summaryrefslogtreecommitdiff
path: root/indra/llmath/llline.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llmath/llline.cpp')
-rw-r--r--indra/llmath/llline.cpp176
1 files changed, 176 insertions, 0 deletions
diff --git a/indra/llmath/llline.cpp b/indra/llmath/llline.cpp
new file mode 100644
index 0000000000..b62631072b
--- /dev/null
+++ b/indra/llmath/llline.cpp
@@ -0,0 +1,176 @@
+/**
+ * @file llline.cpp
+ * @author Andrew Meadows
+ * @brief Simple line class that can compute nearest approach between two lines
+ *
+ * Copyright (c) 2001-$CurrentYear$, Linden Research, Inc.
+ * $License$
+ */
+
+#include "llline.h"
+#include "llrand.h"
+
+const F32 SOME_SMALL_NUMBER = 1.0e-5f;
+const F32 SOME_VERY_SMALL_NUMBER = 1.0e-8f;
+
+LLLine::LLLine()
+: mPoint(0.f, 0.f, 0.f),
+ mDirection(1.f, 0.f, 0.f)
+{ }
+
+LLLine::LLLine( const LLVector3& first_point, const LLVector3& second_point )
+{
+ setPoints(first_point, second_point);
+}
+
+void LLLine::setPoints( const LLVector3& first_point, const LLVector3& second_point )
+{
+ mPoint = first_point;
+ mDirection = second_point - first_point;
+ mDirection.normalize();
+}
+
+void LLLine::setPointDirection( const LLVector3& first_point, const LLVector3& second_point )
+{
+ setPoints(first_point, first_point + second_point);
+}
+
+bool LLLine::intersects( const LLVector3& point, F32 radius ) const
+{
+ LLVector3 other_direction = point - mPoint;
+ LLVector3 nearest_point = mPoint + mDirection * (other_direction * mDirection);
+ F32 nearest_approach = (nearest_point - point).length();
+ return (nearest_approach <= radius);
+}
+
+// returns the point on this line that is closest to some_point
+LLVector3 LLLine::nearestApproach( const LLVector3& some_point ) const
+{
+ return (mPoint + mDirection * ((some_point - mPoint) * mDirection));
+}
+
+// the accuracy of this method sucks when you give it two nearly
+// parallel lines, so you should probably check for parallelism
+// before you call this
+//
+// returns the point on this line that is closest to other_line
+LLVector3 LLLine::nearestApproach( const LLLine& other_line ) const
+{
+ LLVector3 between_points = other_line.mPoint - mPoint;
+ F32 dir_dot_dir = mDirection * other_line.mDirection;
+ F32 one_minus_dir_dot_dir = 1.0f - fabs(dir_dot_dir);
+ if ( one_minus_dir_dot_dir < SOME_VERY_SMALL_NUMBER )
+ {
+#ifdef LL_DEBUG
+ llwarns << "LLLine::nearestApproach() was given two very "
+ << "nearly parallel lines dir1 = " << mDirection
+ << " dir2 = " << other_line.mDirection << " with 1-dot_product = "
+ << one_minus_dir_dot_dir << llendl;
+#endif
+ // the lines are approximately parallel
+ // We shouldn't fall in here because this check should have been made
+ // BEFORE this function was called. We dare not continue with the
+ // computations for fear of division by zero, but we have to return
+ // something so we return a bogus point -- caller beware.
+ return 0.5f * (mPoint + other_line.mPoint);
+ }
+
+ F32 odir_dot_bp = other_line.mDirection * between_points;
+
+ F32 numerator = 0;
+ F32 denominator = 0;
+ for (S32 i=0; i<3; i++)
+ {
+ F32 factor = dir_dot_dir * other_line.mDirection.mV[i] - mDirection.mV[i];
+ numerator += ( between_points.mV[i] - odir_dot_bp * other_line.mDirection.mV[i] ) * factor;
+ denominator -= factor * factor;
+ }
+
+ F32 length_to_nearest_approach = numerator / denominator;
+
+ return mPoint + length_to_nearest_approach * mDirection;
+}
+
+std::ostream& operator<<( std::ostream& output_stream, const LLLine& line )
+{
+ output_stream << "{point=" << line.mPoint << "," << "dir=" << line.mDirection << "}";
+ return output_stream;
+}
+
+
+F32 ALMOST_PARALLEL = 0.99f;
+F32 TOO_SMALL_FOR_DIVISION = 0.0001f;
+
+// returns 'true' if this line intersects the plane
+// on success stores the intersection point in 'result'
+bool LLLine::intersectsPlane( LLVector3& result, const LLLine& plane ) const
+{
+ // p = P + l * d equation for a line
+ //
+ // N * p = D equation for a point
+ //
+ // N * (P + l * d) = D
+ // N*P + l * (N*d) = D
+ // l * (N*d) = D - N*P
+ // l = ( D - N*P ) / ( N*d )
+ //
+
+ F32 dot = plane.mDirection * mDirection;
+ if (fabs(dot) < TOO_SMALL_FOR_DIVISION)
+ {
+ return false;
+ }
+
+ F32 plane_dot = plane.mDirection * plane.mPoint;
+ F32 length = ( plane_dot - (plane.mDirection * mPoint) ) / dot;
+ result = mPoint + length * mDirection;
+ return true;
+}
+
+//static
+// returns 'true' if planes intersect, and stores the result
+// the second and third arguments are treated as planes
+// where mPoint is on the plane and mDirection is the normal
+// result.mPoint will be the intersection line's closest approach
+// to first_plane.mPoint
+bool LLLine::getIntersectionBetweenTwoPlanes( LLLine& result, const LLLine& first_plane, const LLLine& second_plane )
+{
+ // TODO -- if we ever get some generic matrix solving code in our libs
+ // then we should just use that, since this problem is really just
+ // linear algebra.
+
+ F32 dot = fabs(first_plane.mDirection * second_plane.mDirection);
+ if (dot > ALMOST_PARALLEL)
+ {
+ // the planes are nearly parallel
+ return false;
+ }
+
+ LLVector3 direction = first_plane.mDirection % second_plane.mDirection;
+ direction.normalize();
+
+ LLVector3 first_intersection;
+ {
+ LLLine intersection_line(first_plane);
+ intersection_line.mDirection = direction % first_plane.mDirection;
+ intersection_line.mDirection.normalize();
+ intersection_line.intersectsPlane(first_intersection, second_plane);
+ }
+
+ /*
+ LLVector3 second_intersection;
+ {
+ LLLine intersection_line(second_plane);
+ intersection_line.mDirection = direction % second_plane.mDirection;
+ intersection_line.mDirection.normalize();
+ intersection_line.intersectsPlane(second_intersection, first_plane);
+ }
+ */
+
+ result.mPoint = first_intersection;
+ result.mDirection = direction;
+
+ return true;
+}
+
+