summaryrefslogtreecommitdiff
path: root/indra/llkdu
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llkdu')
-rw-r--r--indra/llkdu/llimagej2ckdu.cpp328
-rw-r--r--indra/llkdu/llimagej2ckdu.h1
-rw-r--r--indra/llkdu/tests/llimagej2ckdu_test.cpp23
3 files changed, 283 insertions, 69 deletions
diff --git a/indra/llkdu/llimagej2ckdu.cpp b/indra/llkdu/llimagej2ckdu.cpp
index c156ed0cef..cf88de12b4 100644
--- a/indra/llkdu/llimagej2ckdu.cpp
+++ b/indra/llkdu/llimagej2ckdu.cpp
@@ -32,6 +32,7 @@
#include "llmath.h"
#include "llkdumem.h"
+#include "kdu_block_coding.h"
class kdc_flow_control {
@@ -244,7 +245,9 @@ void LLImageJ2CKDU::setupCodeStream(LLImageJ2C &base, BOOL keep_codestream, ECod
mCodeStreamp->create(mInputp);
// Set the maximum number of bytes to use from the codestream
- mCodeStreamp->set_max_bytes(max_bytes);
+ // *TODO: This seems to be wrong. The base class should have no idea of how j2c compression works so no
+ // good way of computing what's the byte range to be used.
+ mCodeStreamp->set_max_bytes(max_bytes,true);
// If you want to flip or rotate the image for some reason, change
// the resolution, or identify a restricted region of interest, this is
@@ -291,8 +294,13 @@ void LLImageJ2CKDU::setupCodeStream(LLImageJ2C &base, BOOL keep_codestream, ECod
}
}
+ // Get the number of resolution levels in that image
+ mLevels = mCodeStreamp->get_min_dwt_levels();
+
+ // Set the base dimensions
base.setSize(dims.size.x, dims.size.y, components);
-
+ base.setLevels(mLevels);
+
if (!keep_codestream)
{
mCodeStreamp->destroy();
@@ -351,7 +359,8 @@ BOOL LLImageJ2CKDU::initEncode(LLImageJ2C &base, LLImageRaw &raw_image, int bloc
mLevels = levels;
if (mLevels != 0)
{
- mLevels = llclamp(mLevels,MIN_DECOMPOSITION_LEVELS,MIN_DECOMPOSITION_LEVELS);
+ mLevels = llclamp(mLevels,MIN_DECOMPOSITION_LEVELS,MAX_DECOMPOSITION_LEVELS);
+ base.setLevels(mLevels);
}
return TRUE;
}
@@ -364,6 +373,9 @@ BOOL LLImageJ2CKDU::initDecode(LLImageJ2C &base, LLImageRaw &raw_image, F32 deco
// To regain control, we throw an exception, and catch it here.
try
{
+ // Merov : Test!! DO NOT COMMIT!!
+ //findDiscardLevelsBoundaries(base);
+
base.updateRawDiscardLevel();
setupCodeStream(base, TRUE, mode);
@@ -381,7 +393,7 @@ BOOL LLImageJ2CKDU::initDecode(LLImageJ2C &base, LLImageRaw &raw_image, F32 deco
region_kdu->size.y = region[3] - region[1];
}
int discard = (discard_level != -1 ? discard_level : base.getRawDiscardLevel());
-
+ //llinfos << "Merov debug : initDecode, discard used = " << discard << ", asked = " << discard_level << llendl;
// Apply loading restrictions
mCodeStreamp->apply_input_restrictions( first_channel, max_channel_count, discard, 0, region_kdu);
@@ -394,12 +406,9 @@ BOOL LLImageJ2CKDU::initDecode(LLImageJ2C &base, LLImageRaw &raw_image, F32 deco
// Resize raw_image according to the image to be decoded
kdu_dims dims; mCodeStreamp->get_dims(0,dims);
- // *TODO: Use the real number of levels read from the file throughout the code instead of relying on an infered value from dimensions
- //S32 levels = mCodeStreamp->get_min_dwt_levels();
S32 channels = base.getComponents() - first_channel;
channels = llmin(channels,max_channel_count);
raw_image.resize(dims.size.x, dims.size.y, channels);
- //llinfos << "j2c image dimension: width = " << dims.size.x << ", height = " << dims.size.y << ", channels = " << channels << ", levels = " << levels << llendl;
if (!mTileIndicesp)
{
@@ -583,12 +592,6 @@ BOOL LLImageJ2CKDU::encodeImpl(LLImageJ2C &base, const LLImageRaw &raw_image, co
comment.put_text(comment_text);
}
- // Set codestream options
- int num_layer_specs = 0;
-
- kdu_long layer_bytes[64];
- U32 max_bytes = 0;
-
if (num_components >= 3)
{
// Note that we always use YCC and not YUV
@@ -596,66 +599,51 @@ BOOL LLImageJ2CKDU::encodeImpl(LLImageJ2C &base, const LLImageRaw &raw_image, co
set_default_colour_weights(codestream.access_siz());
}
- if (reversible)
+ // Set codestream options
+ int nb_layers = 0;
+ kdu_long layer_bytes[MAX_NB_LAYERS];
+ U32 max_bytes = (U32)(base.getWidth() * base.getHeight() * base.getComponents());
+
+ // Rate is the argument passed into the LLImageJ2C which specifies the target compression rate. The default is 8:1.
+ // *TODO: mRate is actually always 8:1 in the viewer. Test different values.
+ llassert (base.mRate > 0.f);
+ max_bytes = (U32)((F32)(max_bytes) * base.mRate);
+
+ // This code is where we specify the target number of bytes for each quality layer.
+ // We're using a logarithmic spacing rule that fits with our way of fetching texture data.
+ // Note: For more info on this layers business, read kdu_codestream::flush() doc in kdu_compressed.h
+ layer_bytes[nb_layers++] = FIRST_PACKET_SIZE;
+ U32 i = MIN_LAYER_SIZE;
+ while ((i < max_bytes) && (nb_layers < (MAX_NB_LAYERS-1)))
{
- codestream.access_siz()->parse_string("Creversible=yes");
- // *TODO: we should use yuv in reversible mode and one level since those images are small.
- // Don't turn this on now though as both create problems on decoding for the moment
- //codestream.access_siz()->parse_string("Clevels=1");
- //codestream.access_siz()->parse_string("Cycc=no");
- // If we're doing reversible (i.e. lossless compression), assumes we're not using quality layers.
- // *TODO: this is incorrect and unecessary. Try using the regular layer setting.
- codestream.access_siz()->parse_string("Clayers=1");
- num_layer_specs = 1;
- layer_bytes[0] = 0;
+ layer_bytes[nb_layers++] = i;
+ i *= 4;
}
- else
+ // Note: for small images, we can have (max_bytes < FIRST_PACKET_SIZE), hence the test
+ if (layer_bytes[nb_layers-1] < max_bytes)
{
- // Rate is the argument passed into the LLImageJ2C which
- // specifies the target compression rate. The default is 8:1.
- // Possibly if max_bytes < 500, we should just use the default setting?
- // *TODO: mRate is actually always 8:1 in the viewer. Test different values. Also force to reversible for small (< 500 bytes) textures.
- if (base.mRate != 0.f)
- {
- max_bytes = (U32)(base.mRate*base.getWidth()*base.getHeight()*base.getComponents());
- }
- else
- {
- max_bytes = (U32)(base.getWidth()*base.getHeight()*base.getComponents()*0.125);
- }
-
- const U32 min_bytes = FIRST_PACKET_SIZE;
- if (max_bytes > min_bytes)
- {
- U32 i;
- // This code is where we specify the target number of bytes for
- // each layer. Not sure if we should do this for small images
- // or not. The goal is to have this roughly align with
- // different quality levels that we decode at.
- for (i = min_bytes; i < max_bytes; i*=4)
- {
- if (i == min_bytes * 4)
- {
- i = 2000;
- }
- layer_bytes[num_layer_specs] = i;
- num_layer_specs++;
- }
- layer_bytes[num_layer_specs] = max_bytes;
- num_layer_specs++;
+ // Set the last quality layer so to fit the preset compression ratio
+ layer_bytes[nb_layers++] = max_bytes;
+ }
- std::string layer_string = llformat("Clayers=%d",num_layer_specs);
- codestream.access_siz()->parse_string(layer_string.c_str());
- }
- else
+ if (reversible)
+ {
+ // Use 0 for a last quality layer for reversible images so all remaining code blocks will be flushed
+ // Hack: KDU encoding for reversible images has a bug for small images that leads to j2c images that
+ // cannot be open or are very blurry. Avoiding that last layer prevents the problem to happen.
+ if ((base.getWidth() >= 32) || (base.getHeight() >= 32))
{
- layer_bytes[0] = min_bytes;
- num_layer_specs = 1;
- std::string layer_string = llformat("Clayers=%d",num_layer_specs);
- codestream.access_siz()->parse_string(layer_string.c_str());
+ layer_bytes[nb_layers++] = 0;
}
+ codestream.access_siz()->parse_string("Creversible=yes");
+ // *TODO: we should use yuv in reversible mode
+ // Don't turn this on now though as it creates problems on decoding for the moment
+ //codestream.access_siz()->parse_string("Cycc=no");
}
+ std::string layer_string = llformat("Clayers=%d",nb_layers);
+ codestream.access_siz()->parse_string(layer_string.c_str());
+
// Set up data ordering, markers, etc... if precincts or blocks specified
if ((mBlocksSize != -1) || (mPrecinctsSize != -1))
{
@@ -669,23 +657,26 @@ BOOL LLImageJ2CKDU::encodeImpl(LLImageJ2C &base, const LLImageRaw &raw_image, co
std::string blocks_string = llformat("Cblk={%d,%d}",mBlocksSize,mBlocksSize);
codestream.access_siz()->parse_string(blocks_string.c_str());
}
- std::string ordering_string = llformat("Corder=RPCL");
+ std::string ordering_string = llformat("Corder=LRCP");
codestream.access_siz()->parse_string(ordering_string.c_str());
std::string PLT_string = llformat("ORGgen_plt=yes");
codestream.access_siz()->parse_string(PLT_string.c_str());
std::string Parts_string = llformat("ORGtparts=R");
codestream.access_siz()->parse_string(Parts_string.c_str());
}
+
+ // Set the number of wavelets subresolutions (aka levels)
if (mLevels != 0)
{
std::string levels_string = llformat("Clevels=%d",mLevels);
codestream.access_siz()->parse_string(levels_string.c_str());
}
+ // Complete the encode settings
codestream.access_siz()->finalize_all();
codestream.change_appearance(transpose,vflip,hflip);
- // Now we are ready for sample data processing.
+ // Now we are ready for sample data processing
kdc_flow_control *tile = new kdc_flow_control(&mem_in,codestream);
bool done = false;
while (!done)
@@ -702,7 +693,7 @@ BOOL LLImageJ2CKDU::encodeImpl(LLImageJ2C &base, const LLImageRaw &raw_image, co
}
// Produce the compressed output
- codestream.flush(layer_bytes,num_layer_specs);
+ codestream.flush(layer_bytes,nb_layers);
// Cleanup
delete tile;
@@ -750,6 +741,207 @@ BOOL LLImageJ2CKDU::getMetadata(LLImageJ2C &base)
}
}
+/*****************************************************************************/
+/* STATIC copy_block */
+/*****************************************************************************/
+
+static void copy_block(kdu_block *in, kdu_block *out)
+{
+ if (in->K_max_prime != out->K_max_prime)
+ {
+ std::cout << "Cannot copy blocks belonging to subbands with different quantization parameters." << std::endl;
+ return;
+ }
+ if ((in->size.x != out->size.x) || (in->size.y != out->size.y))
+ {
+ std::cout << "Cannot copy code-blocks with different dimensions." << std::endl;
+ return;
+ }
+ out->missing_msbs = in->missing_msbs;
+ if (out->max_passes < (in->num_passes+2)) // Gives us enough to round up
+ out->set_max_passes(in->num_passes+2,false); // to the next whole bit-plane
+ out->num_passes = in->num_passes;
+ int num_bytes = 0;
+ for (int z=0; z < in->num_passes; z++)
+ {
+ num_bytes += (out->pass_lengths[z] = in->pass_lengths[z]);
+ out->pass_slopes[z] = in->pass_slopes[z];
+ }
+
+ // Just copy compressed code-bytes. Block transcoding not supported.
+ if (out->max_bytes < num_bytes)
+ out->set_max_bytes(num_bytes,false);
+ memcpy(out->byte_buffer,in->byte_buffer,(size_t) num_bytes);
+}
+
+/*****************************************************************************/
+/* STATIC copy_tile */
+/*****************************************************************************/
+
+static void
+copy_tile(kdu_tile tile_in, kdu_tile tile_out, int tnum_in, int tnum_out,
+ kdu_params *siz_in, kdu_params *siz_out, int skip_components,
+ int &num_blocks)
+{
+ int num_components = tile_out.get_num_components();
+ int new_tpart=0, next_tpart = 1;
+
+ for (int c=0; c < num_components; c++)
+ {
+ kdu_tile_comp comp_in, comp_out;
+ comp_in = tile_in.access_component(c);
+ comp_out = tile_out.access_component(c);
+ int num_resolutions = comp_out.get_num_resolutions();
+ //std::cout << " Copying tile : num_resolutions = " << num_resolutions << std::endl;
+ for (int r=0; r < num_resolutions; r++)
+ {
+ kdu_resolution res_in; res_in = comp_in.access_resolution(r);
+ kdu_resolution res_out; res_out = comp_out.access_resolution(r);
+ int b, min_band;
+ int num_bands = res_in.get_valid_band_indices(min_band);
+ std::cout << " Copying tile : num_bands = " << num_bands << std::endl;
+ for (b=min_band; num_bands > 0; num_bands--, b++)
+ {
+ kdu_subband band_in; band_in = res_in.access_subband(b);
+ kdu_subband band_out; band_out = res_out.access_subband(b);
+ kdu_dims blocks_in; band_in.get_valid_blocks(blocks_in);
+ kdu_dims blocks_out; band_out.get_valid_blocks(blocks_out);
+ if ((blocks_in.size.x != blocks_out.size.x) ||
+ (blocks_in.size.y != blocks_out.size.y))
+ {
+ std::cout << "Transcoding operation cannot proceed: Code-block partitions for the input and output code-streams do not agree." << std::endl;
+ return;
+ }
+ kdu_coords idx;
+ //std::cout << " Copying tile : block indices, x = " << blocks_out.size.x << " and y = " << blocks_out.size.y << std::endl;
+ for (idx.y=0; idx.y < blocks_out.size.y; idx.y++)
+ {
+ for (idx.x=0; idx.x < blocks_out.size.x; idx.x++)
+ {
+ kdu_block *in =
+ band_in.open_block(idx+blocks_in.pos,&new_tpart);
+ for (; next_tpart <= new_tpart; next_tpart++)
+ siz_out->copy_from(siz_in,tnum_in,tnum_out,next_tpart,
+ skip_components);
+ kdu_block *out = band_out.open_block(idx+blocks_out.pos);
+ copy_block(in,out);
+ band_in.close_block(in);
+ band_out.close_block(out);
+ num_blocks++;
+ }
+ }
+ }
+ }
+ }
+}
+
+// Find the block boundary for each discard level in the input image.
+// We parse the input blocks and copy them in a temporary output stream.
+// For the moment, we do nothing more that parsing the raw list of blocks and outputing result.
+void LLImageJ2CKDU::findDiscardLevelsBoundaries(LLImageJ2C &base)
+{
+ // We need the number of levels in that image before starting.
+ getMetadata(base);
+
+ for (int discard_level = 0; discard_level < mLevels; discard_level++)
+ {
+ //std::cout << "Parsing discard level = " << discard_level << std::endl;
+ // Create the input codestream object.
+ setupCodeStream(base, TRUE, MODE_FAST);
+ mCodeStreamp->apply_input_restrictions(0, 4, discard_level, 0, NULL);
+ mCodeStreamp->set_max_bytes(KDU_LONG_MAX,true);
+ siz_params *siz_in = mCodeStreamp->access_siz();
+
+ // Create the output codestream object.
+ siz_params siz;
+ siz.copy_from(siz_in,-1,-1,-1,0,discard_level,false,false,false);
+ siz.set(Scomponents,0,0,mCodeStreamp->get_num_components());
+
+ U32 max_output_size = base.getWidth()*base.getHeight()*base.getComponents();
+ max_output_size = (max_output_size < 1000 ? 1000 : max_output_size);
+ U8 *output_buffer = new U8[max_output_size];
+ U32 output_size = 0; // Address updated by LLKDUMemTarget to give the final compressed buffer size
+ LLKDUMemTarget output(output_buffer, output_size, max_output_size);
+ kdu_codestream codestream_out;
+ codestream_out.create(&siz,&output);
+ //codestream_out.share_buffering(*mCodeStreamp);
+ siz_params *siz_out = codestream_out.access_siz();
+ siz_out->copy_from(siz_in,-1,-1,-1,0,discard_level,false,false,false);
+ codestream_out.access_siz()->finalize_all(-1);
+
+ // Set up rate control variables
+ kdu_long max_bytes = KDU_LONG_MAX;
+ kdu_params *cod = siz_out->access_cluster(COD_params);
+ int total_layers; cod->get(Clayers,0,0,total_layers);
+ kdu_long *layer_bytes = new kdu_long[total_layers];
+ int nel, non_empty_layers = 0;
+
+ // Now ready to perform the transfer of compressed data between streams
+ int flush_counter = INT_MAX;
+ kdu_dims tile_indices_in;
+ mCodeStreamp->get_valid_tiles(tile_indices_in);
+ kdu_dims tile_indices_out;
+ codestream_out.get_valid_tiles(tile_indices_out);
+ assert((tile_indices_in.size.x == tile_indices_out.size.x) &&
+ (tile_indices_in.size.y == tile_indices_out.size.y));
+ int num_blocks=0;
+
+ kdu_coords idx;
+ //std::cout << "Parsing tiles : x = " << tile_indices_out.size.x << " to y = " << tile_indices_out.size.y << std::endl;
+ for (idx.y=0; idx.y < tile_indices_out.size.y; idx.y++)
+ {
+ for (idx.x=0; idx.x < tile_indices_out.size.x; idx.x++)
+ {
+ kdu_tile tile_in = mCodeStreamp->open_tile(idx+tile_indices_in.pos);
+ int tnum_in = tile_in.get_tnum();
+ int tnum_out = idx.x + idx.y*tile_indices_out.size.x;
+ siz_out->copy_from(siz_in,tnum_in,tnum_out,0,0,discard_level,false,false,false);
+ siz_out->finalize_all(tnum_out);
+ // Note: do not open the output tile without first copying any tile-specific code-stream parameters
+ kdu_tile tile_out = codestream_out.open_tile(idx+tile_indices_out.pos);
+ assert(tnum_out == tile_out.get_tnum());
+ copy_tile(tile_in,tile_out,tnum_in,tnum_out,siz_in,siz_out,0,num_blocks);
+ tile_in.close();
+ tile_out.close();
+ flush_counter--;
+ if ((flush_counter <= 0) && codestream_out.ready_for_flush())
+ {
+ flush_counter = INT_MAX;
+ nel = codestream_out.trans_out(max_bytes,layer_bytes,total_layers);
+ non_empty_layers = (nel > non_empty_layers)?nel:non_empty_layers;
+ }
+ }
+ }
+
+ // Generate the output code-stream
+ if (codestream_out.ready_for_flush())
+ {
+ nel = codestream_out.trans_out(max_bytes,layer_bytes,total_layers);
+ non_empty_layers = (nel > non_empty_layers)?nel:non_empty_layers;
+ }
+ if (non_empty_layers > total_layers)
+ non_empty_layers = total_layers; // Can happen if a tile has more layers
+
+ // Print out stats
+ std::cout << "Code stream parsing for discard level = " << discard_level << std::endl;
+ std::cout << " Total compressed memory in = " << mCodeStreamp->get_compressed_data_memory() << " bytes" << std::endl;
+ std::cout << " Total compressed memory out = " << codestream_out.get_compressed_data_memory() << " bytes" << std::endl;
+ //std::cout << " Output contains " << total_layers << " quality layers" << std::endl;
+ std::cout << " Transferred " << num_blocks << " code-blocks from in to out" << std::endl;
+ //std::cout << " Read " << mCodeStreamp->get_num_tparts() << " tile-part(s) from a total of " << (int) tile_indices_in.area() << " tile(s)" << std::endl;
+ std::cout << " Total bytes read = " << mCodeStreamp->get_total_bytes() << std::endl;
+ //std::cout << " Wrote " << codestream_out.get_num_tparts() << " tile-part(s) in a total of " << (int) tile_indices_out.area() << " tile(s)" << std::endl;
+ std::cout << " Total bytes written = " << codestream_out.get_total_bytes() << std::endl;
+ std::cout << "-------------" << std::endl;
+
+ // Clean-up
+ cleanupCodeStream();
+ codestream_out.destroy();
+ delete[] output_buffer;
+ }
+ return;
+}
+
void set_default_colour_weights(kdu_params *siz)
{
kdu_params *cod = siz->access_cluster(COD_params);
diff --git a/indra/llkdu/llimagej2ckdu.h b/indra/llkdu/llimagej2ckdu.h
index 1489dbf704..9ab0b9e4a7 100644
--- a/indra/llkdu/llimagej2ckdu.h
+++ b/indra/llkdu/llimagej2ckdu.h
@@ -60,6 +60,7 @@ protected:
BOOL reversible=FALSE);
/*virtual*/ BOOL initDecode(LLImageJ2C &base, LLImageRaw &raw_image, int discard_level = -1, int* region = NULL);
/*virtual*/ BOOL initEncode(LLImageJ2C &base, LLImageRaw &raw_image, int blocks_size = -1, int precincts_size = -1, int levels = 0);
+ void findDiscardLevelsBoundaries(LLImageJ2C &base);
private:
BOOL initDecode(LLImageJ2C &base, LLImageRaw &raw_image, F32 decode_time, ECodeStreamMode mode, S32 first_channel, S32 max_channel_count, int discard_level = -1, int* region = NULL);
diff --git a/indra/llkdu/tests/llimagej2ckdu_test.cpp b/indra/llkdu/tests/llimagej2ckdu_test.cpp
index ab60ab6d50..beee99a522 100644
--- a/indra/llkdu/tests/llimagej2ckdu_test.cpp
+++ b/indra/llkdu/tests/llimagej2ckdu_test.cpp
@@ -29,6 +29,7 @@
// Class to test
#include "llimagej2ckdu.h"
#include "llkdumem.h"
+#include "kdu_block_coding.h"
// Tut header
#include "lltut.h"
@@ -86,7 +87,7 @@ void LLImageFormatted::resetLastError() { }
void LLImageFormatted::sanityCheck() { }
void LLImageFormatted::setLastError(const std::string& , const std::string& ) { }
-LLImageJ2C::LLImageJ2C() : LLImageFormatted(IMG_CODEC_J2C) { }
+LLImageJ2C::LLImageJ2C() : LLImageFormatted(IMG_CODEC_J2C), mRate(DEFAULT_COMPRESSION_RATE) { }
LLImageJ2C::~LLImageJ2C() { }
S32 LLImageJ2C::calcDataSize(S32 ) { return 0; }
S32 LLImageJ2C::calcDiscardLevelBytes(S32 ) { return 0; }
@@ -107,16 +108,25 @@ bool LLKDUMemIn::get(int, kdu_line_buf&, int) { return false; }
// Stub Kakadu Library calls
kdu_tile_comp kdu_tile::access_component(int ) { kdu_tile_comp a; return a; }
+kdu_block_encoder::kdu_block_encoder() { }
+kdu_block_decoder::kdu_block_decoder() { }
+void kdu_block::set_max_passes(int , bool ) { }
+void kdu_block::set_max_bytes(int , bool ) { }
+void kdu_block::set_max_samples(int ) { }
void kdu_tile::close(kdu_thread_env* ) { }
int kdu_tile::get_num_components() { return 0; }
bool kdu_tile::get_ycc() { return false; }
void kdu_tile::set_components_of_interest(int , const int* ) { }
+int kdu_tile::get_tnum() { return 0; }
kdu_resolution kdu_tile_comp::access_resolution() { kdu_resolution a; return a; }
+kdu_resolution kdu_tile_comp::access_resolution(int ) { kdu_resolution a; return a; }
int kdu_tile_comp::get_bit_depth(bool ) { return 8; }
bool kdu_tile_comp::get_reversible() { return false; }
+int kdu_tile_comp::get_num_resolutions() { return 1; }
kdu_subband kdu_resolution::access_subband(int ) { kdu_subband a; return a; }
void kdu_resolution::get_dims(kdu_dims& ) { }
int kdu_resolution::which() { return 0; }
+int kdu_resolution::get_valid_band_indices(int &) { return 1; }
kdu_decoder::kdu_decoder(kdu_subband , kdu_sample_allocator*, bool , float, int, kdu_thread_env*, kdu_thread_queue*) { }
kdu_synthesis::kdu_synthesis(kdu_resolution, kdu_sample_allocator*, bool, float, kdu_thread_env*, kdu_thread_queue*) { }
kdu_params::kdu_params(const char*, bool, bool, bool, bool, bool) { }
@@ -124,6 +134,7 @@ kdu_params::~kdu_params() { }
void kdu_params::set(const char* , int , int , bool ) { }
void kdu_params::set(const char* , int , int , int ) { }
void kdu_params::finalize_all(bool ) { }
+void kdu_params::finalize_all(int, bool ) { }
void kdu_params::copy_from(kdu_params*, int, int, int, int, int, bool, bool, bool) { }
bool kdu_params::parse_string(const char*) { return false; }
bool kdu_params::get(const char*, int, int, bool&, bool, bool, bool) { return false; }
@@ -135,6 +146,7 @@ void kdu_codestream::set_fast() { }
void kdu_codestream::set_fussy() { }
void kdu_codestream::get_dims(int, kdu_dims&, bool ) { }
int kdu_codestream::get_min_dwt_levels() { return 5; }
+int kdu_codestream::get_max_tile_layers() { return 1; }
void kdu_codestream::change_appearance(bool, bool, bool) { }
void kdu_codestream::get_tile_dims(kdu_coords, int, kdu_dims&, bool ) { }
void kdu_codestream::destroy() { }
@@ -148,9 +160,18 @@ void kdu_codestream::get_subsampling(int , kdu_coords&, bool ) { }
void kdu_codestream::flush(kdu_long *, int , kdu_uint16 *, bool, bool, double, kdu_thread_env*) { }
void kdu_codestream::set_resilient(bool ) { }
int kdu_codestream::get_num_components(bool ) { return 0; }
+kdu_long kdu_codestream::get_total_bytes(bool ) { return 0; }
+kdu_long kdu_codestream::get_compressed_data_memory(bool ) {return 0; }
+void kdu_codestream::share_buffering(kdu_codestream ) { }
+int kdu_codestream::get_num_tparts() { return 0; }
+int kdu_codestream::trans_out(kdu_long, kdu_long*, int, bool, kdu_thread_env* ) { return 0; }
+bool kdu_codestream::ready_for_flush(kdu_thread_env*) { return false; }
siz_params* kdu_codestream::access_siz() { return NULL; }
kdu_tile kdu_codestream::open_tile(kdu_coords , kdu_thread_env* ) { kdu_tile a; return a; }
kdu_codestream_comment kdu_codestream::add_comment() { kdu_codestream_comment a; return a; }
+void kdu_subband::close_block(kdu_block*, kdu_thread_env*) { }
+void kdu_subband::get_valid_blocks(kdu_dims &indices) { }
+kdu_block* kdu_subband::open_block(kdu_coords, int*, kdu_thread_env*) { return NULL; }
bool kdu_codestream_comment::put_text(const char*) { return false; }
void kdu_customize_warnings(kdu_message*) { }
void kdu_customize_errors(kdu_message*) { }