summaryrefslogtreecommitdiff
path: root/indra/llmath/llquaternion.h
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llmath/llquaternion.h')
-rw-r--r--indra/llmath/llquaternion.h442
1 files changed, 442 insertions, 0 deletions
diff --git a/indra/llmath/llquaternion.h b/indra/llmath/llquaternion.h
new file mode 100644
index 0000000000..558eeec341
--- /dev/null
+++ b/indra/llmath/llquaternion.h
@@ -0,0 +1,442 @@
+/**
+ * @file llquaternion.h
+ * @brief LLQuaternion class header file.
+ *
+ * Copyright (c) 2000-$CurrentYear$, Linden Research, Inc.
+ * $License$
+ */
+
+#ifndef LLQUATERNION_H
+#define LLQUATERNION_H
+
+#include "llmath.h"
+
+class LLVector4;
+class LLVector3;
+class LLVector3d;
+class LLMatrix4;
+class LLMatrix3;
+
+// NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!!
+// Moreover, it is written assuming that all vectors and matricies
+// passed as arguments are normalized and unitary respectively.
+// VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail.
+
+static const U32 LENGTHOFQUAT = 4;
+
+class LLQuaternion
+{
+public:
+ F32 mQ[LENGTHOFQUAT];
+
+ static const LLQuaternion DEFAULT;
+
+ LLQuaternion(); // Initializes Quaternion to (0,0,0,1)
+ explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4
+ explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3
+ LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normQuat(x, y, z, w)
+ LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
+ LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
+ LLQuaternion(const F32 *q); // Initializes Quaternion to normQuat(x, y, z, w)
+ LLQuaternion(const LLVector3 &x_axis,
+ const LLVector3 &y_axis,
+ const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis]
+
+ BOOL isIdentity() const;
+ BOOL isNotIdentity() const;
+ BOOL isFinite() const; // checks to see if all values of LLQuaternion are finite
+ void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization
+ void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization
+ void loadIdentity(); // Loads the quaternion that represents the identity rotation
+ const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normQuat(x, y, z, w)
+ const LLQuaternion& setQuat(const LLQuaternion &quat); // Copies Quaternion
+ const LLQuaternion& setQuat(const F32 *q); // Sets Quaternion to normQuat(quat[VX], quat[VY], quat[VZ], quat[VW])
+ const LLQuaternion& setQuat(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat)
+ const LLQuaternion& setQuat(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat)
+ const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z)
+ const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
+ const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
+ const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll)
+
+ LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion
+ LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion
+ void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z
+ void getAngleAxis(F32* angle, LLVector3 &vec) const;
+ void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const;
+
+ F32 normQuat(); // Normalizes Quaternion and returns magnitude
+ const LLQuaternion& conjQuat(void); // Conjugates Quaternion and returns result
+
+ // Other useful methods
+ const LLQuaternion& transQuat(); // Transpose
+ void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b
+ const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians
+
+ // Standard operators
+ friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a
+ friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition
+ friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction
+ friend LLQuaternion operator-(const LLQuaternion &a); // Negation
+ friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale
+ friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale
+ friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b
+ friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a)
+ bool operator==(const LLQuaternion &b) const; // Returns a == b
+ bool operator!=(const LLQuaternion &b) const; // Returns a != b
+
+ friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b
+
+ friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot
+ friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot
+ friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot
+
+ // Non-standard operators
+ friend F32 dot(const LLQuaternion &a, const LLQuaternion &b);
+ friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q
+ friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q
+ friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q
+ friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q
+ friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q
+ friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q
+
+ LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized
+ void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized
+
+ enum Order {
+ XYZ = 0,
+ YZX = 1,
+ ZXY = 2,
+ XZY = 3,
+ YXZ = 4,
+ ZYX = 5
+ };
+ // Creates a quaternions from maya's rotation representation,
+ // which is 3 rotations (in DEGREES) in the specified order
+ friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order);
+
+ // Conversions between Order and strings like "xyz" or "ZYX"
+ friend const char *OrderToString( const Order order );
+ friend Order StringToOrder( const char *str );
+
+ static BOOL parseQuat(const char* buf, LLQuaternion* value);
+
+ // For debugging, only
+ //static U32 mMultCount;
+};
+
+// checker
+inline BOOL LLQuaternion::isFinite() const
+{
+ return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS]));
+}
+
+inline BOOL LLQuaternion::isIdentity() const
+{
+ return
+ ( mQ[VX] == 0.f ) &&
+ ( mQ[VY] == 0.f ) &&
+ ( mQ[VZ] == 0.f ) &&
+ ( mQ[VS] == 1.f );
+}
+
+inline BOOL LLQuaternion::isNotIdentity() const
+{
+ return
+ ( mQ[VX] != 0.f ) ||
+ ( mQ[VY] != 0.f ) ||
+ ( mQ[VZ] != 0.f ) ||
+ ( mQ[VS] != 1.f );
+}
+
+
+
+inline LLQuaternion::LLQuaternion(void)
+{
+ mQ[VX] = 0.f;
+ mQ[VY] = 0.f;
+ mQ[VZ] = 0.f;
+ mQ[VS] = 1.f;
+}
+
+inline LLQuaternion::LLQuaternion(F32 x, F32 y, F32 z, F32 w)
+{
+ mQ[VX] = x;
+ mQ[VY] = y;
+ mQ[VZ] = z;
+ mQ[VS] = w;
+
+ //RN: don't normalize this case as its used mainly for temporaries during calculations
+ //normQuat();
+ /*
+ F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
+ mag -= 1.f;
+ mag = fabs(mag);
+ llassert(mag < 10.f*FP_MAG_THRESHOLD);
+ */
+}
+
+inline LLQuaternion::LLQuaternion(const F32 *q)
+{
+ mQ[VX] = q[VX];
+ mQ[VY] = q[VY];
+ mQ[VZ] = q[VZ];
+ mQ[VS] = q[VW];
+
+ normQuat();
+ /*
+ F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
+ mag -= 1.f;
+ mag = fabs(mag);
+ llassert(mag < FP_MAG_THRESHOLD);
+ */
+}
+
+
+inline void LLQuaternion::loadIdentity()
+{
+ mQ[VX] = 0.0f;
+ mQ[VY] = 0.0f;
+ mQ[VZ] = 0.0f;
+ mQ[VW] = 1.0f;
+}
+
+
+inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w)
+{
+ mQ[VX] = x;
+ mQ[VY] = y;
+ mQ[VZ] = z;
+ mQ[VS] = w;
+ normQuat();
+ return (*this);
+}
+
+inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat)
+{
+ mQ[VX] = quat.mQ[VX];
+ mQ[VY] = quat.mQ[VY];
+ mQ[VZ] = quat.mQ[VZ];
+ mQ[VW] = quat.mQ[VW];
+ normQuat();
+ return (*this);
+}
+
+inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q)
+{
+ mQ[VX] = q[VX];
+ mQ[VY] = q[VY];
+ mQ[VZ] = q[VZ];
+ mQ[VS] = q[VW];
+ normQuat();
+ return (*this);
+}
+
+// There may be a cheaper way that avoids the sqrt.
+// Does sin_a = VX*VX + VY*VY + VZ*VZ?
+// Copied from Matrix and Quaternion FAQ 1.12
+inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const
+{
+ F32 cos_a = mQ[VW];
+ if (cos_a > 1.0f) cos_a = 1.0f;
+ if (cos_a < -1.0f) cos_a = -1.0f;
+
+ F32 sin_a = (F32) sqrt( 1.0f - cos_a * cos_a );
+
+ if ( fabs( sin_a ) < 0.0005f )
+ sin_a = 1.0f;
+ else
+ sin_a = 1.f/sin_a;
+
+ *angle = 2.0f * (F32) acos( cos_a );
+ *x = mQ[VX] * sin_a;
+ *y = mQ[VY] * sin_a;
+ *z = mQ[VZ] * sin_a;
+}
+
+inline const LLQuaternion& LLQuaternion::conjQuat()
+{
+ mQ[VX] *= -1.f;
+ mQ[VY] *= -1.f;
+ mQ[VZ] *= -1.f;
+ return (*this);
+}
+
+// Transpose
+inline const LLQuaternion& LLQuaternion::transQuat()
+{
+ mQ[VX] = -mQ[VX];
+ mQ[VY] = -mQ[VY];
+ mQ[VZ] = -mQ[VZ];
+ return *this;
+}
+
+
+inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b)
+{
+ return LLQuaternion(
+ a.mQ[VX] + b.mQ[VX],
+ a.mQ[VY] + b.mQ[VY],
+ a.mQ[VZ] + b.mQ[VZ],
+ a.mQ[VW] + b.mQ[VW] );
+}
+
+
+inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b)
+{
+ return LLQuaternion(
+ a.mQ[VX] - b.mQ[VX],
+ a.mQ[VY] - b.mQ[VY],
+ a.mQ[VZ] - b.mQ[VZ],
+ a.mQ[VW] - b.mQ[VW] );
+}
+
+
+inline LLQuaternion operator-(const LLQuaternion &a)
+{
+ return LLQuaternion(
+ -a.mQ[VX],
+ -a.mQ[VY],
+ -a.mQ[VZ],
+ -a.mQ[VW] );
+}
+
+
+inline LLQuaternion operator*(F32 a, const LLQuaternion &q)
+{
+ return LLQuaternion(
+ a * q.mQ[VX],
+ a * q.mQ[VY],
+ a * q.mQ[VZ],
+ a * q.mQ[VW] );
+}
+
+
+inline LLQuaternion operator*(const LLQuaternion &q, F32 a)
+{
+ return LLQuaternion(
+ a * q.mQ[VX],
+ a * q.mQ[VY],
+ a * q.mQ[VZ],
+ a * q.mQ[VW] );
+}
+
+inline LLQuaternion operator~(const LLQuaternion &a)
+{
+ LLQuaternion q(a);
+ q.conjQuat();
+ return q;
+}
+
+inline bool LLQuaternion::operator==(const LLQuaternion &b) const
+{
+ return ( (mQ[VX] == b.mQ[VX])
+ &&(mQ[VY] == b.mQ[VY])
+ &&(mQ[VZ] == b.mQ[VZ])
+ &&(mQ[VS] == b.mQ[VS]));
+}
+
+inline bool LLQuaternion::operator!=(const LLQuaternion &b) const
+{
+ return ( (mQ[VX] != b.mQ[VX])
+ ||(mQ[VY] != b.mQ[VY])
+ ||(mQ[VZ] != b.mQ[VZ])
+ ||(mQ[VS] != b.mQ[VS]));
+}
+
+inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b)
+{
+#if 1
+ LLQuaternion q(
+ b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1],
+ b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2],
+ b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0],
+ b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2]
+ );
+ a = q;
+#else
+ a = a * b;
+#endif
+ return a;
+}
+
+inline F32 LLQuaternion::normQuat()
+{
+ F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
+
+ if (mag > FP_MAG_THRESHOLD)
+ {
+ F32 oomag = 1.f/mag;
+ mQ[VX] *= oomag;
+ mQ[VY] *= oomag;
+ mQ[VZ] *= oomag;
+ mQ[VS] *= oomag;
+ }
+ else
+ {
+ mQ[VX] = 0.f;
+ mQ[VY] = 0.f;
+ mQ[VZ] = 0.f;
+ mQ[VS] = 1.f;
+ }
+
+ return mag;
+}
+
+LLQuaternion::Order StringToOrder( const char *str );
+
+// Some notes about Quaternions
+
+// What is a Quaternion?
+// ---------------------
+// A quaternion is a point in 4-dimensional complex space.
+// Q = { Qx, Qy, Qz, Qw }
+//
+//
+// Why Quaternions?
+// ----------------
+// The set of quaternions that make up the the 4-D unit sphere
+// can be mapped to the set of all rotations in 3-D space. Sometimes
+// it is easier to describe/manipulate rotations in quaternion space
+// than rotation-matrix space.
+//
+//
+// How Quaternions?
+// ----------------
+// In order to take advantage of quaternions we need to know how to
+// go from rotation-matricies to quaternions and back. We also have
+// to agree what variety of rotations we're generating.
+//
+// Consider the equation... v' = v * R
+//
+// There are two ways to think about rotations of vectors.
+// 1) v' is the same vector in a different reference frame
+// 2) v' is a new vector in the same reference frame
+//
+// bookmark -- which way are we using?
+//
+//
+// Quaternion from Angle-Axis:
+// ---------------------------
+// Suppose we wanted to represent a rotation of some angle (theta)
+// about some axis ({Ax, Ay, Az})...
+//
+// axis of rotation = {Ax, Ay, Az}
+// angle_of_rotation = theta
+//
+// s = sin(0.5 * theta)
+// c = cos(0.5 * theta)
+// Q = { s * Ax, s * Ay, s * Az, c }
+//
+//
+// 3x3 Matrix from Quaternion
+// --------------------------
+//
+// | |
+// | 1 - 2 * (y^2 + z^2) 2 * (x * y + z * w) 2 * (y * w - x * z) |
+// | |
+// M = | 2 * (x * y - z * w) 1 - 2 * (x^2 + z^2) 2 * (y * z + x * w) |
+// | |
+// | 2 * (x * z + y * w) 2 * (y * z - x * w) 1 - 2 * (x^2 + y^2) |
+// | |
+
+#endif