diff options
Diffstat (limited to 'indra/llmath/llquaternion.cpp')
-rw-r--r-- | indra/llmath/llquaternion.cpp | 1962 |
1 files changed, 981 insertions, 981 deletions
diff --git a/indra/llmath/llquaternion.cpp b/indra/llmath/llquaternion.cpp index 90d908c07c..aefb82b2f0 100644 --- a/indra/llmath/llquaternion.cpp +++ b/indra/llmath/llquaternion.cpp @@ -1,981 +1,981 @@ -/**
- * @file llquaternion.cpp
- * @brief LLQuaternion class implementation.
- *
- * $LicenseInfo:firstyear=2000&license=viewerlgpl$
- * Second Life Viewer Source Code
- * Copyright (C) 2010, Linden Research, Inc.
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation;
- * version 2.1 of the License only.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
- * $/LicenseInfo$
- */
-
-#include "linden_common.h"
-
-#include "llmath.h" // for F_PI
-
-#include "llquaternion.h"
-
-//#include "vmath.h"
-#include "v3math.h"
-#include "v3dmath.h"
-#include "v4math.h"
-#include "m4math.h"
-#include "m3math.h"
-#include "llquantize.h"
-
-// WARNING: Don't use this for global const definitions! using this
-// at the top of a *.cpp file might not give you what you think.
-const LLQuaternion LLQuaternion::DEFAULT;
-
-// Constructors
-
-LLQuaternion::LLQuaternion(const LLMatrix4 &mat)
-{
- *this = mat.quaternion();
- normalize();
-}
-
-LLQuaternion::LLQuaternion(const LLMatrix3 &mat)
-{
- *this = mat.quaternion();
- normalize();
-}
-
-LLQuaternion::LLQuaternion(F32 angle, const LLVector4 &vec)
-{
- F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]);
- if (mag > FP_MAG_THRESHOLD)
- {
- angle *= 0.5;
- F32 c = cosf(angle);
- F32 s = sinf(angle) / mag;
- mQ[VX] = vec.mV[VX] * s;
- mQ[VY] = vec.mV[VY] * s;
- mQ[VZ] = vec.mV[VZ] * s;
- mQ[VW] = c;
- }
- else
- {
- loadIdentity();
- }
-}
-
-LLQuaternion::LLQuaternion(F32 angle, const LLVector3 &vec)
-{
- F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]);
- if (mag > FP_MAG_THRESHOLD)
- {
- angle *= 0.5;
- F32 c = cosf(angle);
- F32 s = sinf(angle) / mag;
- mQ[VX] = vec.mV[VX] * s;
- mQ[VY] = vec.mV[VY] * s;
- mQ[VZ] = vec.mV[VZ] * s;
- mQ[VW] = c;
- }
- else
- {
- loadIdentity();
- }
-}
-
-LLQuaternion::LLQuaternion(const LLVector3 &x_axis,
- const LLVector3 &y_axis,
- const LLVector3 &z_axis)
-{
- LLMatrix3 mat;
- mat.setRows(x_axis, y_axis, z_axis);
- *this = mat.quaternion();
- normalize();
-}
-
-LLQuaternion::LLQuaternion(const LLSD &sd)
-{
- setValue(sd);
-}
-
-// Quatizations
-void LLQuaternion::quantize16(F32 lower, F32 upper)
-{
- F32 x = mQ[VX];
- F32 y = mQ[VY];
- F32 z = mQ[VZ];
- F32 s = mQ[VS];
-
- x = U16_to_F32(F32_to_U16_ROUND(x, lower, upper), lower, upper);
- y = U16_to_F32(F32_to_U16_ROUND(y, lower, upper), lower, upper);
- z = U16_to_F32(F32_to_U16_ROUND(z, lower, upper), lower, upper);
- s = U16_to_F32(F32_to_U16_ROUND(s, lower, upper), lower, upper);
-
- mQ[VX] = x;
- mQ[VY] = y;
- mQ[VZ] = z;
- mQ[VS] = s;
-
- normalize();
-}
-
-void LLQuaternion::quantize8(F32 lower, F32 upper)
-{
- mQ[VX] = U8_to_F32(F32_to_U8_ROUND(mQ[VX], lower, upper), lower, upper);
- mQ[VY] = U8_to_F32(F32_to_U8_ROUND(mQ[VY], lower, upper), lower, upper);
- mQ[VZ] = U8_to_F32(F32_to_U8_ROUND(mQ[VZ], lower, upper), lower, upper);
- mQ[VS] = U8_to_F32(F32_to_U8_ROUND(mQ[VS], lower, upper), lower, upper);
-
- normalize();
-}
-
-// LLVector3 Magnitude and Normalization Functions
-
-
-// Set LLQuaternion routines
-
-const LLQuaternion& LLQuaternion::setAngleAxis(F32 angle, F32 x, F32 y, F32 z)
-{
- F32 mag = sqrtf(x * x + y * y + z * z);
- if (mag > FP_MAG_THRESHOLD)
- {
- angle *= 0.5;
- F32 c = cosf(angle);
- F32 s = sinf(angle) / mag;
- mQ[VX] = x * s;
- mQ[VY] = y * s;
- mQ[VZ] = z * s;
- mQ[VW] = c;
- }
- else
- {
- loadIdentity();
- }
- return (*this);
-}
-
-const LLQuaternion& LLQuaternion::setAngleAxis(F32 angle, const LLVector3 &vec)
-{
- F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]);
- if (mag > FP_MAG_THRESHOLD)
- {
- angle *= 0.5;
- F32 c = cosf(angle);
- F32 s = sinf(angle) / mag;
- mQ[VX] = vec.mV[VX] * s;
- mQ[VY] = vec.mV[VY] * s;
- mQ[VZ] = vec.mV[VZ] * s;
- mQ[VW] = c;
- }
- else
- {
- loadIdentity();
- }
- return (*this);
-}
-
-const LLQuaternion& LLQuaternion::setAngleAxis(F32 angle, const LLVector4 &vec)
-{
- F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]);
- if (mag > FP_MAG_THRESHOLD)
- {
- angle *= 0.5;
- F32 c = cosf(angle);
- F32 s = sinf(angle) / mag;
- mQ[VX] = vec.mV[VX] * s;
- mQ[VY] = vec.mV[VY] * s;
- mQ[VZ] = vec.mV[VZ] * s;
- mQ[VW] = c;
- }
- else
- {
- loadIdentity();
- }
- return (*this);
-}
-
-const LLQuaternion& LLQuaternion::setEulerAngles(F32 roll, F32 pitch, F32 yaw)
-{
- LLMatrix3 rot_mat(roll, pitch, yaw);
- rot_mat.orthogonalize();
- *this = rot_mat.quaternion();
-
- normalize();
- return (*this);
-}
-
-// deprecated
-const LLQuaternion& LLQuaternion::set(const LLMatrix3 &mat)
-{
- *this = mat.quaternion();
- normalize();
- return (*this);
-}
-
-// deprecated
-const LLQuaternion& LLQuaternion::set(const LLMatrix4 &mat)
-{
- *this = mat.quaternion();
- normalize();
- return (*this);
-}
-
-// deprecated
-const LLQuaternion& LLQuaternion::setQuat(F32 angle, F32 x, F32 y, F32 z)
-{
- F32 mag = sqrtf(x * x + y * y + z * z);
- if (mag > FP_MAG_THRESHOLD)
- {
- angle *= 0.5;
- F32 c = cosf(angle);
- F32 s = sinf(angle) / mag;
- mQ[VX] = x * s;
- mQ[VY] = y * s;
- mQ[VZ] = z * s;
- mQ[VW] = c;
- }
- else
- {
- loadIdentity();
- }
- return (*this);
-}
-
-// deprecated
-const LLQuaternion& LLQuaternion::setQuat(F32 angle, const LLVector3 &vec)
-{
- F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]);
- if (mag > FP_MAG_THRESHOLD)
- {
- angle *= 0.5;
- F32 c = cosf(angle);
- F32 s = sinf(angle) / mag;
- mQ[VX] = vec.mV[VX] * s;
- mQ[VY] = vec.mV[VY] * s;
- mQ[VZ] = vec.mV[VZ] * s;
- mQ[VW] = c;
- }
- else
- {
- loadIdentity();
- }
- return (*this);
-}
-
-const LLQuaternion& LLQuaternion::setQuat(F32 angle, const LLVector4 &vec)
-{
- F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]);
- if (mag > FP_MAG_THRESHOLD)
- {
- angle *= 0.5;
- F32 c = cosf(angle);
- F32 s = sinf(angle) / mag;
- mQ[VX] = vec.mV[VX] * s;
- mQ[VY] = vec.mV[VY] * s;
- mQ[VZ] = vec.mV[VZ] * s;
- mQ[VW] = c;
- }
- else
- {
- loadIdentity();
- }
- return (*this);
-}
-
-const LLQuaternion& LLQuaternion::setQuat(F32 roll, F32 pitch, F32 yaw)
-{
- roll *= 0.5f;
- pitch *= 0.5f;
- yaw *= 0.5f;
- F32 sinX = sinf(roll);
- F32 cosX = cosf(roll);
- F32 sinY = sinf(pitch);
- F32 cosY = cosf(pitch);
- F32 sinZ = sinf(yaw);
- F32 cosZ = cosf(yaw);
- mQ[VW] = cosX * cosY * cosZ - sinX * sinY * sinZ;
- mQ[VX] = sinX * cosY * cosZ + cosX * sinY * sinZ;
- mQ[VY] = cosX * sinY * cosZ - sinX * cosY * sinZ;
- mQ[VZ] = cosX * cosY * sinZ + sinX * sinY * cosZ;
- return (*this);
-}
-
-const LLQuaternion& LLQuaternion::setQuat(const LLMatrix3 &mat)
-{
- *this = mat.quaternion();
- normalize();
- return (*this);
-}
-
-const LLQuaternion& LLQuaternion::setQuat(const LLMatrix4 &mat)
-{
- *this = mat.quaternion();
- normalize();
- return (*this);
-//#if 1
-// // NOTE: LLQuaternion's are actually inverted with respect to
-// // the matrices, so this code also assumes inverted quaternions
-// // (-x, -y, -z, w). The result is that roll,pitch,yaw are applied
-// // in reverse order (yaw,pitch,roll).
-// F64 cosX = cos(roll);
-// F64 cosY = cos(pitch);
-// F64 cosZ = cos(yaw);
-//
-// F64 sinX = sin(roll);
-// F64 sinY = sin(pitch);
-// F64 sinZ = sin(yaw);
-//
-// mQ[VW] = (F32)sqrt(cosY*cosZ - sinX*sinY*sinZ + cosX*cosZ + cosX*cosY + 1.0)*.5;
-// if (fabs(mQ[VW]) < F_APPROXIMATELY_ZERO)
-// {
-// // null rotation, any axis will do
-// mQ[VX] = 0.0f;
-// mQ[VY] = 1.0f;
-// mQ[VZ] = 0.0f;
-// }
-// else
-// {
-// F32 inv_s = 1.0f / (4.0f * mQ[VW]);
-// mQ[VX] = (F32)-(-sinX*cosY - cosX*sinY*sinZ - sinX*cosZ) * inv_s;
-// mQ[VY] = (F32)-(-cosX*sinY*cosZ + sinX*sinZ - sinY) * inv_s;
-// mQ[VZ] = (F32)-(-cosY*sinZ - sinX*sinY*cosZ - cosX*sinZ) * inv_s;
-// }
-//
-//#else // This only works on a certain subset of roll/pitch/yaw
-//
-// F64 cosX = cosf(roll/2.0);
-// F64 cosY = cosf(pitch/2.0);
-// F64 cosZ = cosf(yaw/2.0);
-//
-// F64 sinX = sinf(roll/2.0);
-// F64 sinY = sinf(pitch/2.0);
-// F64 sinZ = sinf(yaw/2.0);
-//
-// mQ[VW] = (F32)(cosX*cosY*cosZ + sinX*sinY*sinZ);
-// mQ[VX] = (F32)(sinX*cosY*cosZ - cosX*sinY*sinZ);
-// mQ[VY] = (F32)(cosX*sinY*cosZ + sinX*cosY*sinZ);
-// mQ[VZ] = (F32)(cosX*cosY*sinZ - sinX*sinY*cosZ);
-//#endif
-//
-// normalize();
-// return (*this);
-}
-
-// SJB: This code is correct for a logicly stored (non-transposed) matrix;
-// Our matrices are stored transposed, OpenGL style, so this generates the
-// INVERSE matrix, or the CORRECT matrix form an INVERSE quaternion.
-// Because we use similar logic in LLMatrix3::quaternion(),
-// we are internally consistant so everything works OK :)
-LLMatrix3 LLQuaternion::getMatrix3(void) const
-{
- LLMatrix3 mat;
- F32 xx, xy, xz, xw, yy, yz, yw, zz, zw;
-
- xx = mQ[VX] * mQ[VX];
- xy = mQ[VX] * mQ[VY];
- xz = mQ[VX] * mQ[VZ];
- xw = mQ[VX] * mQ[VW];
-
- yy = mQ[VY] * mQ[VY];
- yz = mQ[VY] * mQ[VZ];
- yw = mQ[VY] * mQ[VW];
-
- zz = mQ[VZ] * mQ[VZ];
- zw = mQ[VZ] * mQ[VW];
-
- mat.mMatrix[0][0] = 1.f - 2.f * ( yy + zz );
- mat.mMatrix[0][1] = 2.f * ( xy + zw );
- mat.mMatrix[0][2] = 2.f * ( xz - yw );
-
- mat.mMatrix[1][0] = 2.f * ( xy - zw );
- mat.mMatrix[1][1] = 1.f - 2.f * ( xx + zz );
- mat.mMatrix[1][2] = 2.f * ( yz + xw );
-
- mat.mMatrix[2][0] = 2.f * ( xz + yw );
- mat.mMatrix[2][1] = 2.f * ( yz - xw );
- mat.mMatrix[2][2] = 1.f - 2.f * ( xx + yy );
-
- return mat;
-}
-
-LLMatrix4 LLQuaternion::getMatrix4(void) const
-{
- LLMatrix4 mat;
- F32 xx, xy, xz, xw, yy, yz, yw, zz, zw;
-
- xx = mQ[VX] * mQ[VX];
- xy = mQ[VX] * mQ[VY];
- xz = mQ[VX] * mQ[VZ];
- xw = mQ[VX] * mQ[VW];
-
- yy = mQ[VY] * mQ[VY];
- yz = mQ[VY] * mQ[VZ];
- yw = mQ[VY] * mQ[VW];
-
- zz = mQ[VZ] * mQ[VZ];
- zw = mQ[VZ] * mQ[VW];
-
- mat.mMatrix[0][0] = 1.f - 2.f * ( yy + zz );
- mat.mMatrix[0][1] = 2.f * ( xy + zw );
- mat.mMatrix[0][2] = 2.f * ( xz - yw );
-
- mat.mMatrix[1][0] = 2.f * ( xy - zw );
- mat.mMatrix[1][1] = 1.f - 2.f * ( xx + zz );
- mat.mMatrix[1][2] = 2.f * ( yz + xw );
-
- mat.mMatrix[2][0] = 2.f * ( xz + yw );
- mat.mMatrix[2][1] = 2.f * ( yz - xw );
- mat.mMatrix[2][2] = 1.f - 2.f * ( xx + yy );
-
- // TODO -- should we set the translation portion to zero?
-
- return mat;
-}
-
-
-
-
-// Other useful methods
-
-
-// calculate the shortest rotation from a to b
-void LLQuaternion::shortestArc(const LLVector3 &a, const LLVector3 &b)
-{
- F32 ab = a * b; // dotproduct
- LLVector3 c = a % b; // crossproduct
- F32 cc = c * c; // squared length of the crossproduct
- if (ab * ab + cc) // test if the arguments have sufficient magnitude
- {
- if (cc > 0.0f) // test if the arguments are (anti)parallel
- {
- F32 s = sqrtf(ab * ab + cc) + ab; // note: don't try to optimize this line
- F32 m = 1.0f / sqrtf(cc + s * s); // the inverted magnitude of the quaternion
- mQ[VX] = c.mV[VX] * m;
- mQ[VY] = c.mV[VY] * m;
- mQ[VZ] = c.mV[VZ] * m;
- mQ[VW] = s * m;
- return;
- }
- if (ab < 0.0f) // test if the angle is bigger than PI/2 (anti parallel)
- {
- c = a - b; // the arguments are anti-parallel, we have to choose an axis
- F32 m = sqrtf(c.mV[VX] * c.mV[VX] + c.mV[VY] * c.mV[VY]); // the length projected on the XY-plane
- if (m > FP_MAG_THRESHOLD)
- {
- mQ[VX] = -c.mV[VY] / m; // return the quaternion with the axis in the XY-plane
- mQ[VY] = c.mV[VX] / m;
- mQ[VZ] = 0.0f;
- mQ[VW] = 0.0f;
- return;
- }
- else // the vectors are parallel to the Z-axis
- {
- mQ[VX] = 1.0f; // rotate around the X-axis
- mQ[VY] = 0.0f;
- mQ[VZ] = 0.0f;
- mQ[VW] = 0.0f;
- return;
- }
- }
- }
- loadIdentity();
-}
-
-// constrains rotation to a cone angle specified in radians
-const LLQuaternion &LLQuaternion::constrain(F32 radians)
-{
- const F32 cos_angle_lim = cosf( radians/2 ); // mQ[VW] limit
- const F32 sin_angle_lim = sinf( radians/2 ); // rotation axis length limit
-
- if (mQ[VW] < 0.f)
- {
- mQ[VX] *= -1.f;
- mQ[VY] *= -1.f;
- mQ[VZ] *= -1.f;
- mQ[VW] *= -1.f;
- }
-
- // if rotation angle is greater than limit (cos is less than limit)
- if( mQ[VW] < cos_angle_lim )
- {
- mQ[VW] = cos_angle_lim;
- F32 axis_len = sqrtf( mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] ); // sin(theta/2)
- F32 axis_mult_fact = sin_angle_lim / axis_len;
- mQ[VX] *= axis_mult_fact;
- mQ[VY] *= axis_mult_fact;
- mQ[VZ] *= axis_mult_fact;
- }
-
- return *this;
-}
-
-// Operators
-
-std::ostream& operator<<(std::ostream &s, const LLQuaternion &a)
-{
- s << "{ "
- << a.mQ[VX] << ", " << a.mQ[VY] << ", " << a.mQ[VZ] << ", " << a.mQ[VW]
- << " }";
- return s;
-}
-
-
-// Does NOT renormalize the result
-LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b)
-{
-// LLQuaternion::mMultCount++;
-
- LLQuaternion q(
- b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1],
- b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2],
- b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0],
- b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2]
- );
- return q;
-}
-
-/*
-LLMatrix4 operator*(const LLMatrix4 &m, const LLQuaternion &q)
-{
- LLMatrix4 qmat(q);
- return (m*qmat);
-}
-*/
-
-
-
-LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot)
-{
- F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ];
- F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY];
- F32 ry = rot.mQ[VW] * a.mV[VY] + rot.mQ[VZ] * a.mV[VX] - rot.mQ[VX] * a.mV[VZ];
- F32 rz = rot.mQ[VW] * a.mV[VZ] + rot.mQ[VX] * a.mV[VY] - rot.mQ[VY] * a.mV[VX];
-
- F32 nx = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY];
- F32 ny = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ];
- F32 nz = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX];
-
- return LLVector4(nx, ny, nz, a.mV[VW]);
-}
-
-LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot)
-{
- F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ];
- F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY];
- F32 ry = rot.mQ[VW] * a.mV[VY] + rot.mQ[VZ] * a.mV[VX] - rot.mQ[VX] * a.mV[VZ];
- F32 rz = rot.mQ[VW] * a.mV[VZ] + rot.mQ[VX] * a.mV[VY] - rot.mQ[VY] * a.mV[VX];
-
- F32 nx = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY];
- F32 ny = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ];
- F32 nz = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX];
-
- return LLVector3(nx, ny, nz);
-}
-
-LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot)
-{
- F64 rw = - rot.mQ[VX] * a.mdV[VX] - rot.mQ[VY] * a.mdV[VY] - rot.mQ[VZ] * a.mdV[VZ];
- F64 rx = rot.mQ[VW] * a.mdV[VX] + rot.mQ[VY] * a.mdV[VZ] - rot.mQ[VZ] * a.mdV[VY];
- F64 ry = rot.mQ[VW] * a.mdV[VY] + rot.mQ[VZ] * a.mdV[VX] - rot.mQ[VX] * a.mdV[VZ];
- F64 rz = rot.mQ[VW] * a.mdV[VZ] + rot.mQ[VX] * a.mdV[VY] - rot.mQ[VY] * a.mdV[VX];
-
- F64 nx = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY];
- F64 ny = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ];
- F64 nz = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX];
-
- return LLVector3d(nx, ny, nz);
-}
-
-F32 dot(const LLQuaternion &a, const LLQuaternion &b)
-{
- return a.mQ[VX] * b.mQ[VX] +
- a.mQ[VY] * b.mQ[VY] +
- a.mQ[VZ] * b.mQ[VZ] +
- a.mQ[VW] * b.mQ[VW];
-}
-
-// DEMO HACK: This lerp is probably inocrrect now due intermediate normalization
-// it should look more like the lerp below
-#if 0
-// linear interpolation
-LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q)
-{
- LLQuaternion r;
- r = t * (q - p) + p;
- r.normalize();
- return r;
-}
-#endif
-
-// lerp from identity to q
-LLQuaternion lerp(F32 t, const LLQuaternion &q)
-{
- LLQuaternion r;
- r.mQ[VX] = t * q.mQ[VX];
- r.mQ[VY] = t * q.mQ[VY];
- r.mQ[VZ] = t * q.mQ[VZ];
- r.mQ[VW] = t * (q.mQ[VZ] - 1.f) + 1.f;
- r.normalize();
- return r;
-}
-
-LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q)
-{
- LLQuaternion r;
- F32 inv_t;
-
- inv_t = 1.f - t;
-
- r.mQ[VX] = t * q.mQ[VX] + (inv_t * p.mQ[VX]);
- r.mQ[VY] = t * q.mQ[VY] + (inv_t * p.mQ[VY]);
- r.mQ[VZ] = t * q.mQ[VZ] + (inv_t * p.mQ[VZ]);
- r.mQ[VW] = t * q.mQ[VW] + (inv_t * p.mQ[VW]);
- r.normalize();
- return r;
-}
-
-
-// spherical linear interpolation
-LLQuaternion slerp( F32 u, const LLQuaternion &a, const LLQuaternion &b )
-{
- // cosine theta = dot product of a and b
- F32 cos_t = a.mQ[0]*b.mQ[0] + a.mQ[1]*b.mQ[1] + a.mQ[2]*b.mQ[2] + a.mQ[3]*b.mQ[3];
-
- // if b is on opposite hemisphere from a, use -a instead
- bool bflip;
- if (cos_t < 0.0f)
- {
- cos_t = -cos_t;
- bflip = true;
- }
- else
- bflip = false;
-
- // if B is (within precision limits) the same as A,
- // just linear interpolate between A and B.
- F32 alpha; // interpolant
- F32 beta; // 1 - interpolant
- if (1.0f - cos_t < 0.00001f)
- {
- beta = 1.0f - u;
- alpha = u;
- }
- else
- {
- F32 theta = acosf(cos_t);
- F32 sin_t = sinf(theta);
- beta = sinf(theta - u*theta) / sin_t;
- alpha = sinf(u*theta) / sin_t;
- }
-
- if (bflip)
- beta = -beta;
-
- // interpolate
- LLQuaternion ret;
- ret.mQ[0] = beta*a.mQ[0] + alpha*b.mQ[0];
- ret.mQ[1] = beta*a.mQ[1] + alpha*b.mQ[1];
- ret.mQ[2] = beta*a.mQ[2] + alpha*b.mQ[2];
- ret.mQ[3] = beta*a.mQ[3] + alpha*b.mQ[3];
-
- return ret;
-}
-
-// lerp whenever possible
-LLQuaternion nlerp(F32 t, const LLQuaternion &a, const LLQuaternion &b)
-{
- if (dot(a, b) < 0.f)
- {
- return slerp(t, a, b);
- }
- else
- {
- return lerp(t, a, b);
- }
-}
-
-LLQuaternion nlerp(F32 t, const LLQuaternion &q)
-{
- if (q.mQ[VW] < 0.f)
- {
- return slerp(t, q);
- }
- else
- {
- return lerp(t, q);
- }
-}
-
-// slerp from identity quaternion to another quaternion
-LLQuaternion slerp(F32 t, const LLQuaternion &q)
-{
- F32 c = q.mQ[VW];
- if (1.0f == t || 1.0f == c)
- {
- // the trivial cases
- return q;
- }
-
- LLQuaternion r;
- F32 s, angle, stq, stp;
-
- s = (F32) sqrt(1.f - c*c);
-
- if (c < 0.0f)
- {
- // when c < 0.0 then theta > PI/2
- // since quat and -quat are the same rotation we invert one of
- // p or q to reduce unecessary spins
- // A equivalent way to do it is to convert acos(c) as if it had
- // been negative, and to negate stp
- angle = (F32) acos(-c);
- stp = -(F32) sin(angle * (1.f - t));
- stq = (F32) sin(angle * t);
- }
- else
- {
- angle = (F32) acos(c);
- stp = (F32) sin(angle * (1.f - t));
- stq = (F32) sin(angle * t);
- }
-
- r.mQ[VX] = (q.mQ[VX] * stq) / s;
- r.mQ[VY] = (q.mQ[VY] * stq) / s;
- r.mQ[VZ] = (q.mQ[VZ] * stq) / s;
- r.mQ[VW] = (stp + q.mQ[VW] * stq) / s;
-
- return r;
-}
-
-LLQuaternion mayaQ(F32 xRot, F32 yRot, F32 zRot, LLQuaternion::Order order)
-{
- LLQuaternion xQ( xRot*DEG_TO_RAD, LLVector3(1.0f, 0.0f, 0.0f) );
- LLQuaternion yQ( yRot*DEG_TO_RAD, LLVector3(0.0f, 1.0f, 0.0f) );
- LLQuaternion zQ( zRot*DEG_TO_RAD, LLVector3(0.0f, 0.0f, 1.0f) );
- LLQuaternion ret;
- switch( order )
- {
- case LLQuaternion::XYZ:
- ret = xQ * yQ * zQ;
- break;
- case LLQuaternion::YZX:
- ret = yQ * zQ * xQ;
- break;
- case LLQuaternion::ZXY:
- ret = zQ * xQ * yQ;
- break;
- case LLQuaternion::XZY:
- ret = xQ * zQ * yQ;
- break;
- case LLQuaternion::YXZ:
- ret = yQ * xQ * zQ;
- break;
- case LLQuaternion::ZYX:
- ret = zQ * yQ * xQ;
- break;
- }
- return ret;
-}
-
-const char *OrderToString( const LLQuaternion::Order order )
-{
- const char *p = NULL;
- switch( order )
- {
- default:
- case LLQuaternion::XYZ:
- p = "XYZ";
- break;
- case LLQuaternion::YZX:
- p = "YZX";
- break;
- case LLQuaternion::ZXY:
- p = "ZXY";
- break;
- case LLQuaternion::XZY:
- p = "XZY";
- break;
- case LLQuaternion::YXZ:
- p = "YXZ";
- break;
- case LLQuaternion::ZYX:
- p = "ZYX";
- break;
- }
- return p;
-}
-
-LLQuaternion::Order StringToOrder( const char *str )
-{
- if (strncmp(str, "XYZ", 3)==0 || strncmp(str, "xyz", 3)==0)
- return LLQuaternion::XYZ;
-
- if (strncmp(str, "YZX", 3)==0 || strncmp(str, "yzx", 3)==0)
- return LLQuaternion::YZX;
-
- if (strncmp(str, "ZXY", 3)==0 || strncmp(str, "zxy", 3)==0)
- return LLQuaternion::ZXY;
-
- if (strncmp(str, "XZY", 3)==0 || strncmp(str, "xzy", 3)==0)
- return LLQuaternion::XZY;
-
- if (strncmp(str, "YXZ", 3)==0 || strncmp(str, "yxz", 3)==0)
- return LLQuaternion::YXZ;
-
- if (strncmp(str, "ZYX", 3)==0 || strncmp(str, "zyx", 3)==0)
- return LLQuaternion::ZYX;
-
- return LLQuaternion::XYZ;
-}
-
-void LLQuaternion::getAngleAxis(F32* angle, LLVector3 &vec) const
-{
- F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component
- if (v > FP_MAG_THRESHOLD)
- {
- F32 oomag = 1.0f / v;
- F32 w = mQ[VW];
- if (mQ[VW] < 0.0f)
- {
- w = -w; // make VW positive
- oomag = -oomag; // invert the axis
- }
- vec.mV[VX] = mQ[VX] * oomag; // normalize the axis
- vec.mV[VY] = mQ[VY] * oomag;
- vec.mV[VZ] = mQ[VZ] * oomag;
- *angle = 2.0f * atan2f(v, w); // get the angle
- }
- else
- {
- *angle = 0.0f; // no rotation
- vec.mV[VX] = 0.0f; // around some dummy axis
- vec.mV[VY] = 0.0f;
- vec.mV[VZ] = 1.0f;
- }
-}
-
-const LLQuaternion& LLQuaternion::setFromAzimuthAndAltitude(F32 azimuthRadians, F32 altitudeRadians)
-{
- // euler angle inputs are complements of azimuth/altitude which are measured from zenith
- F32 pitch = llclamp(F_PI_BY_TWO - altitudeRadians, 0.0f, F_PI_BY_TWO);
- F32 yaw = llclamp(F_PI_BY_TWO - azimuthRadians, 0.0f, F_PI_BY_TWO);
- setEulerAngles(0.0f, pitch, yaw);
- return *this;
-}
-
-void LLQuaternion::getAzimuthAndAltitude(F32 &azimuthRadians, F32 &altitudeRadians)
-{
- F32 rick_roll;
- F32 pitch;
- F32 yaw;
- getEulerAngles(&rick_roll, &pitch, &yaw);
- // make these measured from zenith
- altitudeRadians = llclamp(F_PI_BY_TWO - pitch, 0.0f, F_PI_BY_TWO);
- azimuthRadians = llclamp(F_PI_BY_TWO - yaw, 0.0f, F_PI_BY_TWO);
-}
-
-// quaternion does not need to be normalized
-void LLQuaternion::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const
-{
- F32 sx = 2 * (mQ[VX] * mQ[VW] - mQ[VY] * mQ[VZ]); // sine of the roll
- F32 sy = 2 * (mQ[VY] * mQ[VW] + mQ[VX] * mQ[VZ]); // sine of the pitch
- F32 ys = mQ[VW] * mQ[VW] - mQ[VY] * mQ[VY]; // intermediate cosine 1
- F32 xz = mQ[VX] * mQ[VX] - mQ[VZ] * mQ[VZ]; // intermediate cosine 2
- F32 cx = ys - xz; // cosine of the roll
- F32 cy = sqrtf(sx * sx + cx * cx); // cosine of the pitch
- if (cy > GIMBAL_THRESHOLD) // no gimbal lock
- {
- *roll = atan2f(sx, cx);
- *pitch = atan2f(sy, cy);
- *yaw = atan2f(2 * (mQ[VZ] * mQ[VW] - mQ[VX] * mQ[VY]), ys + xz);
- }
- else // gimbal lock
- {
- if (sy > 0)
- {
- *pitch = F_PI_BY_TWO;
- *yaw = 2 * atan2f(mQ[VZ] + mQ[VX], mQ[VW] + mQ[VY]);
- }
- else
- {
- *pitch = -F_PI_BY_TWO;
- *yaw = 2 * atan2f(mQ[VZ] - mQ[VX], mQ[VW] - mQ[VY]);
- }
- *roll = 0;
- }
-}
-
-// Saves space by using the fact that our quaternions are normalized
-LLVector3 LLQuaternion::packToVector3() const
-{
- F32 x = mQ[VX];
- F32 y = mQ[VY];
- F32 z = mQ[VZ];
- F32 w = mQ[VW];
- F32 mag = sqrtf(x * x + y * y + z * z + w * w);
- if (mag > FP_MAG_THRESHOLD)
- {
- x /= mag;
- y /= mag;
- z /= mag; // no need to normalize w, it's not used
- }
- if( mQ[VW] >= 0 )
- {
- return LLVector3( x, y , z );
- }
- else
- {
- return LLVector3( -x, -y, -z );
- }
-}
-
-// Saves space by using the fact that our quaternions are normalized
-void LLQuaternion::unpackFromVector3( const LLVector3& vec )
-{
- mQ[VX] = vec.mV[VX];
- mQ[VY] = vec.mV[VY];
- mQ[VZ] = vec.mV[VZ];
- F32 t = 1.f - vec.magVecSquared();
- if( t > 0 )
- {
- mQ[VW] = sqrt( t );
- }
- else
- {
- // Need this to avoid trying to find the square root of a negative number due
- // to floating point error.
- mQ[VW] = 0;
- }
-}
-
-bool LLQuaternion::parseQuat(const std::string& buf, LLQuaternion* value)
-{
- if( buf.empty() || value == NULL)
- {
- return false;
- }
-
- LLQuaternion quat;
- S32 count = sscanf( buf.c_str(), "%f %f %f %f", quat.mQ + 0, quat.mQ + 1, quat.mQ + 2, quat.mQ + 3 );
- if( 4 == count )
- {
- value->set( quat );
- return true;
- }
-
- return false;
-}
-
-
-// End
+/** + * @file llquaternion.cpp + * @brief LLQuaternion class implementation. + * + * $LicenseInfo:firstyear=2000&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2010, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +#include "linden_common.h" + +#include "llmath.h" // for F_PI + +#include "llquaternion.h" + +//#include "vmath.h" +#include "v3math.h" +#include "v3dmath.h" +#include "v4math.h" +#include "m4math.h" +#include "m3math.h" +#include "llquantize.h" + +// WARNING: Don't use this for global const definitions! using this +// at the top of a *.cpp file might not give you what you think. +const LLQuaternion LLQuaternion::DEFAULT; + +// Constructors + +LLQuaternion::LLQuaternion(const LLMatrix4 &mat) +{ + *this = mat.quaternion(); + normalize(); +} + +LLQuaternion::LLQuaternion(const LLMatrix3 &mat) +{ + *this = mat.quaternion(); + normalize(); +} + +LLQuaternion::LLQuaternion(F32 angle, const LLVector4 &vec) +{ + F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = vec.mV[VX] * s; + mQ[VY] = vec.mV[VY] * s; + mQ[VZ] = vec.mV[VZ] * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } +} + +LLQuaternion::LLQuaternion(F32 angle, const LLVector3 &vec) +{ + F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = vec.mV[VX] * s; + mQ[VY] = vec.mV[VY] * s; + mQ[VZ] = vec.mV[VZ] * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } +} + +LLQuaternion::LLQuaternion(const LLVector3 &x_axis, + const LLVector3 &y_axis, + const LLVector3 &z_axis) +{ + LLMatrix3 mat; + mat.setRows(x_axis, y_axis, z_axis); + *this = mat.quaternion(); + normalize(); +} + +LLQuaternion::LLQuaternion(const LLSD &sd) +{ + setValue(sd); +} + +// Quatizations +void LLQuaternion::quantize16(F32 lower, F32 upper) +{ + F32 x = mQ[VX]; + F32 y = mQ[VY]; + F32 z = mQ[VZ]; + F32 s = mQ[VS]; + + x = U16_to_F32(F32_to_U16_ROUND(x, lower, upper), lower, upper); + y = U16_to_F32(F32_to_U16_ROUND(y, lower, upper), lower, upper); + z = U16_to_F32(F32_to_U16_ROUND(z, lower, upper), lower, upper); + s = U16_to_F32(F32_to_U16_ROUND(s, lower, upper), lower, upper); + + mQ[VX] = x; + mQ[VY] = y; + mQ[VZ] = z; + mQ[VS] = s; + + normalize(); +} + +void LLQuaternion::quantize8(F32 lower, F32 upper) +{ + mQ[VX] = U8_to_F32(F32_to_U8_ROUND(mQ[VX], lower, upper), lower, upper); + mQ[VY] = U8_to_F32(F32_to_U8_ROUND(mQ[VY], lower, upper), lower, upper); + mQ[VZ] = U8_to_F32(F32_to_U8_ROUND(mQ[VZ], lower, upper), lower, upper); + mQ[VS] = U8_to_F32(F32_to_U8_ROUND(mQ[VS], lower, upper), lower, upper); + + normalize(); +} + +// LLVector3 Magnitude and Normalization Functions + + +// Set LLQuaternion routines + +const LLQuaternion& LLQuaternion::setAngleAxis(F32 angle, F32 x, F32 y, F32 z) +{ + F32 mag = sqrtf(x * x + y * y + z * z); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = x * s; + mQ[VY] = y * s; + mQ[VZ] = z * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } + return (*this); +} + +const LLQuaternion& LLQuaternion::setAngleAxis(F32 angle, const LLVector3 &vec) +{ + F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = vec.mV[VX] * s; + mQ[VY] = vec.mV[VY] * s; + mQ[VZ] = vec.mV[VZ] * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } + return (*this); +} + +const LLQuaternion& LLQuaternion::setAngleAxis(F32 angle, const LLVector4 &vec) +{ + F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = vec.mV[VX] * s; + mQ[VY] = vec.mV[VY] * s; + mQ[VZ] = vec.mV[VZ] * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } + return (*this); +} + +const LLQuaternion& LLQuaternion::setEulerAngles(F32 roll, F32 pitch, F32 yaw) +{ + LLMatrix3 rot_mat(roll, pitch, yaw); + rot_mat.orthogonalize(); + *this = rot_mat.quaternion(); + + normalize(); + return (*this); +} + +// deprecated +const LLQuaternion& LLQuaternion::set(const LLMatrix3 &mat) +{ + *this = mat.quaternion(); + normalize(); + return (*this); +} + +// deprecated +const LLQuaternion& LLQuaternion::set(const LLMatrix4 &mat) +{ + *this = mat.quaternion(); + normalize(); + return (*this); +} + +// deprecated +const LLQuaternion& LLQuaternion::setQuat(F32 angle, F32 x, F32 y, F32 z) +{ + F32 mag = sqrtf(x * x + y * y + z * z); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = x * s; + mQ[VY] = y * s; + mQ[VZ] = z * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } + return (*this); +} + +// deprecated +const LLQuaternion& LLQuaternion::setQuat(F32 angle, const LLVector3 &vec) +{ + F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = vec.mV[VX] * s; + mQ[VY] = vec.mV[VY] * s; + mQ[VZ] = vec.mV[VZ] * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } + return (*this); +} + +const LLQuaternion& LLQuaternion::setQuat(F32 angle, const LLVector4 &vec) +{ + F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = vec.mV[VX] * s; + mQ[VY] = vec.mV[VY] * s; + mQ[VZ] = vec.mV[VZ] * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } + return (*this); +} + +const LLQuaternion& LLQuaternion::setQuat(F32 roll, F32 pitch, F32 yaw) +{ + roll *= 0.5f; + pitch *= 0.5f; + yaw *= 0.5f; + F32 sinX = sinf(roll); + F32 cosX = cosf(roll); + F32 sinY = sinf(pitch); + F32 cosY = cosf(pitch); + F32 sinZ = sinf(yaw); + F32 cosZ = cosf(yaw); + mQ[VW] = cosX * cosY * cosZ - sinX * sinY * sinZ; + mQ[VX] = sinX * cosY * cosZ + cosX * sinY * sinZ; + mQ[VY] = cosX * sinY * cosZ - sinX * cosY * sinZ; + mQ[VZ] = cosX * cosY * sinZ + sinX * sinY * cosZ; + return (*this); +} + +const LLQuaternion& LLQuaternion::setQuat(const LLMatrix3 &mat) +{ + *this = mat.quaternion(); + normalize(); + return (*this); +} + +const LLQuaternion& LLQuaternion::setQuat(const LLMatrix4 &mat) +{ + *this = mat.quaternion(); + normalize(); + return (*this); +//#if 1 +// // NOTE: LLQuaternion's are actually inverted with respect to +// // the matrices, so this code also assumes inverted quaternions +// // (-x, -y, -z, w). The result is that roll,pitch,yaw are applied +// // in reverse order (yaw,pitch,roll). +// F64 cosX = cos(roll); +// F64 cosY = cos(pitch); +// F64 cosZ = cos(yaw); +// +// F64 sinX = sin(roll); +// F64 sinY = sin(pitch); +// F64 sinZ = sin(yaw); +// +// mQ[VW] = (F32)sqrt(cosY*cosZ - sinX*sinY*sinZ + cosX*cosZ + cosX*cosY + 1.0)*.5; +// if (fabs(mQ[VW]) < F_APPROXIMATELY_ZERO) +// { +// // null rotation, any axis will do +// mQ[VX] = 0.0f; +// mQ[VY] = 1.0f; +// mQ[VZ] = 0.0f; +// } +// else +// { +// F32 inv_s = 1.0f / (4.0f * mQ[VW]); +// mQ[VX] = (F32)-(-sinX*cosY - cosX*sinY*sinZ - sinX*cosZ) * inv_s; +// mQ[VY] = (F32)-(-cosX*sinY*cosZ + sinX*sinZ - sinY) * inv_s; +// mQ[VZ] = (F32)-(-cosY*sinZ - sinX*sinY*cosZ - cosX*sinZ) * inv_s; +// } +// +//#else // This only works on a certain subset of roll/pitch/yaw +// +// F64 cosX = cosf(roll/2.0); +// F64 cosY = cosf(pitch/2.0); +// F64 cosZ = cosf(yaw/2.0); +// +// F64 sinX = sinf(roll/2.0); +// F64 sinY = sinf(pitch/2.0); +// F64 sinZ = sinf(yaw/2.0); +// +// mQ[VW] = (F32)(cosX*cosY*cosZ + sinX*sinY*sinZ); +// mQ[VX] = (F32)(sinX*cosY*cosZ - cosX*sinY*sinZ); +// mQ[VY] = (F32)(cosX*sinY*cosZ + sinX*cosY*sinZ); +// mQ[VZ] = (F32)(cosX*cosY*sinZ - sinX*sinY*cosZ); +//#endif +// +// normalize(); +// return (*this); +} + +// SJB: This code is correct for a logicly stored (non-transposed) matrix; +// Our matrices are stored transposed, OpenGL style, so this generates the +// INVERSE matrix, or the CORRECT matrix form an INVERSE quaternion. +// Because we use similar logic in LLMatrix3::quaternion(), +// we are internally consistant so everything works OK :) +LLMatrix3 LLQuaternion::getMatrix3(void) const +{ + LLMatrix3 mat; + F32 xx, xy, xz, xw, yy, yz, yw, zz, zw; + + xx = mQ[VX] * mQ[VX]; + xy = mQ[VX] * mQ[VY]; + xz = mQ[VX] * mQ[VZ]; + xw = mQ[VX] * mQ[VW]; + + yy = mQ[VY] * mQ[VY]; + yz = mQ[VY] * mQ[VZ]; + yw = mQ[VY] * mQ[VW]; + + zz = mQ[VZ] * mQ[VZ]; + zw = mQ[VZ] * mQ[VW]; + + mat.mMatrix[0][0] = 1.f - 2.f * ( yy + zz ); + mat.mMatrix[0][1] = 2.f * ( xy + zw ); + mat.mMatrix[0][2] = 2.f * ( xz - yw ); + + mat.mMatrix[1][0] = 2.f * ( xy - zw ); + mat.mMatrix[1][1] = 1.f - 2.f * ( xx + zz ); + mat.mMatrix[1][2] = 2.f * ( yz + xw ); + + mat.mMatrix[2][0] = 2.f * ( xz + yw ); + mat.mMatrix[2][1] = 2.f * ( yz - xw ); + mat.mMatrix[2][2] = 1.f - 2.f * ( xx + yy ); + + return mat; +} + +LLMatrix4 LLQuaternion::getMatrix4(void) const +{ + LLMatrix4 mat; + F32 xx, xy, xz, xw, yy, yz, yw, zz, zw; + + xx = mQ[VX] * mQ[VX]; + xy = mQ[VX] * mQ[VY]; + xz = mQ[VX] * mQ[VZ]; + xw = mQ[VX] * mQ[VW]; + + yy = mQ[VY] * mQ[VY]; + yz = mQ[VY] * mQ[VZ]; + yw = mQ[VY] * mQ[VW]; + + zz = mQ[VZ] * mQ[VZ]; + zw = mQ[VZ] * mQ[VW]; + + mat.mMatrix[0][0] = 1.f - 2.f * ( yy + zz ); + mat.mMatrix[0][1] = 2.f * ( xy + zw ); + mat.mMatrix[0][2] = 2.f * ( xz - yw ); + + mat.mMatrix[1][0] = 2.f * ( xy - zw ); + mat.mMatrix[1][1] = 1.f - 2.f * ( xx + zz ); + mat.mMatrix[1][2] = 2.f * ( yz + xw ); + + mat.mMatrix[2][0] = 2.f * ( xz + yw ); + mat.mMatrix[2][1] = 2.f * ( yz - xw ); + mat.mMatrix[2][2] = 1.f - 2.f * ( xx + yy ); + + // TODO -- should we set the translation portion to zero? + + return mat; +} + + + + +// Other useful methods + + +// calculate the shortest rotation from a to b +void LLQuaternion::shortestArc(const LLVector3 &a, const LLVector3 &b) +{ + F32 ab = a * b; // dotproduct + LLVector3 c = a % b; // crossproduct + F32 cc = c * c; // squared length of the crossproduct + if (ab * ab + cc) // test if the arguments have sufficient magnitude + { + if (cc > 0.0f) // test if the arguments are (anti)parallel + { + F32 s = sqrtf(ab * ab + cc) + ab; // note: don't try to optimize this line + F32 m = 1.0f / sqrtf(cc + s * s); // the inverted magnitude of the quaternion + mQ[VX] = c.mV[VX] * m; + mQ[VY] = c.mV[VY] * m; + mQ[VZ] = c.mV[VZ] * m; + mQ[VW] = s * m; + return; + } + if (ab < 0.0f) // test if the angle is bigger than PI/2 (anti parallel) + { + c = a - b; // the arguments are anti-parallel, we have to choose an axis + F32 m = sqrtf(c.mV[VX] * c.mV[VX] + c.mV[VY] * c.mV[VY]); // the length projected on the XY-plane + if (m > FP_MAG_THRESHOLD) + { + mQ[VX] = -c.mV[VY] / m; // return the quaternion with the axis in the XY-plane + mQ[VY] = c.mV[VX] / m; + mQ[VZ] = 0.0f; + mQ[VW] = 0.0f; + return; + } + else // the vectors are parallel to the Z-axis + { + mQ[VX] = 1.0f; // rotate around the X-axis + mQ[VY] = 0.0f; + mQ[VZ] = 0.0f; + mQ[VW] = 0.0f; + return; + } + } + } + loadIdentity(); +} + +// constrains rotation to a cone angle specified in radians +const LLQuaternion &LLQuaternion::constrain(F32 radians) +{ + const F32 cos_angle_lim = cosf( radians/2 ); // mQ[VW] limit + const F32 sin_angle_lim = sinf( radians/2 ); // rotation axis length limit + + if (mQ[VW] < 0.f) + { + mQ[VX] *= -1.f; + mQ[VY] *= -1.f; + mQ[VZ] *= -1.f; + mQ[VW] *= -1.f; + } + + // if rotation angle is greater than limit (cos is less than limit) + if( mQ[VW] < cos_angle_lim ) + { + mQ[VW] = cos_angle_lim; + F32 axis_len = sqrtf( mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] ); // sin(theta/2) + F32 axis_mult_fact = sin_angle_lim / axis_len; + mQ[VX] *= axis_mult_fact; + mQ[VY] *= axis_mult_fact; + mQ[VZ] *= axis_mult_fact; + } + + return *this; +} + +// Operators + +std::ostream& operator<<(std::ostream &s, const LLQuaternion &a) +{ + s << "{ " + << a.mQ[VX] << ", " << a.mQ[VY] << ", " << a.mQ[VZ] << ", " << a.mQ[VW] + << " }"; + return s; +} + + +// Does NOT renormalize the result +LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b) +{ +// LLQuaternion::mMultCount++; + + LLQuaternion q( + b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1], + b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2], + b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0], + b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2] + ); + return q; +} + +/* +LLMatrix4 operator*(const LLMatrix4 &m, const LLQuaternion &q) +{ + LLMatrix4 qmat(q); + return (m*qmat); +} +*/ + + + +LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot) +{ + F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ]; + F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY]; + F32 ry = rot.mQ[VW] * a.mV[VY] + rot.mQ[VZ] * a.mV[VX] - rot.mQ[VX] * a.mV[VZ]; + F32 rz = rot.mQ[VW] * a.mV[VZ] + rot.mQ[VX] * a.mV[VY] - rot.mQ[VY] * a.mV[VX]; + + F32 nx = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY]; + F32 ny = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ]; + F32 nz = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX]; + + return LLVector4(nx, ny, nz, a.mV[VW]); +} + +LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot) +{ + F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ]; + F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY]; + F32 ry = rot.mQ[VW] * a.mV[VY] + rot.mQ[VZ] * a.mV[VX] - rot.mQ[VX] * a.mV[VZ]; + F32 rz = rot.mQ[VW] * a.mV[VZ] + rot.mQ[VX] * a.mV[VY] - rot.mQ[VY] * a.mV[VX]; + + F32 nx = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY]; + F32 ny = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ]; + F32 nz = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX]; + + return LLVector3(nx, ny, nz); +} + +LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot) +{ + F64 rw = - rot.mQ[VX] * a.mdV[VX] - rot.mQ[VY] * a.mdV[VY] - rot.mQ[VZ] * a.mdV[VZ]; + F64 rx = rot.mQ[VW] * a.mdV[VX] + rot.mQ[VY] * a.mdV[VZ] - rot.mQ[VZ] * a.mdV[VY]; + F64 ry = rot.mQ[VW] * a.mdV[VY] + rot.mQ[VZ] * a.mdV[VX] - rot.mQ[VX] * a.mdV[VZ]; + F64 rz = rot.mQ[VW] * a.mdV[VZ] + rot.mQ[VX] * a.mdV[VY] - rot.mQ[VY] * a.mdV[VX]; + + F64 nx = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY]; + F64 ny = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ]; + F64 nz = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX]; + + return LLVector3d(nx, ny, nz); +} + +F32 dot(const LLQuaternion &a, const LLQuaternion &b) +{ + return a.mQ[VX] * b.mQ[VX] + + a.mQ[VY] * b.mQ[VY] + + a.mQ[VZ] * b.mQ[VZ] + + a.mQ[VW] * b.mQ[VW]; +} + +// DEMO HACK: This lerp is probably inocrrect now due intermediate normalization +// it should look more like the lerp below +#if 0 +// linear interpolation +LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q) +{ + LLQuaternion r; + r = t * (q - p) + p; + r.normalize(); + return r; +} +#endif + +// lerp from identity to q +LLQuaternion lerp(F32 t, const LLQuaternion &q) +{ + LLQuaternion r; + r.mQ[VX] = t * q.mQ[VX]; + r.mQ[VY] = t * q.mQ[VY]; + r.mQ[VZ] = t * q.mQ[VZ]; + r.mQ[VW] = t * (q.mQ[VZ] - 1.f) + 1.f; + r.normalize(); + return r; +} + +LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q) +{ + LLQuaternion r; + F32 inv_t; + + inv_t = 1.f - t; + + r.mQ[VX] = t * q.mQ[VX] + (inv_t * p.mQ[VX]); + r.mQ[VY] = t * q.mQ[VY] + (inv_t * p.mQ[VY]); + r.mQ[VZ] = t * q.mQ[VZ] + (inv_t * p.mQ[VZ]); + r.mQ[VW] = t * q.mQ[VW] + (inv_t * p.mQ[VW]); + r.normalize(); + return r; +} + + +// spherical linear interpolation +LLQuaternion slerp( F32 u, const LLQuaternion &a, const LLQuaternion &b ) +{ + // cosine theta = dot product of a and b + F32 cos_t = a.mQ[0]*b.mQ[0] + a.mQ[1]*b.mQ[1] + a.mQ[2]*b.mQ[2] + a.mQ[3]*b.mQ[3]; + + // if b is on opposite hemisphere from a, use -a instead + bool bflip; + if (cos_t < 0.0f) + { + cos_t = -cos_t; + bflip = true; + } + else + bflip = false; + + // if B is (within precision limits) the same as A, + // just linear interpolate between A and B. + F32 alpha; // interpolant + F32 beta; // 1 - interpolant + if (1.0f - cos_t < 0.00001f) + { + beta = 1.0f - u; + alpha = u; + } + else + { + F32 theta = acosf(cos_t); + F32 sin_t = sinf(theta); + beta = sinf(theta - u*theta) / sin_t; + alpha = sinf(u*theta) / sin_t; + } + + if (bflip) + beta = -beta; + + // interpolate + LLQuaternion ret; + ret.mQ[0] = beta*a.mQ[0] + alpha*b.mQ[0]; + ret.mQ[1] = beta*a.mQ[1] + alpha*b.mQ[1]; + ret.mQ[2] = beta*a.mQ[2] + alpha*b.mQ[2]; + ret.mQ[3] = beta*a.mQ[3] + alpha*b.mQ[3]; + + return ret; +} + +// lerp whenever possible +LLQuaternion nlerp(F32 t, const LLQuaternion &a, const LLQuaternion &b) +{ + if (dot(a, b) < 0.f) + { + return slerp(t, a, b); + } + else + { + return lerp(t, a, b); + } +} + +LLQuaternion nlerp(F32 t, const LLQuaternion &q) +{ + if (q.mQ[VW] < 0.f) + { + return slerp(t, q); + } + else + { + return lerp(t, q); + } +} + +// slerp from identity quaternion to another quaternion +LLQuaternion slerp(F32 t, const LLQuaternion &q) +{ + F32 c = q.mQ[VW]; + if (1.0f == t || 1.0f == c) + { + // the trivial cases + return q; + } + + LLQuaternion r; + F32 s, angle, stq, stp; + + s = (F32) sqrt(1.f - c*c); + + if (c < 0.0f) + { + // when c < 0.0 then theta > PI/2 + // since quat and -quat are the same rotation we invert one of + // p or q to reduce unecessary spins + // A equivalent way to do it is to convert acos(c) as if it had + // been negative, and to negate stp + angle = (F32) acos(-c); + stp = -(F32) sin(angle * (1.f - t)); + stq = (F32) sin(angle * t); + } + else + { + angle = (F32) acos(c); + stp = (F32) sin(angle * (1.f - t)); + stq = (F32) sin(angle * t); + } + + r.mQ[VX] = (q.mQ[VX] * stq) / s; + r.mQ[VY] = (q.mQ[VY] * stq) / s; + r.mQ[VZ] = (q.mQ[VZ] * stq) / s; + r.mQ[VW] = (stp + q.mQ[VW] * stq) / s; + + return r; +} + +LLQuaternion mayaQ(F32 xRot, F32 yRot, F32 zRot, LLQuaternion::Order order) +{ + LLQuaternion xQ( xRot*DEG_TO_RAD, LLVector3(1.0f, 0.0f, 0.0f) ); + LLQuaternion yQ( yRot*DEG_TO_RAD, LLVector3(0.0f, 1.0f, 0.0f) ); + LLQuaternion zQ( zRot*DEG_TO_RAD, LLVector3(0.0f, 0.0f, 1.0f) ); + LLQuaternion ret; + switch( order ) + { + case LLQuaternion::XYZ: + ret = xQ * yQ * zQ; + break; + case LLQuaternion::YZX: + ret = yQ * zQ * xQ; + break; + case LLQuaternion::ZXY: + ret = zQ * xQ * yQ; + break; + case LLQuaternion::XZY: + ret = xQ * zQ * yQ; + break; + case LLQuaternion::YXZ: + ret = yQ * xQ * zQ; + break; + case LLQuaternion::ZYX: + ret = zQ * yQ * xQ; + break; + } + return ret; +} + +const char *OrderToString( const LLQuaternion::Order order ) +{ + const char *p = NULL; + switch( order ) + { + default: + case LLQuaternion::XYZ: + p = "XYZ"; + break; + case LLQuaternion::YZX: + p = "YZX"; + break; + case LLQuaternion::ZXY: + p = "ZXY"; + break; + case LLQuaternion::XZY: + p = "XZY"; + break; + case LLQuaternion::YXZ: + p = "YXZ"; + break; + case LLQuaternion::ZYX: + p = "ZYX"; + break; + } + return p; +} + +LLQuaternion::Order StringToOrder( const char *str ) +{ + if (strncmp(str, "XYZ", 3)==0 || strncmp(str, "xyz", 3)==0) + return LLQuaternion::XYZ; + + if (strncmp(str, "YZX", 3)==0 || strncmp(str, "yzx", 3)==0) + return LLQuaternion::YZX; + + if (strncmp(str, "ZXY", 3)==0 || strncmp(str, "zxy", 3)==0) + return LLQuaternion::ZXY; + + if (strncmp(str, "XZY", 3)==0 || strncmp(str, "xzy", 3)==0) + return LLQuaternion::XZY; + + if (strncmp(str, "YXZ", 3)==0 || strncmp(str, "yxz", 3)==0) + return LLQuaternion::YXZ; + + if (strncmp(str, "ZYX", 3)==0 || strncmp(str, "zyx", 3)==0) + return LLQuaternion::ZYX; + + return LLQuaternion::XYZ; +} + +void LLQuaternion::getAngleAxis(F32* angle, LLVector3 &vec) const +{ + F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component + if (v > FP_MAG_THRESHOLD) + { + F32 oomag = 1.0f / v; + F32 w = mQ[VW]; + if (mQ[VW] < 0.0f) + { + w = -w; // make VW positive + oomag = -oomag; // invert the axis + } + vec.mV[VX] = mQ[VX] * oomag; // normalize the axis + vec.mV[VY] = mQ[VY] * oomag; + vec.mV[VZ] = mQ[VZ] * oomag; + *angle = 2.0f * atan2f(v, w); // get the angle + } + else + { + *angle = 0.0f; // no rotation + vec.mV[VX] = 0.0f; // around some dummy axis + vec.mV[VY] = 0.0f; + vec.mV[VZ] = 1.0f; + } +} + +const LLQuaternion& LLQuaternion::setFromAzimuthAndAltitude(F32 azimuthRadians, F32 altitudeRadians) +{ + // euler angle inputs are complements of azimuth/altitude which are measured from zenith + F32 pitch = llclamp(F_PI_BY_TWO - altitudeRadians, 0.0f, F_PI_BY_TWO); + F32 yaw = llclamp(F_PI_BY_TWO - azimuthRadians, 0.0f, F_PI_BY_TWO); + setEulerAngles(0.0f, pitch, yaw); + return *this; +} + +void LLQuaternion::getAzimuthAndAltitude(F32 &azimuthRadians, F32 &altitudeRadians) +{ + F32 rick_roll; + F32 pitch; + F32 yaw; + getEulerAngles(&rick_roll, &pitch, &yaw); + // make these measured from zenith + altitudeRadians = llclamp(F_PI_BY_TWO - pitch, 0.0f, F_PI_BY_TWO); + azimuthRadians = llclamp(F_PI_BY_TWO - yaw, 0.0f, F_PI_BY_TWO); +} + +// quaternion does not need to be normalized +void LLQuaternion::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const +{ + F32 sx = 2 * (mQ[VX] * mQ[VW] - mQ[VY] * mQ[VZ]); // sine of the roll + F32 sy = 2 * (mQ[VY] * mQ[VW] + mQ[VX] * mQ[VZ]); // sine of the pitch + F32 ys = mQ[VW] * mQ[VW] - mQ[VY] * mQ[VY]; // intermediate cosine 1 + F32 xz = mQ[VX] * mQ[VX] - mQ[VZ] * mQ[VZ]; // intermediate cosine 2 + F32 cx = ys - xz; // cosine of the roll + F32 cy = sqrtf(sx * sx + cx * cx); // cosine of the pitch + if (cy > GIMBAL_THRESHOLD) // no gimbal lock + { + *roll = atan2f(sx, cx); + *pitch = atan2f(sy, cy); + *yaw = atan2f(2 * (mQ[VZ] * mQ[VW] - mQ[VX] * mQ[VY]), ys + xz); + } + else // gimbal lock + { + if (sy > 0) + { + *pitch = F_PI_BY_TWO; + *yaw = 2 * atan2f(mQ[VZ] + mQ[VX], mQ[VW] + mQ[VY]); + } + else + { + *pitch = -F_PI_BY_TWO; + *yaw = 2 * atan2f(mQ[VZ] - mQ[VX], mQ[VW] - mQ[VY]); + } + *roll = 0; + } +} + +// Saves space by using the fact that our quaternions are normalized +LLVector3 LLQuaternion::packToVector3() const +{ + F32 x = mQ[VX]; + F32 y = mQ[VY]; + F32 z = mQ[VZ]; + F32 w = mQ[VW]; + F32 mag = sqrtf(x * x + y * y + z * z + w * w); + if (mag > FP_MAG_THRESHOLD) + { + x /= mag; + y /= mag; + z /= mag; // no need to normalize w, it's not used + } + if( mQ[VW] >= 0 ) + { + return LLVector3( x, y , z ); + } + else + { + return LLVector3( -x, -y, -z ); + } +} + +// Saves space by using the fact that our quaternions are normalized +void LLQuaternion::unpackFromVector3( const LLVector3& vec ) +{ + mQ[VX] = vec.mV[VX]; + mQ[VY] = vec.mV[VY]; + mQ[VZ] = vec.mV[VZ]; + F32 t = 1.f - vec.magVecSquared(); + if( t > 0 ) + { + mQ[VW] = sqrt( t ); + } + else + { + // Need this to avoid trying to find the square root of a negative number due + // to floating point error. + mQ[VW] = 0; + } +} + +bool LLQuaternion::parseQuat(const std::string& buf, LLQuaternion* value) +{ + if( buf.empty() || value == NULL) + { + return false; + } + + LLQuaternion quat; + S32 count = sscanf( buf.c_str(), "%f %f %f %f", quat.mQ + 0, quat.mQ + 1, quat.mQ + 2, quat.mQ + 3 ); + if( 4 == count ) + { + value->set( quat ); + return true; + } + + return false; +} + + +// End |