summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--indra/llmath/llquaternion2.inl5
-rw-r--r--indra/llmath/llvector4a.cpp10
-rw-r--r--indra/llmath/llvector4a.inl15
3 files changed, 30 insertions, 0 deletions
diff --git a/indra/llmath/llquaternion2.inl b/indra/llmath/llquaternion2.inl
index ce5ed73926..b431d5766c 100644
--- a/indra/llmath/llquaternion2.inl
+++ b/indra/llmath/llquaternion2.inl
@@ -26,8 +26,13 @@
#include "llquaternion2.h"
+#if _M_ARM64
+static const LLQuad LL_V4A_PLUS_ONE = {.n128_f32 = {1.f, 1.f, 1.f, 1.f}};
+static const LLQuad LL_V4A_MINUS_ONE = {.n128_f32 = {-1.f, -1.f, -1.f, -1.f}};
+#else
static const LLQuad LL_V4A_PLUS_ONE = {1.f, 1.f, 1.f, 1.f};
static const LLQuad LL_V4A_MINUS_ONE = {-1.f, -1.f, -1.f, -1.f};
+#endif
// Ctor from LLQuaternion
inline LLQuaternion2::LLQuaternion2( const LLQuaternion& quat )
diff --git a/indra/llmath/llvector4a.cpp b/indra/llmath/llvector4a.cpp
index b81d50f0f9..df20585d16 100644
--- a/indra/llmath/llvector4a.cpp
+++ b/indra/llmath/llvector4a.cpp
@@ -30,6 +30,15 @@
#include "llmath.h"
#include "llquantize.h"
+#if _M_ARM64
+extern const LLQuad F_ZERO_4A = {.n128_f32 = {0, 0, 0, 0}};
+extern const LLQuad F_APPROXIMATELY_ZERO_4A = {.n128_f32 = {
+ F_APPROXIMATELY_ZERO,
+ F_APPROXIMATELY_ZERO,
+ F_APPROXIMATELY_ZERO,
+ F_APPROXIMATELY_ZERO
+}};
+#else
extern const LLQuad F_ZERO_4A = { 0, 0, 0, 0 };
extern const LLQuad F_APPROXIMATELY_ZERO_4A = {
F_APPROXIMATELY_ZERO,
@@ -37,6 +46,7 @@ extern const LLQuad F_APPROXIMATELY_ZERO_4A = {
F_APPROXIMATELY_ZERO,
F_APPROXIMATELY_ZERO
};
+#endif
extern const LLVector4a LL_V4A_ZERO = reinterpret_cast<const LLVector4a&> ( F_ZERO_4A );
extern const LLVector4a LL_V4A_EPSILON = reinterpret_cast<const LLVector4a&> ( F_APPROXIMATELY_ZERO_4A );
diff --git a/indra/llmath/llvector4a.inl b/indra/llmath/llvector4a.inl
index 36dbec078c..17e7de6eeb 100644
--- a/indra/llmath/llvector4a.inl
+++ b/indra/llmath/llvector4a.inl
@@ -335,8 +335,13 @@ inline void LLVector4a::normalize3()
LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this );
// rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 }
const LLQuad rsqrt = _mm_rsqrt_ps(lenSqrd.mQ);
+#if _M_ARM64
+ static const LLQuad half = {.n128_f32 = {0.5f, 0.5f, 0.5f, 0.5f}};
+ static const LLQuad three = {.n128_f32 = {3.f, 3.f, 3.f, 3.f }};
+#else
static const LLQuad half = { 0.5f, 0.5f, 0.5f, 0.5f };
static const LLQuad three = {3.f, 3.f, 3.f, 3.f };
+#endif
// Now we do one round of Newton-Raphson approximation to get full accuracy
// According to the Newton-Raphson method, given a first 'w' for the root of f(x) = 1/x^2 - a (i.e., x = 1/sqrt(a))
// the next better approximation w[i+1] = w - f(w)/f'(w) = w - (1/w^2 - a)/(-2*w^(-3))
@@ -359,8 +364,13 @@ inline void LLVector4a::normalize4()
LLVector4a lenSqrd; lenSqrd.setAllDot4( *this, *this );
// rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 }
const LLQuad rsqrt = _mm_rsqrt_ps(lenSqrd.mQ);
+#if _M_ARM64
+ static const LLQuad half = {.n128_f32 = {0.5f, 0.5f, 0.5f, 0.5f}};
+ static const LLQuad three = {.n128_f32 = {3.f, 3.f, 3.f, 3.f}};
+#else
static const LLQuad half = { 0.5f, 0.5f, 0.5f, 0.5f };
static const LLQuad three = {3.f, 3.f, 3.f, 3.f };
+#endif
// Now we do one round of Newton-Raphson approximation to get full accuracy
// According to the Newton-Raphson method, given a first 'w' for the root of f(x) = 1/x^2 - a (i.e., x = 1/sqrt(a))
// the next better approximation w[i+1] = w - f(w)/f'(w) = w - (1/w^2 - a)/(-2*w^(-3))
@@ -383,8 +393,13 @@ inline LLSimdScalar LLVector4a::normalize3withLength()
LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this );
// rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 }
const LLQuad rsqrt = _mm_rsqrt_ps(lenSqrd.mQ);
+#if _M_ARM64
+ static const LLQuad half = {.n128_f32 = {0.5f, 0.5f, 0.5f, 0.5f}};
+ static const LLQuad three = {.n128_f32 = {3.f, 3.f, 3.f, 3.f}};
+#else
static const LLQuad half = { 0.5f, 0.5f, 0.5f, 0.5f };
static const LLQuad three = {3.f, 3.f, 3.f, 3.f };
+#endif
// Now we do one round of Newton-Raphson approximation to get full accuracy
// According to the Newton-Raphson method, given a first 'w' for the root of f(x) = 1/x^2 - a (i.e., x = 1/sqrt(a))
// the next better approximation w[i+1] = w - f(w)/f'(w) = w - (1/w^2 - a)/(-2*w^(-3))