &sd); // Initializes Quaternion from LLSD array.
LLSD getValue() const;
void setValue(const LLSD& sd);
- BOOL isIdentity() const;
- BOOL isNotIdentity() const;
- BOOL isFinite() const; // checks to see if all values of LLQuaternion are finite
- void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization
- void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization
- void loadIdentity(); // Loads the quaternion that represents the identity rotation
-
- bool isEqualEps(const LLQuaternion &quat, F32 epsilon) const;
- bool isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const;
-
- const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w)
- const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion
- const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW])
- const LLQuaternion& set(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat)
- const LLQuaternion& set(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat)
+ BOOL isIdentity() const;
+ BOOL isNotIdentity() const;
+ BOOL isFinite() const; // checks to see if all values of LLQuaternion are finite
+ void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization
+ void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization
+ void loadIdentity(); // Loads the quaternion that represents the identity rotation
+
+ bool isEqualEps(const LLQuaternion &quat, F32 epsilon) const;
+ bool isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const;
+
+ const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w)
+ const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion
+ const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW])
+ const LLQuaternion& set(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat)
+ const LLQuaternion& set(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat)
const LLQuaternion& setFromAzimuthAndAltitude(F32 azimuth, F32 altitude);
-
- const LLQuaternion& setAngleAxis(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z)
- const LLQuaternion& setAngleAxis(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
- const LLQuaternion& setAngleAxis(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
- const LLQuaternion& setEulerAngles(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll)
-
- const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // deprecated
- const LLQuaternion& setQuat(const LLQuaternion &quat); // deprecated
- const LLQuaternion& setQuat(const F32 *q); // deprecated
- const LLQuaternion& setQuat(const LLMatrix3 &mat); // deprecated
- const LLQuaternion& setQuat(const LLMatrix4 &mat); // deprecated
- const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // deprecated
- const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // deprecated
- const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // deprecated
- const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // deprecated
-
- LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion
- LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion
- void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z
- void getAngleAxis(F32* angle, LLVector3 &vec) const;
- void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const;
+
+ const LLQuaternion& setAngleAxis(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z)
+ const LLQuaternion& setAngleAxis(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
+ const LLQuaternion& setAngleAxis(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
+ const LLQuaternion& setEulerAngles(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll)
+
+ const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // deprecated
+ const LLQuaternion& setQuat(const LLQuaternion &quat); // deprecated
+ const LLQuaternion& setQuat(const F32 *q); // deprecated
+ const LLQuaternion& setQuat(const LLMatrix3 &mat); // deprecated
+ const LLQuaternion& setQuat(const LLMatrix4 &mat); // deprecated
+ const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // deprecated
+ const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // deprecated
+ const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // deprecated
+ const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // deprecated
+
+ LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion
+ LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion
+ void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z
+ void getAngleAxis(F32* angle, LLVector3 &vec) const;
+ void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const;
void getAzimuthAndAltitude(F32 &azimuth, F32 &altitude);
- F32 normalize(); // Normalizes Quaternion and returns magnitude
- F32 normQuat(); // deprecated
-
- const LLQuaternion& conjugate(void); // Conjugates Quaternion and returns result
- const LLQuaternion& conjQuat(void); // deprecated
-
- // Other useful methods
- const LLQuaternion& transpose(); // transpose (same as conjugate)
- const LLQuaternion& transQuat(); // deprecated
-
- void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b
- const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians
-
- // Standard operators
- friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a
- friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition
- friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction
- friend LLQuaternion operator-(const LLQuaternion &a); // Negation
- friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale
- friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale
- friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b
- friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a)
- bool operator==(const LLQuaternion &b) const; // Returns a == b
- bool operator!=(const LLQuaternion &b) const; // Returns a != b
-
- friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b
-
- friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot
- friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot
- friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot
-
- // Non-standard operators
- friend F32 dot(const LLQuaternion &a, const LLQuaternion &b);
- friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q
- friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q
- friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q
- friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q
- friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q
- friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q
-
- LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized
- void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized
-
- enum Order {
- XYZ = 0,
- YZX = 1,
- ZXY = 2,
- XZY = 3,
- YXZ = 4,
- ZYX = 5
- };
- // Creates a quaternions from maya's rotation representation,
- // which is 3 rotations (in DEGREES) in the specified order
- friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order);
-
- // Conversions between Order and strings like "xyz" or "ZYX"
- friend const char *OrderToString( const Order order );
- friend Order StringToOrder( const char *str );
-
- static BOOL parseQuat(const std::string& buf, LLQuaternion* value);
-
- // For debugging, only
- //static U32 mMultCount;
+ F32 normalize(); // Normalizes Quaternion and returns magnitude
+ F32 normQuat(); // deprecated
+
+ const LLQuaternion& conjugate(void); // Conjugates Quaternion and returns result
+ const LLQuaternion& conjQuat(void); // deprecated
+
+ // Other useful methods
+ const LLQuaternion& transpose(); // transpose (same as conjugate)
+ const LLQuaternion& transQuat(); // deprecated
+
+ void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b
+ const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians
+
+ // Standard operators
+ friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a
+ friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition
+ friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction
+ friend LLQuaternion operator-(const LLQuaternion &a); // Negation
+ friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale
+ friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale
+ friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b
+ friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a)
+ bool operator==(const LLQuaternion &b) const; // Returns a == b
+ bool operator!=(const LLQuaternion &b) const; // Returns a != b
+
+ friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b
+
+ friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot
+ friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot
+ friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot
+
+ // Non-standard operators
+ friend F32 dot(const LLQuaternion &a, const LLQuaternion &b);
+ friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q
+ friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q
+ friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q
+ friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q
+ friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q
+ friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q
+
+ LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized
+ void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized
+
+ enum Order {
+ XYZ = 0,
+ YZX = 1,
+ ZXY = 2,
+ XZY = 3,
+ YXZ = 4,
+ ZYX = 5
+ };
+ // Creates a quaternions from maya's rotation representation,
+ // which is 3 rotations (in DEGREES) in the specified order
+ friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order);
+
+ // Conversions between Order and strings like "xyz" or "ZYX"
+ friend const char *OrderToString( const Order order );
+ friend Order StringToOrder( const char *str );
+
+ static BOOL parseQuat(const std::string& buf, LLQuaternion* value);
+
+ // For debugging, only
+ //static U32 mMultCount;
};
inline LLSD LLQuaternion::getValue() const
@@ -192,369 +192,369 @@ inline void LLQuaternion::setValue(const LLSD& sd)
}
// checker
-inline BOOL LLQuaternion::isFinite() const
+inline BOOL LLQuaternion::isFinite() const
{
- return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS]));
+ return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS]));
}
inline BOOL LLQuaternion::isIdentity() const
{
- return
- ( mQ[VX] == 0.f ) &&
- ( mQ[VY] == 0.f ) &&
- ( mQ[VZ] == 0.f ) &&
- ( mQ[VS] == 1.f );
+ return
+ ( mQ[VX] == 0.f ) &&
+ ( mQ[VY] == 0.f ) &&
+ ( mQ[VZ] == 0.f ) &&
+ ( mQ[VS] == 1.f );
}
inline BOOL LLQuaternion::isNotIdentity() const
{
- return
- ( mQ[VX] != 0.f ) ||
- ( mQ[VY] != 0.f ) ||
- ( mQ[VZ] != 0.f ) ||
- ( mQ[VS] != 1.f );
+ return
+ ( mQ[VX] != 0.f ) ||
+ ( mQ[VY] != 0.f ) ||
+ ( mQ[VZ] != 0.f ) ||
+ ( mQ[VS] != 1.f );
}
inline LLQuaternion::LLQuaternion(void)
{
- mQ[VX] = 0.f;
- mQ[VY] = 0.f;
- mQ[VZ] = 0.f;
- mQ[VS] = 1.f;
+ mQ[VX] = 0.f;
+ mQ[VY] = 0.f;
+ mQ[VZ] = 0.f;
+ mQ[VS] = 1.f;
}
inline LLQuaternion::LLQuaternion(F32 x, F32 y, F32 z, F32 w)
{
- mQ[VX] = x;
- mQ[VY] = y;
- mQ[VZ] = z;
- mQ[VS] = w;
+ mQ[VX] = x;
+ mQ[VY] = y;
+ mQ[VZ] = z;
+ mQ[VS] = w;
- //RN: don't normalize this case as its used mainly for temporaries during calculations
- //normalize();
- /*
- F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
- mag -= 1.f;
- mag = fabs(mag);
- llassert(mag < 10.f*FP_MAG_THRESHOLD);
- */
+ //RN: don't normalize this case as its used mainly for temporaries during calculations
+ //normalize();
+ /*
+ F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
+ mag -= 1.f;
+ mag = fabs(mag);
+ llassert(mag < 10.f*FP_MAG_THRESHOLD);
+ */
}
inline LLQuaternion::LLQuaternion(const F32 *q)
{
- mQ[VX] = q[VX];
- mQ[VY] = q[VY];
- mQ[VZ] = q[VZ];
- mQ[VS] = q[VW];
+ mQ[VX] = q[VX];
+ mQ[VY] = q[VY];
+ mQ[VZ] = q[VZ];
+ mQ[VS] = q[VW];
- normalize();
- /*
- F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
- mag -= 1.f;
- mag = fabs(mag);
- llassert(mag < FP_MAG_THRESHOLD);
- */
+ normalize();
+ /*
+ F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
+ mag -= 1.f;
+ mag = fabs(mag);
+ llassert(mag < FP_MAG_THRESHOLD);
+ */
}
inline void LLQuaternion::loadIdentity()
{
- mQ[VX] = 0.0f;
- mQ[VY] = 0.0f;
- mQ[VZ] = 0.0f;
- mQ[VW] = 1.0f;
+ mQ[VX] = 0.0f;
+ mQ[VY] = 0.0f;
+ mQ[VZ] = 0.0f;
+ mQ[VW] = 1.0f;
}
inline bool LLQuaternion::isEqualEps(const LLQuaternion &quat, F32 epsilon) const
{
- return ( fabs(mQ[VX] - quat.mQ[VX]) < epsilon
- && fabs(mQ[VY] - quat.mQ[VY]) < epsilon
- && fabs(mQ[VZ] - quat.mQ[VZ]) < epsilon
- && fabs(mQ[VS] - quat.mQ[VS]) < epsilon );
+ return ( fabs(mQ[VX] - quat.mQ[VX]) < epsilon
+ && fabs(mQ[VY] - quat.mQ[VY]) < epsilon
+ && fabs(mQ[VZ] - quat.mQ[VZ]) < epsilon
+ && fabs(mQ[VS] - quat.mQ[VS]) < epsilon );
}
inline bool LLQuaternion::isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const
{
- return ( fabs(mQ[VX] - quat.mQ[VX]) > epsilon
- || fabs(mQ[VY] - quat.mQ[VY]) > epsilon
- || fabs(mQ[VZ] - quat.mQ[VZ]) > epsilon
- || fabs(mQ[VS] - quat.mQ[VS]) > epsilon );
+ return ( fabs(mQ[VX] - quat.mQ[VX]) > epsilon
+ || fabs(mQ[VY] - quat.mQ[VY]) > epsilon
+ || fabs(mQ[VZ] - quat.mQ[VZ]) > epsilon
+ || fabs(mQ[VS] - quat.mQ[VS]) > epsilon );
}
-inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w)
+inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w)
{
- mQ[VX] = x;
- mQ[VY] = y;
- mQ[VZ] = z;
- mQ[VS] = w;
- normalize();
- return (*this);
+ mQ[VX] = x;
+ mQ[VY] = y;
+ mQ[VZ] = z;
+ mQ[VS] = w;
+ normalize();
+ return (*this);
}
-inline const LLQuaternion& LLQuaternion::set(const LLQuaternion &quat)
+inline const LLQuaternion& LLQuaternion::set(const LLQuaternion &quat)
{
- mQ[VX] = quat.mQ[VX];
- mQ[VY] = quat.mQ[VY];
- mQ[VZ] = quat.mQ[VZ];
- mQ[VW] = quat.mQ[VW];
- normalize();
- return (*this);
+ mQ[VX] = quat.mQ[VX];
+ mQ[VY] = quat.mQ[VY];
+ mQ[VZ] = quat.mQ[VZ];
+ mQ[VW] = quat.mQ[VW];
+ normalize();
+ return (*this);
}
-inline const LLQuaternion& LLQuaternion::set(const F32 *q)
+inline const LLQuaternion& LLQuaternion::set(const F32 *q)
{
- mQ[VX] = q[VX];
- mQ[VY] = q[VY];
- mQ[VZ] = q[VZ];
- mQ[VS] = q[VW];
- normalize();
- return (*this);
+ mQ[VX] = q[VX];
+ mQ[VY] = q[VY];
+ mQ[VZ] = q[VZ];
+ mQ[VS] = q[VW];
+ normalize();
+ return (*this);
}
// deprecated
-inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w)
+inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w)
{
- mQ[VX] = x;
- mQ[VY] = y;
- mQ[VZ] = z;
- mQ[VS] = w;
- normalize();
- return (*this);
+ mQ[VX] = x;
+ mQ[VY] = y;
+ mQ[VZ] = z;
+ mQ[VS] = w;
+ normalize();
+ return (*this);
}
// deprecated
-inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat)
+inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat)
{
- mQ[VX] = quat.mQ[VX];
- mQ[VY] = quat.mQ[VY];
- mQ[VZ] = quat.mQ[VZ];
- mQ[VW] = quat.mQ[VW];
- normalize();
- return (*this);
+ mQ[VX] = quat.mQ[VX];
+ mQ[VY] = quat.mQ[VY];
+ mQ[VZ] = quat.mQ[VZ];
+ mQ[VW] = quat.mQ[VW];
+ normalize();
+ return (*this);
}
// deprecated
-inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q)
+inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q)
{
- mQ[VX] = q[VX];
- mQ[VY] = q[VY];
- mQ[VZ] = q[VZ];
- mQ[VS] = q[VW];
- normalize();
- return (*this);
+ mQ[VX] = q[VX];
+ mQ[VY] = q[VY];
+ mQ[VZ] = q[VZ];
+ mQ[VS] = q[VW];
+ normalize();
+ return (*this);
}
inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const
{
- F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component
- if (v > FP_MAG_THRESHOLD)
- {
- F32 oomag = 1.0f / v;
- F32 w = mQ[VW];
- if (w < 0.0f)
- {
- w = -w; // make VW positive
- oomag = -oomag; // invert the axis
- }
- *x = mQ[VX] * oomag; // normalize the axis
- *y = mQ[VY] * oomag;
- *z = mQ[VZ] * oomag;
- *angle = 2.0f * atan2f(v, w); // get the angle
- }
- else
- {
- *angle = 0.0f; // no rotation
- *x = 0.0f; // around some dummy axis
- *y = 0.0f;
- *z = 1.0f;
- }
+ F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component
+ if (v > FP_MAG_THRESHOLD)
+ {
+ F32 oomag = 1.0f / v;
+ F32 w = mQ[VW];
+ if (w < 0.0f)
+ {
+ w = -w; // make VW positive
+ oomag = -oomag; // invert the axis
+ }
+ *x = mQ[VX] * oomag; // normalize the axis
+ *y = mQ[VY] * oomag;
+ *z = mQ[VZ] * oomag;
+ *angle = 2.0f * atan2f(v, w); // get the angle
+ }
+ else
+ {
+ *angle = 0.0f; // no rotation
+ *x = 0.0f; // around some dummy axis
+ *y = 0.0f;
+ *z = 1.0f;
+ }
}
inline const LLQuaternion& LLQuaternion::conjugate()
{
- mQ[VX] *= -1.f;
- mQ[VY] *= -1.f;
- mQ[VZ] *= -1.f;
- return (*this);
+ mQ[VX] *= -1.f;
+ mQ[VY] *= -1.f;
+ mQ[VZ] *= -1.f;
+ return (*this);
}
inline const LLQuaternion& LLQuaternion::conjQuat()
{
- mQ[VX] *= -1.f;
- mQ[VY] *= -1.f;
- mQ[VZ] *= -1.f;
- return (*this);
+ mQ[VX] *= -1.f;
+ mQ[VY] *= -1.f;
+ mQ[VZ] *= -1.f;
+ return (*this);
}
// Transpose
inline const LLQuaternion& LLQuaternion::transpose()
{
- mQ[VX] *= -1.f;
- mQ[VY] *= -1.f;
- mQ[VZ] *= -1.f;
- return (*this);
+ mQ[VX] *= -1.f;
+ mQ[VY] *= -1.f;
+ mQ[VZ] *= -1.f;
+ return (*this);
}
// deprecated
inline const LLQuaternion& LLQuaternion::transQuat()
{
- mQ[VX] *= -1.f;
- mQ[VY] *= -1.f;
- mQ[VZ] *= -1.f;
- return (*this);
+ mQ[VX] *= -1.f;
+ mQ[VY] *= -1.f;
+ mQ[VZ] *= -1.f;
+ return (*this);
}
-inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b)
+inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b)
{
- return LLQuaternion(
- a.mQ[VX] + b.mQ[VX],
- a.mQ[VY] + b.mQ[VY],
- a.mQ[VZ] + b.mQ[VZ],
- a.mQ[VW] + b.mQ[VW] );
+ return LLQuaternion(
+ a.mQ[VX] + b.mQ[VX],
+ a.mQ[VY] + b.mQ[VY],
+ a.mQ[VZ] + b.mQ[VZ],
+ a.mQ[VW] + b.mQ[VW] );
}
-inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b)
+inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b)
{
- return LLQuaternion(
- a.mQ[VX] - b.mQ[VX],
- a.mQ[VY] - b.mQ[VY],
- a.mQ[VZ] - b.mQ[VZ],
- a.mQ[VW] - b.mQ[VW] );
+ return LLQuaternion(
+ a.mQ[VX] - b.mQ[VX],
+ a.mQ[VY] - b.mQ[VY],
+ a.mQ[VZ] - b.mQ[VZ],
+ a.mQ[VW] - b.mQ[VW] );
}
-inline LLQuaternion operator-(const LLQuaternion &a)
+inline LLQuaternion operator-(const LLQuaternion &a)
{
- return LLQuaternion(
- -a.mQ[VX],
- -a.mQ[VY],
- -a.mQ[VZ],
- -a.mQ[VW] );
+ return LLQuaternion(
+ -a.mQ[VX],
+ -a.mQ[VY],
+ -a.mQ[VZ],
+ -a.mQ[VW] );
}
-inline LLQuaternion operator*(F32 a, const LLQuaternion &q)
+inline LLQuaternion operator*(F32 a, const LLQuaternion &q)
{
- return LLQuaternion(
- a * q.mQ[VX],
- a * q.mQ[VY],
- a * q.mQ[VZ],
- a * q.mQ[VW] );
+ return LLQuaternion(
+ a * q.mQ[VX],
+ a * q.mQ[VY],
+ a * q.mQ[VZ],
+ a * q.mQ[VW] );
}
-inline LLQuaternion operator*(const LLQuaternion &q, F32 a)
+inline LLQuaternion operator*(const LLQuaternion &q, F32 a)
{
- return LLQuaternion(
- a * q.mQ[VX],
- a * q.mQ[VY],
- a * q.mQ[VZ],
- a * q.mQ[VW] );
+ return LLQuaternion(
+ a * q.mQ[VX],
+ a * q.mQ[VY],
+ a * q.mQ[VZ],
+ a * q.mQ[VW] );
}
-inline LLQuaternion operator~(const LLQuaternion &a)
+inline LLQuaternion operator~(const LLQuaternion &a)
{
- LLQuaternion q(a);
- q.conjQuat();
- return q;
+ LLQuaternion q(a);
+ q.conjQuat();
+ return q;
}
-inline bool LLQuaternion::operator==(const LLQuaternion &b) const
+inline bool LLQuaternion::operator==(const LLQuaternion &b) const
{
- return ( (mQ[VX] == b.mQ[VX])
- &&(mQ[VY] == b.mQ[VY])
- &&(mQ[VZ] == b.mQ[VZ])
- &&(mQ[VS] == b.mQ[VS]));
+ return ( (mQ[VX] == b.mQ[VX])
+ &&(mQ[VY] == b.mQ[VY])
+ &&(mQ[VZ] == b.mQ[VZ])
+ &&(mQ[VS] == b.mQ[VS]));
}
-inline bool LLQuaternion::operator!=(const LLQuaternion &b) const
+inline bool LLQuaternion::operator!=(const LLQuaternion &b) const
{
- return ( (mQ[VX] != b.mQ[VX])
- ||(mQ[VY] != b.mQ[VY])
- ||(mQ[VZ] != b.mQ[VZ])
- ||(mQ[VS] != b.mQ[VS]));
+ return ( (mQ[VX] != b.mQ[VX])
+ ||(mQ[VY] != b.mQ[VY])
+ ||(mQ[VZ] != b.mQ[VZ])
+ ||(mQ[VS] != b.mQ[VS]));
}
-inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b)
+inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b)
{
#if 1
- LLQuaternion q(
- b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1],
- b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2],
- b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0],
- b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2]
- );
- a = q;
+ LLQuaternion q(
+ b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1],
+ b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2],
+ b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0],
+ b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2]
+ );
+ a = q;
#else
- a = a * b;
+ a = a * b;
#endif
- return a;
+ return a;
}
const F32 ONE_PART_IN_A_MILLION = 0.000001f;
-inline F32 LLQuaternion::normalize()
-{
- F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
-
- if (mag > FP_MAG_THRESHOLD)
- {
- // Floating point error can prevent some quaternions from achieving
- // exact unity length. When trying to renormalize such quaternions we
- // can oscillate between multiple quantized states. To prevent such
- // drifts we only renomalize if the length is far enough from unity.
- if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
- {
- F32 oomag = 1.f/mag;
- mQ[VX] *= oomag;
- mQ[VY] *= oomag;
- mQ[VZ] *= oomag;
- mQ[VS] *= oomag;
- }
- }
- else
- {
- // we were given a very bad quaternion so we set it to identity
- mQ[VX] = 0.f;
- mQ[VY] = 0.f;
- mQ[VZ] = 0.f;
- mQ[VS] = 1.f;
- }
-
- return mag;
+inline F32 LLQuaternion::normalize()
+{
+ F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
+
+ if (mag > FP_MAG_THRESHOLD)
+ {
+ // Floating point error can prevent some quaternions from achieving
+ // exact unity length. When trying to renormalize such quaternions we
+ // can oscillate between multiple quantized states. To prevent such
+ // drifts we only renomalize if the length is far enough from unity.
+ if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
+ {
+ F32 oomag = 1.f/mag;
+ mQ[VX] *= oomag;
+ mQ[VY] *= oomag;
+ mQ[VZ] *= oomag;
+ mQ[VS] *= oomag;
+ }
+ }
+ else
+ {
+ // we were given a very bad quaternion so we set it to identity
+ mQ[VX] = 0.f;
+ mQ[VY] = 0.f;
+ mQ[VZ] = 0.f;
+ mQ[VS] = 1.f;
+ }
+
+ return mag;
}
// deprecated
-inline F32 LLQuaternion::normQuat()
-{
- F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
-
- if (mag > FP_MAG_THRESHOLD)
- {
- if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
- {
- // only renormalize if length not close enough to 1.0 already
- F32 oomag = 1.f/mag;
- mQ[VX] *= oomag;
- mQ[VY] *= oomag;
- mQ[VZ] *= oomag;
- mQ[VS] *= oomag;
- }
- }
- else
- {
- mQ[VX] = 0.f;
- mQ[VY] = 0.f;
- mQ[VZ] = 0.f;
- mQ[VS] = 1.f;
- }
-
- return mag;
+inline F32 LLQuaternion::normQuat()
+{
+ F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
+
+ if (mag > FP_MAG_THRESHOLD)
+ {
+ if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
+ {
+ // only renormalize if length not close enough to 1.0 already
+ F32 oomag = 1.f/mag;
+ mQ[VX] *= oomag;
+ mQ[VY] *= oomag;
+ mQ[VZ] *= oomag;
+ mQ[VS] *= oomag;
+ }
+ }
+ else
+ {
+ mQ[VX] = 0.f;
+ mQ[VY] = 0.f;
+ mQ[VZ] = 0.f;
+ mQ[VS] = 1.f;
+ }
+
+ return mag;
}
LLQuaternion::Order StringToOrder( const char *str );
@@ -565,11 +565,11 @@ LLQuaternion::Order StringToOrder( const char *str );
// ---------------------
// A quaternion is a point in 4-dimensional complex space.
// Q = { Qx, Qy, Qz, Qw }
-//
+//
//
// Why Quaternions?
// ----------------
-// The set of quaternions that make up the the 4-D unit sphere
+// The set of quaternions that make up the the 4-D unit sphere
// can be mapped to the set of all rotations in 3-D space. Sometimes
// it is easier to describe/manipulate rotations in quaternion space
// than rotation-matrix space.
@@ -580,22 +580,22 @@ LLQuaternion::Order StringToOrder( const char *str );
// In order to take advantage of quaternions we need to know how to
// go from rotation-matricies to quaternions and back. We also have
// to agree what variety of rotations we're generating.
-//
-// Consider the equation... v' = v * R
+//
+// Consider the equation... v' = v * R
//
// There are two ways to think about rotations of vectors.
// 1) v' is the same vector in a different reference frame
// 2) v' is a new vector in the same reference frame
//
// bookmark -- which way are we using?
-//
-//
+//
+//
// Quaternion from Angle-Axis:
// ---------------------------
-// Suppose we wanted to represent a rotation of some angle (theta)
+// Suppose we wanted to represent a rotation of some angle (theta)
// about some axis ({Ax, Ay, Az})...
//
-// axis of rotation = {Ax, Ay, Az}
+// axis of rotation = {Ax, Ay, Az}
// angle_of_rotation = theta
//
// s = sin(0.5 * theta)