summaryrefslogtreecommitdiff
path: root/indra/llmath/llmath.h
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llmath/llmath.h')
-rw-r--r--indra/llmath/llmath.h1034
1 files changed, 509 insertions, 525 deletions
diff --git a/indra/llmath/llmath.h b/indra/llmath/llmath.h
index c3c15e1374..742bbc4751 100644
--- a/indra/llmath/llmath.h
+++ b/indra/llmath/llmath.h
@@ -1,525 +1,509 @@
-/**
- * @file llmath.h
- * @brief Useful math constants and macros.
- *
- * $LicenseInfo:firstyear=2000&license=viewergpl$
- *
- * Copyright (c) 2000-2009, Linden Research, Inc.
- *
- * Second Life Viewer Source Code
- * The source code in this file ("Source Code") is provided by Linden Lab
- * to you under the terms of the GNU General Public License, version 2.0
- * ("GPL"), unless you have obtained a separate licensing agreement
- * ("Other License"), formally executed by you and Linden Lab. Terms of
- * the GPL can be found in doc/GPL-license.txt in this distribution, or
- * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
- *
- * There are special exceptions to the terms and conditions of the GPL as
- * it is applied to this Source Code. View the full text of the exception
- * in the file doc/FLOSS-exception.txt in this software distribution, or
- * online at
- * http://secondlifegrid.net/programs/open_source/licensing/flossexception
- *
- * By copying, modifying or distributing this software, you acknowledge
- * that you have read and understood your obligations described above,
- * and agree to abide by those obligations.
- *
- * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
- * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
- * COMPLETENESS OR PERFORMANCE.
- * $/LicenseInfo$
- */
-
-#ifndef LLMATH_H
-#define LLMATH_H
-
-#include <cmath>
-#include <cstdlib>
-#include <complex>
-#include "lldefs.h"
-//#include "llstl.h" // *TODO: Remove when LLString is gone
-//#include "llstring.h" // *TODO: Remove when LLString is gone
-// lltut.h uses is_approx_equal_fraction(). This was moved to its own header
-// file in llcommon so we can use lltut.h for llcommon tests without making
-// llcommon depend on llmath.
-#include "is_approx_equal_fraction.h"
-
-// work around for Windows & older gcc non-standard function names.
-#if LL_WINDOWS
-#include <float.h>
-#define llisnan(val) _isnan(val)
-#define llfinite(val) _finite(val)
-#elif (LL_LINUX && __GNUC__ <= 2)
-#define llisnan(val) isnan(val)
-#define llfinite(val) isfinite(val)
-#elif LL_SOLARIS
-#define llisnan(val) isnan(val)
-#define llfinite(val) (val <= std::numeric_limits<double>::max())
-#else
-#define llisnan(val) std::isnan(val)
-#define llfinite(val) std::isfinite(val)
-#endif
-
-// Single Precision Floating Point Routines
-#ifndef sqrtf
-#define sqrtf(x) ((F32)sqrt((F64)(x)))
-#endif
-#ifndef fsqrtf
-#define fsqrtf(x) sqrtf(x)
-#endif
-
-#ifndef cosf
-#define cosf(x) ((F32)cos((F64)(x)))
-#endif
-#ifndef sinf
-#define sinf(x) ((F32)sin((F64)(x)))
-#endif
-#ifndef tanf
-#define tanf(x) ((F32)tan((F64)(x)))
-#endif
-#ifndef acosf
-#define acosf(x) ((F32)acos((F64)(x)))
-#endif
-
-#ifndef powf
-#define powf(x,y) ((F32)pow((F64)(x),(F64)(y)))
-#endif
-#ifndef expf
-#define expf(x) ((F32)exp((F64)(x)))
-#endif
-
-const F32 GRAVITY = -9.8f;
-
-// mathematical constants
-const F32 F_PI = 3.1415926535897932384626433832795f;
-const F32 F_TWO_PI = 6.283185307179586476925286766559f;
-const F32 F_PI_BY_TWO = 1.5707963267948966192313216916398f;
-const F32 F_SQRT_TWO_PI = 2.506628274631000502415765284811f;
-const F32 F_E = 2.71828182845904523536f;
-const F32 F_SQRT2 = 1.4142135623730950488016887242097f;
-const F32 F_SQRT3 = 1.73205080756888288657986402541f;
-const F32 OO_SQRT2 = 0.7071067811865475244008443621049f;
-const F32 DEG_TO_RAD = 0.017453292519943295769236907684886f;
-const F32 RAD_TO_DEG = 57.295779513082320876798154814105f;
-const F32 F_APPROXIMATELY_ZERO = 0.00001f;
-const F32 F_LN2 = 0.69314718056f;
-const F32 OO_LN2 = 1.4426950408889634073599246810019f;
-
-const F32 F_ALMOST_ZERO = 0.0001f;
-const F32 F_ALMOST_ONE = 1.0f - F_ALMOST_ZERO;
-
-// BUG: Eliminate in favor of F_APPROXIMATELY_ZERO above?
-const F32 FP_MAG_THRESHOLD = 0.0000001f;
-
-// TODO: Replace with logic like is_approx_equal
-inline BOOL is_approx_zero( F32 f ) { return (-F_APPROXIMATELY_ZERO < f) && (f < F_APPROXIMATELY_ZERO); }
-
-// These functions work by interpreting sign+exp+mantissa as an unsigned
-// integer.
-// For example:
-// x = <sign>1 <exponent>00000010 <mantissa>00000000000000000000000
-// y = <sign>1 <exponent>00000001 <mantissa>11111111111111111111111
-//
-// interpreted as ints =
-// x = 10000001000000000000000000000000
-// y = 10000000111111111111111111111111
-// which is clearly a different of 1 in the least significant bit
-// Values with the same exponent can be trivially shown to work.
-//
-// WARNING: Denormals of opposite sign do not work
-// x = <sign>1 <exponent>00000000 <mantissa>00000000000000000000001
-// y = <sign>0 <exponent>00000000 <mantissa>00000000000000000000001
-// Although these values differ by 2 in the LSB, the sign bit makes
-// the int comparison fail.
-//
-// WARNING: NaNs can compare equal
-// There is no special treatment of exceptional values like NaNs
-//
-// WARNING: Infinity is comparable with F32_MAX and negative
-// infinity is comparable with F32_MIN
-
-inline BOOL is_approx_equal(F32 x, F32 y)
-{
- const S32 COMPARE_MANTISSA_UP_TO_BIT = 0x02;
- return (std::abs((S32) ((U32&)x - (U32&)y) ) < COMPARE_MANTISSA_UP_TO_BIT);
-}
-
-inline BOOL is_approx_equal(F64 x, F64 y)
-{
- const S64 COMPARE_MANTISSA_UP_TO_BIT = 0x02;
- return (std::abs((S32) ((U64&)x - (U64&)y) ) < COMPARE_MANTISSA_UP_TO_BIT);
-}
-
-inline S32 llabs(const S32 a)
-{
- return S32(std::labs(a));
-}
-
-inline F32 llabs(const F32 a)
-{
- return F32(std::fabs(a));
-}
-
-inline F64 llabs(const F64 a)
-{
- return F64(std::fabs(a));
-}
-
-inline S32 lltrunc( F32 f )
-{
-#if LL_WINDOWS && !defined( __INTEL_COMPILER )
- // Avoids changing the floating point control word.
- // Add or subtract 0.5 - epsilon and then round
- const static U32 zpfp[] = { 0xBEFFFFFF, 0x3EFFFFFF };
- S32 result;
- __asm {
- fld f
- mov eax, f
- shr eax, 29
- and eax, 4
- fadd dword ptr [zpfp + eax]
- fistp result
- }
- return result;
-#else
- return (S32)f;
-#endif
-}
-
-inline S32 lltrunc( F64 f )
-{
- return (S32)f;
-}
-
-inline S32 llfloor( F32 f )
-{
-#if LL_WINDOWS && !defined( __INTEL_COMPILER )
- // Avoids changing the floating point control word.
- // Accurate (unlike Stereopsis version) for all values between S32_MIN and S32_MAX and slightly faster than Stereopsis version.
- // Add -(0.5 - epsilon) and then round
- const U32 zpfp = 0xBEFFFFFF;
- S32 result;
- __asm {
- fld f
- fadd dword ptr [zpfp]
- fistp result
- }
- return result;
-#else
- return (S32)floorf(f);
-#endif
-}
-
-
-inline S32 llceil( F32 f )
-{
- // This could probably be optimized, but this works.
- return (S32)ceil(f);
-}
-
-
-#ifndef BOGUS_ROUND
-// Use this round. Does an arithmetic round (0.5 always rounds up)
-inline S32 llround(const F32 val)
-{
- return llfloor(val + 0.5f);
-}
-
-#else // BOGUS_ROUND
-// Old llround implementation - does banker's round (toward nearest even in the case of a 0.5.
-// Not using this because we don't have a consistent implementation on both platforms, use
-// llfloor(val + 0.5f), which is consistent on all platforms.
-inline S32 llround(const F32 val)
-{
- #if LL_WINDOWS
- // Note: assumes that the floating point control word is set to rounding mode (the default)
- S32 ret_val;
- _asm fld val
- _asm fistp ret_val;
- return ret_val;
- #elif LL_LINUX
- // Note: assumes that the floating point control word is set
- // to rounding mode (the default)
- S32 ret_val;
- __asm__ __volatile__( "flds %1 \n\t"
- "fistpl %0 \n\t"
- : "=m" (ret_val)
- : "m" (val) );
- return ret_val;
- #else
- return llfloor(val + 0.5f);
- #endif
-}
-
-// A fast arithmentic round on intel, from Laurent de Soras http://ldesoras.free.fr
-inline int round_int(double x)
-{
- const float round_to_nearest = 0.5f;
- int i;
- __asm
- {
- fld x
- fadd st, st (0)
- fadd round_to_nearest
- fistp i
- sar i, 1
- }
- return (i);
-}
-#endif // BOGUS_ROUND
-
-inline F32 llround( F32 val, F32 nearest )
-{
- return F32(floor(val * (1.0f / nearest) + 0.5f)) * nearest;
-}
-
-inline F64 llround( F64 val, F64 nearest )
-{
- return F64(floor(val * (1.0 / nearest) + 0.5)) * nearest;
-}
-
-// these provide minimum peak error
-//
-// avg error = -0.013049
-// peak error = -31.4 dB
-// RMS error = -28.1 dB
-
-const F32 FAST_MAG_ALPHA = 0.960433870103f;
-const F32 FAST_MAG_BETA = 0.397824734759f;
-
-// these provide minimum RMS error
-//
-// avg error = 0.000003
-// peak error = -32.6 dB
-// RMS error = -25.7 dB
-//
-//const F32 FAST_MAG_ALPHA = 0.948059448969f;
-//const F32 FAST_MAG_BETA = 0.392699081699f;
-
-inline F32 fastMagnitude(F32 a, F32 b)
-{
- a = (a > 0) ? a : -a;
- b = (b > 0) ? b : -b;
- return(FAST_MAG_ALPHA * llmax(a,b) + FAST_MAG_BETA * llmin(a,b));
-}
-
-
-
-////////////////////
-//
-// Fast F32/S32 conversions
-//
-// Culled from www.stereopsis.com/FPU.html
-
-const F64 LL_DOUBLE_TO_FIX_MAGIC = 68719476736.0*1.5; //2^36 * 1.5, (52-_shiftamt=36) uses limited precisicion to floor
-const S32 LL_SHIFT_AMOUNT = 16; //16.16 fixed point representation,
-
-// Endian dependent code
-#ifdef LL_LITTLE_ENDIAN
- #define LL_EXP_INDEX 1
- #define LL_MAN_INDEX 0
-#else
- #define LL_EXP_INDEX 0
- #define LL_MAN_INDEX 1
-#endif
-
-/* Deprecated: use llround(), lltrunc(), or llfloor() instead
-// ================================================================================================
-// Real2Int
-// ================================================================================================
-inline S32 F64toS32(F64 val)
-{
- val = val + LL_DOUBLE_TO_FIX_MAGIC;
- return ((S32*)&val)[LL_MAN_INDEX] >> LL_SHIFT_AMOUNT;
-}
-
-// ================================================================================================
-// Real2Int
-// ================================================================================================
-inline S32 F32toS32(F32 val)
-{
- return F64toS32 ((F64)val);
-}
-*/
-
-////////////////////////////////////////////////
-//
-// Fast exp and log
-//
-
-// Implementation of fast exp() approximation (from a paper by Nicol N. Schraudolph
-// http://www.inf.ethz.ch/~schraudo/pubs/exp.pdf
-static union
-{
- double d;
- struct
- {
-#ifdef LL_LITTLE_ENDIAN
- S32 j, i;
-#else
- S32 i, j;
-#endif
- } n;
-} LLECO; // not sure what the name means
-
-#define LL_EXP_A (1048576 * OO_LN2) // use 1512775 for integer
-#define LL_EXP_C (60801) // this value of C good for -4 < y < 4
-
-#define LL_FAST_EXP(y) (LLECO.n.i = llround(F32(LL_EXP_A*(y))) + (1072693248 - LL_EXP_C), LLECO.d)
-
-
-
-inline F32 llfastpow(const F32 x, const F32 y)
-{
- return (F32)(LL_FAST_EXP(y * log(x)));
-}
-
-
-inline F32 snap_to_sig_figs(F32 foo, S32 sig_figs)
-{
- // compute the power of ten
- F32 bar = 1.f;
- for (S32 i = 0; i < sig_figs; i++)
- {
- bar *= 10.f;
- }
-
- foo = (F32)llround(foo * bar);
-
- // shift back
- foo /= bar;
- return foo;
-}
-
-inline F32 lerp(F32 a, F32 b, F32 u)
-{
- return a + ((b - a) * u);
-}
-
-inline F32 lerp2d(F32 x00, F32 x01, F32 x10, F32 x11, F32 u, F32 v)
-{
- F32 a = x00 + (x01-x00)*u;
- F32 b = x10 + (x11-x10)*u;
- F32 r = a + (b-a)*v;
- return r;
-}
-
-inline F32 ramp(F32 x, F32 a, F32 b)
-{
- return (a == b) ? 0.0f : ((a - x) / (a - b));
-}
-
-inline F32 rescale(F32 x, F32 x1, F32 x2, F32 y1, F32 y2)
-{
- return lerp(y1, y2, ramp(x, x1, x2));
-}
-
-inline F32 clamp_rescale(F32 x, F32 x1, F32 x2, F32 y1, F32 y2)
-{
- if (y1 < y2)
- {
- return llclamp(rescale(x,x1,x2,y1,y2),y1,y2);
- }
- else
- {
- return llclamp(rescale(x,x1,x2,y1,y2),y2,y1);
- }
-}
-
-
-inline F32 cubic_step( F32 x, F32 x0, F32 x1, F32 s0, F32 s1 )
-{
- if (x <= x0)
- return s0;
-
- if (x >= x1)
- return s1;
-
- F32 f = (x - x0) / (x1 - x0);
-
- return s0 + (s1 - s0) * (f * f) * (3.0f - 2.0f * f);
-}
-
-inline F32 cubic_step( F32 x )
-{
- x = llclampf(x);
-
- return (x * x) * (3.0f - 2.0f * x);
-}
-
-inline F32 quadratic_step( F32 x, F32 x0, F32 x1, F32 s0, F32 s1 )
-{
- if (x <= x0)
- return s0;
-
- if (x >= x1)
- return s1;
-
- F32 f = (x - x0) / (x1 - x0);
- F32 f_squared = f * f;
-
- return (s0 * (1.f - f_squared)) + ((s1 - s0) * f_squared);
-}
-
-inline F32 llsimple_angle(F32 angle)
-{
- while(angle <= -F_PI)
- angle += F_TWO_PI;
- while(angle > F_PI)
- angle -= F_TWO_PI;
- return angle;
-}
-
-//SDK - Renamed this to get_lower_power_two, since this is what this actually does.
-inline U32 get_lower_power_two(U32 val, U32 max_power_two)
-{
- if(!max_power_two)
- {
- max_power_two = 1 << 31 ;
- }
- if(max_power_two & (max_power_two - 1))
- {
- return 0 ;
- }
-
- for(; val < max_power_two ; max_power_two >>= 1) ;
-
- return max_power_two ;
-}
-
-// calculate next highest power of two, limited by max_power_two
-// This is taken from a brilliant little code snipped on http://acius2.blogspot.com/2007/11/calculating-next-power-of-2.html
-// Basically we convert the binary to a solid string of 1's with the same
-// number of digits, then add one. We subtract 1 initially to handle
-// the case where the number passed in is actually a power of two.
-// WARNING: this only works with 32 bit ints.
-inline U32 get_next_power_two(U32 val, U32 max_power_two)
-{
- if(!max_power_two)
- {
- max_power_two = 1 << 31 ;
- }
-
- if(val >= max_power_two)
- {
- return max_power_two;
- }
-
- val--;
- val = (val >> 1) | val;
- val = (val >> 2) | val;
- val = (val >> 4) | val;
- val = (val >> 8) | val;
- val = (val >> 16) | val;
- val++;
-
- return val;
-}
-
-//get the gaussian value given the linear distance from axis x and guassian value o
-inline F32 llgaussian(F32 x, F32 o)
-{
- return 1.f/(F_SQRT_TWO_PI*o)*powf(F_E, -(x*x)/(2*o*o));
-}
-
-#endif
+/**
+ * @file llmath.h
+ * @brief Useful math constants and macros.
+ *
+ * $LicenseInfo:firstyear=2000&license=viewergpl$
+ *
+ * Copyright (c) 2000-2009, Linden Research, Inc.
+ *
+ * Second Life Viewer Source Code
+ * The source code in this file ("Source Code") is provided by Linden Lab
+ * to you under the terms of the GNU General Public License, version 2.0
+ * ("GPL"), unless you have obtained a separate licensing agreement
+ * ("Other License"), formally executed by you and Linden Lab. Terms of
+ * the GPL can be found in doc/GPL-license.txt in this distribution, or
+ * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
+ *
+ * There are special exceptions to the terms and conditions of the GPL as
+ * it is applied to this Source Code. View the full text of the exception
+ * in the file doc/FLOSS-exception.txt in this software distribution, or
+ * online at
+ * http://secondlifegrid.net/programs/open_source/licensing/flossexception
+ *
+ * By copying, modifying or distributing this software, you acknowledge
+ * that you have read and understood your obligations described above,
+ * and agree to abide by those obligations.
+ *
+ * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
+ * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
+ * COMPLETENESS OR PERFORMANCE.
+ * $/LicenseInfo$
+ */
+
+#ifndef LLMATH_H
+#define LLMATH_H
+
+#include <cmath>
+#include <cstdlib>
+#include "lldefs.h"
+//#include "llstl.h" // *TODO: Remove when LLString is gone
+//#include "llstring.h" // *TODO: Remove when LLString is gone
+// lltut.h uses is_approx_equal_fraction(). This was moved to its own header
+// file in llcommon so we can use lltut.h for llcommon tests without making
+// llcommon depend on llmath.
+#include "is_approx_equal_fraction.h"
+
+// work around for Windows & older gcc non-standard function names.
+#if LL_WINDOWS
+#include <float.h>
+#define llisnan(val) _isnan(val)
+#define llfinite(val) _finite(val)
+#elif (LL_LINUX && __GNUC__ <= 2)
+#define llisnan(val) isnan(val)
+#define llfinite(val) isfinite(val)
+#elif LL_SOLARIS
+#define llisnan(val) isnan(val)
+#define llfinite(val) (val <= std::numeric_limits<double>::max())
+#else
+#define llisnan(val) std::isnan(val)
+#define llfinite(val) std::isfinite(val)
+#endif
+
+// Single Precision Floating Point Routines
+// (There used to be more defined here, but they appeared to be redundant and
+// were breaking some other includes. Removed by Falcon, reviewed by Andrew, 11/25/09)
+/*#ifndef tanf
+#define tanf(x) ((F32)tan((F64)(x)))
+#endif*/
+
+const F32 GRAVITY = -9.8f;
+
+// mathematical constants
+const F32 F_PI = 3.1415926535897932384626433832795f;
+const F32 F_TWO_PI = 6.283185307179586476925286766559f;
+const F32 F_PI_BY_TWO = 1.5707963267948966192313216916398f;
+const F32 F_SQRT_TWO_PI = 2.506628274631000502415765284811f;
+const F32 F_E = 2.71828182845904523536f;
+const F32 F_SQRT2 = 1.4142135623730950488016887242097f;
+const F32 F_SQRT3 = 1.73205080756888288657986402541f;
+const F32 OO_SQRT2 = 0.7071067811865475244008443621049f;
+const F32 DEG_TO_RAD = 0.017453292519943295769236907684886f;
+const F32 RAD_TO_DEG = 57.295779513082320876798154814105f;
+const F32 F_APPROXIMATELY_ZERO = 0.00001f;
+const F32 F_LN2 = 0.69314718056f;
+const F32 OO_LN2 = 1.4426950408889634073599246810019f;
+
+const F32 F_ALMOST_ZERO = 0.0001f;
+const F32 F_ALMOST_ONE = 1.0f - F_ALMOST_ZERO;
+
+// BUG: Eliminate in favor of F_APPROXIMATELY_ZERO above?
+const F32 FP_MAG_THRESHOLD = 0.0000001f;
+
+// TODO: Replace with logic like is_approx_equal
+inline BOOL is_approx_zero( F32 f ) { return (-F_APPROXIMATELY_ZERO < f) && (f < F_APPROXIMATELY_ZERO); }
+
+// These functions work by interpreting sign+exp+mantissa as an unsigned
+// integer.
+// For example:
+// x = <sign>1 <exponent>00000010 <mantissa>00000000000000000000000
+// y = <sign>1 <exponent>00000001 <mantissa>11111111111111111111111
+//
+// interpreted as ints =
+// x = 10000001000000000000000000000000
+// y = 10000000111111111111111111111111
+// which is clearly a different of 1 in the least significant bit
+// Values with the same exponent can be trivially shown to work.
+//
+// WARNING: Denormals of opposite sign do not work
+// x = <sign>1 <exponent>00000000 <mantissa>00000000000000000000001
+// y = <sign>0 <exponent>00000000 <mantissa>00000000000000000000001
+// Although these values differ by 2 in the LSB, the sign bit makes
+// the int comparison fail.
+//
+// WARNING: NaNs can compare equal
+// There is no special treatment of exceptional values like NaNs
+//
+// WARNING: Infinity is comparable with F32_MAX and negative
+// infinity is comparable with F32_MIN
+
+inline BOOL is_approx_equal(F32 x, F32 y)
+{
+ const S32 COMPARE_MANTISSA_UP_TO_BIT = 0x02;
+ return (std::abs((S32) ((U32&)x - (U32&)y) ) < COMPARE_MANTISSA_UP_TO_BIT);
+}
+
+inline BOOL is_approx_equal(F64 x, F64 y)
+{
+ const S64 COMPARE_MANTISSA_UP_TO_BIT = 0x02;
+ return (std::abs((S32) ((U64&)x - (U64&)y) ) < COMPARE_MANTISSA_UP_TO_BIT);
+}
+
+inline S32 llabs(const S32 a)
+{
+ return S32(std::labs(a));
+}
+
+inline F32 llabs(const F32 a)
+{
+ return F32(std::fabs(a));
+}
+
+inline F64 llabs(const F64 a)
+{
+ return F64(std::fabs(a));
+}
+
+inline S32 lltrunc( F32 f )
+{
+#if LL_WINDOWS && !defined( __INTEL_COMPILER )
+ // Avoids changing the floating point control word.
+ // Add or subtract 0.5 - epsilon and then round
+ const static U32 zpfp[] = { 0xBEFFFFFF, 0x3EFFFFFF };
+ S32 result;
+ __asm {
+ fld f
+ mov eax, f
+ shr eax, 29
+ and eax, 4
+ fadd dword ptr [zpfp + eax]
+ fistp result
+ }
+ return result;
+#else
+ return (S32)f;
+#endif
+}
+
+inline S32 lltrunc( F64 f )
+{
+ return (S32)f;
+}
+
+inline S32 llfloor( F32 f )
+{
+#if LL_WINDOWS && !defined( __INTEL_COMPILER )
+ // Avoids changing the floating point control word.
+ // Accurate (unlike Stereopsis version) for all values between S32_MIN and S32_MAX and slightly faster than Stereopsis version.
+ // Add -(0.5 - epsilon) and then round
+ const U32 zpfp = 0xBEFFFFFF;
+ S32 result;
+ __asm {
+ fld f
+ fadd dword ptr [zpfp]
+ fistp result
+ }
+ return result;
+#else
+ return (S32)floor(f);
+#endif
+}
+
+
+inline S32 llceil( F32 f )
+{
+ // This could probably be optimized, but this works.
+ return (S32)ceil(f);
+}
+
+
+#ifndef BOGUS_ROUND
+// Use this round. Does an arithmetic round (0.5 always rounds up)
+inline S32 llround(const F32 val)
+{
+ return llfloor(val + 0.5f);
+}
+
+#else // BOGUS_ROUND
+// Old llround implementation - does banker's round (toward nearest even in the case of a 0.5.
+// Not using this because we don't have a consistent implementation on both platforms, use
+// llfloor(val + 0.5f), which is consistent on all platforms.
+inline S32 llround(const F32 val)
+{
+ #if LL_WINDOWS
+ // Note: assumes that the floating point control word is set to rounding mode (the default)
+ S32 ret_val;
+ _asm fld val
+ _asm fistp ret_val;
+ return ret_val;
+ #elif LL_LINUX
+ // Note: assumes that the floating point control word is set
+ // to rounding mode (the default)
+ S32 ret_val;
+ __asm__ __volatile__( "flds %1 \n\t"
+ "fistpl %0 \n\t"
+ : "=m" (ret_val)
+ : "m" (val) );
+ return ret_val;
+ #else
+ return llfloor(val + 0.5f);
+ #endif
+}
+
+// A fast arithmentic round on intel, from Laurent de Soras http://ldesoras.free.fr
+inline int round_int(double x)
+{
+ const float round_to_nearest = 0.5f;
+ int i;
+ __asm
+ {
+ fld x
+ fadd st, st (0)
+ fadd round_to_nearest
+ fistp i
+ sar i, 1
+ }
+ return (i);
+}
+#endif // BOGUS_ROUND
+
+inline F32 llround( F32 val, F32 nearest )
+{
+ return F32(floor(val * (1.0f / nearest) + 0.5f)) * nearest;
+}
+
+inline F64 llround( F64 val, F64 nearest )
+{
+ return F64(floor(val * (1.0 / nearest) + 0.5)) * nearest;
+}
+
+// these provide minimum peak error
+//
+// avg error = -0.013049
+// peak error = -31.4 dB
+// RMS error = -28.1 dB
+
+const F32 FAST_MAG_ALPHA = 0.960433870103f;
+const F32 FAST_MAG_BETA = 0.397824734759f;
+
+// these provide minimum RMS error
+//
+// avg error = 0.000003
+// peak error = -32.6 dB
+// RMS error = -25.7 dB
+//
+//const F32 FAST_MAG_ALPHA = 0.948059448969f;
+//const F32 FAST_MAG_BETA = 0.392699081699f;
+
+inline F32 fastMagnitude(F32 a, F32 b)
+{
+ a = (a > 0) ? a : -a;
+ b = (b > 0) ? b : -b;
+ return(FAST_MAG_ALPHA * llmax(a,b) + FAST_MAG_BETA * llmin(a,b));
+}
+
+
+
+////////////////////
+//
+// Fast F32/S32 conversions
+//
+// Culled from www.stereopsis.com/FPU.html
+
+const F64 LL_DOUBLE_TO_FIX_MAGIC = 68719476736.0*1.5; //2^36 * 1.5, (52-_shiftamt=36) uses limited precisicion to floor
+const S32 LL_SHIFT_AMOUNT = 16; //16.16 fixed point representation,
+
+// Endian dependent code
+#ifdef LL_LITTLE_ENDIAN
+ #define LL_EXP_INDEX 1
+ #define LL_MAN_INDEX 0
+#else
+ #define LL_EXP_INDEX 0
+ #define LL_MAN_INDEX 1
+#endif
+
+/* Deprecated: use llround(), lltrunc(), or llfloor() instead
+// ================================================================================================
+// Real2Int
+// ================================================================================================
+inline S32 F64toS32(F64 val)
+{
+ val = val + LL_DOUBLE_TO_FIX_MAGIC;
+ return ((S32*)&val)[LL_MAN_INDEX] >> LL_SHIFT_AMOUNT;
+}
+
+// ================================================================================================
+// Real2Int
+// ================================================================================================
+inline S32 F32toS32(F32 val)
+{
+ return F64toS32 ((F64)val);
+}
+*/
+
+////////////////////////////////////////////////
+//
+// Fast exp and log
+//
+
+// Implementation of fast exp() approximation (from a paper by Nicol N. Schraudolph
+// http://www.inf.ethz.ch/~schraudo/pubs/exp.pdf
+static union
+{
+ double d;
+ struct
+ {
+#ifdef LL_LITTLE_ENDIAN
+ S32 j, i;
+#else
+ S32 i, j;
+#endif
+ } n;
+} LLECO; // not sure what the name means
+
+#define LL_EXP_A (1048576 * OO_LN2) // use 1512775 for integer
+#define LL_EXP_C (60801) // this value of C good for -4 < y < 4
+
+#define LL_FAST_EXP(y) (LLECO.n.i = llround(F32(LL_EXP_A*(y))) + (1072693248 - LL_EXP_C), LLECO.d)
+
+
+
+inline F32 llfastpow(const F32 x, const F32 y)
+{
+ return (F32)(LL_FAST_EXP(y * log(x)));
+}
+
+
+inline F32 snap_to_sig_figs(F32 foo, S32 sig_figs)
+{
+ // compute the power of ten
+ F32 bar = 1.f;
+ for (S32 i = 0; i < sig_figs; i++)
+ {
+ bar *= 10.f;
+ }
+
+ //F32 new_foo = (F32)llround(foo * bar);
+ // the llround() implementation sucks. Don't us it.
+
+ F32 sign = (foo > 0.f) ? 1.f : -1.f;
+ F32 new_foo = F32( S64(foo * bar + sign * 0.5f));
+ new_foo /= bar;
+
+ return new_foo;
+}
+
+inline F32 lerp(F32 a, F32 b, F32 u)
+{
+ return a + ((b - a) * u);
+}
+
+inline F32 lerp2d(F32 x00, F32 x01, F32 x10, F32 x11, F32 u, F32 v)
+{
+ F32 a = x00 + (x01-x00)*u;
+ F32 b = x10 + (x11-x10)*u;
+ F32 r = a + (b-a)*v;
+ return r;
+}
+
+inline F32 ramp(F32 x, F32 a, F32 b)
+{
+ return (a == b) ? 0.0f : ((a - x) / (a - b));
+}
+
+inline F32 rescale(F32 x, F32 x1, F32 x2, F32 y1, F32 y2)
+{
+ return lerp(y1, y2, ramp(x, x1, x2));
+}
+
+inline F32 clamp_rescale(F32 x, F32 x1, F32 x2, F32 y1, F32 y2)
+{
+ if (y1 < y2)
+ {
+ return llclamp(rescale(x,x1,x2,y1,y2),y1,y2);
+ }
+ else
+ {
+ return llclamp(rescale(x,x1,x2,y1,y2),y2,y1);
+ }
+}
+
+
+inline F32 cubic_step( F32 x, F32 x0, F32 x1, F32 s0, F32 s1 )
+{
+ if (x <= x0)
+ return s0;
+
+ if (x >= x1)
+ return s1;
+
+ F32 f = (x - x0) / (x1 - x0);
+
+ return s0 + (s1 - s0) * (f * f) * (3.0f - 2.0f * f);
+}
+
+inline F32 cubic_step( F32 x )
+{
+ x = llclampf(x);
+
+ return (x * x) * (3.0f - 2.0f * x);
+}
+
+inline F32 quadratic_step( F32 x, F32 x0, F32 x1, F32 s0, F32 s1 )
+{
+ if (x <= x0)
+ return s0;
+
+ if (x >= x1)
+ return s1;
+
+ F32 f = (x - x0) / (x1 - x0);
+ F32 f_squared = f * f;
+
+ return (s0 * (1.f - f_squared)) + ((s1 - s0) * f_squared);
+}
+
+inline F32 llsimple_angle(F32 angle)
+{
+ while(angle <= -F_PI)
+ angle += F_TWO_PI;
+ while(angle > F_PI)
+ angle -= F_TWO_PI;
+ return angle;
+}
+
+//SDK - Renamed this to get_lower_power_two, since this is what this actually does.
+inline U32 get_lower_power_two(U32 val, U32 max_power_two)
+{
+ if(!max_power_two)
+ {
+ max_power_two = 1 << 31 ;
+ }
+ if(max_power_two & (max_power_two - 1))
+ {
+ return 0 ;
+ }
+
+ for(; val < max_power_two ; max_power_two >>= 1) ;
+
+ return max_power_two ;
+}
+
+// calculate next highest power of two, limited by max_power_two
+// This is taken from a brilliant little code snipped on http://acius2.blogspot.com/2007/11/calculating-next-power-of-2.html
+// Basically we convert the binary to a solid string of 1's with the same
+// number of digits, then add one. We subtract 1 initially to handle
+// the case where the number passed in is actually a power of two.
+// WARNING: this only works with 32 bit ints.
+inline U32 get_next_power_two(U32 val, U32 max_power_two)
+{
+ if(!max_power_two)
+ {
+ max_power_two = 1 << 31 ;
+ }
+
+ if(val >= max_power_two)
+ {
+ return max_power_two;
+ }
+
+ val--;
+ val = (val >> 1) | val;
+ val = (val >> 2) | val;
+ val = (val >> 4) | val;
+ val = (val >> 8) | val;
+ val = (val >> 16) | val;
+ val++;
+
+ return val;
+}
+
+//get the gaussian value given the linear distance from axis x and guassian value o
+inline F32 llgaussian(F32 x, F32 o)
+{
+ return 1.f/(F_SQRT_TWO_PI*o)*powf(F_E, -(x*x)/(2*o*o));
+}
+
+// Include simd math header
+#include "llsimdmath.h"
+
+#endif