diff options
-rw-r--r-- | indra/llcommon/tests/llleap_test.cpp | 90 |
1 files changed, 90 insertions, 0 deletions
diff --git a/indra/llcommon/tests/llleap_test.cpp b/indra/llcommon/tests/llleap_test.cpp index aedb12a70b..1b71f7fb72 100644 --- a/indra/llcommon/tests/llleap_test.cpp +++ b/indra/llcommon/tests/llleap_test.cpp @@ -29,6 +29,7 @@ #include "llprocess.h" #include "stringize.h" #include "StringVec.h" +#include <functional> using boost::assign::list_of; @@ -533,6 +534,66 @@ namespace tut result.ensure(); } + struct TestLargeMessage: public std::binary_function<size_t, size_t, bool> + { + TestLargeMessage(const std::string& PYTHON_, const std::string& reader_module_, + const std::string& test_name_): + PYTHON(PYTHON_), + reader_module(reader_module_), + test_name(test_name_) + {} + + bool operator()(size_t left, size_t right) const + { + // We don't know whether upper_bound is going to pass the "sought + // value" as the left or the right operand. We pass 0 as the + // "sought value" so we can distinguish it. Of course that means + // the sequence we're searching must not itself contain 0! + size_t size; + bool success; + if (left) + { + size = left; + // Consider our return value carefully. Normal binary_search + // (or, in our case, upper_bound) expects a container sorted + // in ascending order, and defaults to the std::less + // comparator. Our container is in fact in ascending order, so + // return consistently with std::less. Here we were called as + // compare(item, sought). If std::less were called that way, + // 'true' would mean to move right (to higher numbers) within + // the sequence: the item being considered is less than the + // sought value. For us, that means that test_large_message() + // success should return 'true'. + success = true; + } + else + { + size = right; + // Here we were called as compare(sought, item). If std::less + // were called that way, 'true' would mean to move left (to + // lower numbers) within the sequence: the sought value is + // less than the item being considered. For us, that means + // test_large_message() FAILURE should return 'true', hence + // test_large_message() success should return 'false'. + success = false; + } + + try + { + test_large_message(PYTHON, reader_module, test_name, size); + std::cout << "test_large_message(" << size << ") succeeded" << std::endl; + return success; + } + catch (const failure& e) + { + std::cout << "test_large_message(" << size << ") failed: " << e.what() << std::endl; + return ! success; + } + } + + const std::string PYTHON, reader_module, test_name; + }; + // The point of this function is to try to find a size at which // test_large_message() can succeed. We still want the overall test to // fail; otherwise we won't get the coder's attention -- but if @@ -561,6 +622,35 @@ namespace tut // failed, therefore we only reach the line below if it // succeeded. std::cout << "but test_large_message(" << smaller << ") succeeded" << std::endl; + + // Binary search for largest size that works. But since + // std::binary_search() only returns bool, actually use + // std::upper_bound(), consistent with our desire to find + // the LARGEST size that works. First generate a sorted + // container of all the sizes we intend to try, from + // 'smaller' (known to work) to 'size' (known to fail). We + // could whomp up magic iterators to do this dynamically, + // without actually instantiating a vector, but for a test + // program this will do. At least preallocate the vector. + // Per TestLargeMessage comments, it's important that this + // vector not contain 0. + std::vector<size_t> sizes; + sizes.reserve((size - smaller)/4096 + 1); + for (size_t sz(smaller), szend(size); sz < szend; sz += 4096) + sizes.push_back(sz); + // our comparator + TestLargeMessage tester(PYTHON, reader_module, test_name); + // Per TestLargeMessage comments, pass 0 as the sought value. + std::vector<size_t>::const_iterator found = + std::upper_bound(sizes.begin(), sizes.end(), 0, tester); + if (found != sizes.end() && found != sizes.begin()) + { + std::cout << "test_large_message(" << *(found - 1) << ") is largest that succeeds" << std::endl; + } + else + { + std::cout << "cannot determine largest test_large_message(size) that succeeds" << std::endl; + } } catch (const failure&) { |