summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--indra/llcommon/tests/llleap_test.cpp90
1 files changed, 90 insertions, 0 deletions
diff --git a/indra/llcommon/tests/llleap_test.cpp b/indra/llcommon/tests/llleap_test.cpp
index aedb12a70b..1b71f7fb72 100644
--- a/indra/llcommon/tests/llleap_test.cpp
+++ b/indra/llcommon/tests/llleap_test.cpp
@@ -29,6 +29,7 @@
#include "llprocess.h"
#include "stringize.h"
#include "StringVec.h"
+#include <functional>
using boost::assign::list_of;
@@ -533,6 +534,66 @@ namespace tut
result.ensure();
}
+ struct TestLargeMessage: public std::binary_function<size_t, size_t, bool>
+ {
+ TestLargeMessage(const std::string& PYTHON_, const std::string& reader_module_,
+ const std::string& test_name_):
+ PYTHON(PYTHON_),
+ reader_module(reader_module_),
+ test_name(test_name_)
+ {}
+
+ bool operator()(size_t left, size_t right) const
+ {
+ // We don't know whether upper_bound is going to pass the "sought
+ // value" as the left or the right operand. We pass 0 as the
+ // "sought value" so we can distinguish it. Of course that means
+ // the sequence we're searching must not itself contain 0!
+ size_t size;
+ bool success;
+ if (left)
+ {
+ size = left;
+ // Consider our return value carefully. Normal binary_search
+ // (or, in our case, upper_bound) expects a container sorted
+ // in ascending order, and defaults to the std::less
+ // comparator. Our container is in fact in ascending order, so
+ // return consistently with std::less. Here we were called as
+ // compare(item, sought). If std::less were called that way,
+ // 'true' would mean to move right (to higher numbers) within
+ // the sequence: the item being considered is less than the
+ // sought value. For us, that means that test_large_message()
+ // success should return 'true'.
+ success = true;
+ }
+ else
+ {
+ size = right;
+ // Here we were called as compare(sought, item). If std::less
+ // were called that way, 'true' would mean to move left (to
+ // lower numbers) within the sequence: the sought value is
+ // less than the item being considered. For us, that means
+ // test_large_message() FAILURE should return 'true', hence
+ // test_large_message() success should return 'false'.
+ success = false;
+ }
+
+ try
+ {
+ test_large_message(PYTHON, reader_module, test_name, size);
+ std::cout << "test_large_message(" << size << ") succeeded" << std::endl;
+ return success;
+ }
+ catch (const failure& e)
+ {
+ std::cout << "test_large_message(" << size << ") failed: " << e.what() << std::endl;
+ return ! success;
+ }
+ }
+
+ const std::string PYTHON, reader_module, test_name;
+ };
+
// The point of this function is to try to find a size at which
// test_large_message() can succeed. We still want the overall test to
// fail; otherwise we won't get the coder's attention -- but if
@@ -561,6 +622,35 @@ namespace tut
// failed, therefore we only reach the line below if it
// succeeded.
std::cout << "but test_large_message(" << smaller << ") succeeded" << std::endl;
+
+ // Binary search for largest size that works. But since
+ // std::binary_search() only returns bool, actually use
+ // std::upper_bound(), consistent with our desire to find
+ // the LARGEST size that works. First generate a sorted
+ // container of all the sizes we intend to try, from
+ // 'smaller' (known to work) to 'size' (known to fail). We
+ // could whomp up magic iterators to do this dynamically,
+ // without actually instantiating a vector, but for a test
+ // program this will do. At least preallocate the vector.
+ // Per TestLargeMessage comments, it's important that this
+ // vector not contain 0.
+ std::vector<size_t> sizes;
+ sizes.reserve((size - smaller)/4096 + 1);
+ for (size_t sz(smaller), szend(size); sz < szend; sz += 4096)
+ sizes.push_back(sz);
+ // our comparator
+ TestLargeMessage tester(PYTHON, reader_module, test_name);
+ // Per TestLargeMessage comments, pass 0 as the sought value.
+ std::vector<size_t>::const_iterator found =
+ std::upper_bound(sizes.begin(), sizes.end(), 0, tester);
+ if (found != sizes.end() && found != sizes.begin())
+ {
+ std::cout << "test_large_message(" << *(found - 1) << ") is largest that succeeds" << std::endl;
+ }
+ else
+ {
+ std::cout << "cannot determine largest test_large_message(size) that succeeds" << std::endl;
+ }
}
catch (const failure&)
{