diff options
author | Andrew Meadows <andrew@lindenlab.com> | 2010-12-22 09:54:45 -0800 |
---|---|---|
committer | Andrew Meadows <andrew@lindenlab.com> | 2010-12-22 09:54:45 -0800 |
commit | 740bd8dbfd791bdd548064912abad8c0bf230f4c (patch) | |
tree | bd237c8141a0b5643038640f4bc24d1fb6d5fd65 /indra/newview/tests/llsimplestat_test.cpp | |
parent | 049b00a6f10d50609055810b0800f49476b351d2 (diff) | |
parent | ab100825bd0064dc64b9ef8bea1c70bc04090716 (diff) |
merge
Diffstat (limited to 'indra/newview/tests/llsimplestat_test.cpp')
-rw-r--r-- | indra/newview/tests/llsimplestat_test.cpp | 586 |
1 files changed, 586 insertions, 0 deletions
diff --git a/indra/newview/tests/llsimplestat_test.cpp b/indra/newview/tests/llsimplestat_test.cpp new file mode 100644 index 0000000000..60a8cac995 --- /dev/null +++ b/indra/newview/tests/llsimplestat_test.cpp @@ -0,0 +1,586 @@ +/** + * @file llsimplestats_test.cpp + * @date 2010-10-22 + * @brief Test cases for some of llsimplestat.h + * + * $LicenseInfo:firstyear=2010&license=viewergpl$ + * + * Copyright (c) 2010, Linden Research, Inc. + * + * Second Life Viewer Source Code + * The source code in this file ("Source Code") is provided by Linden Lab + * to you under the terms of the GNU General Public License, version 2.0 + * ("GPL"), unless you have obtained a separate licensing agreement + * ("Other License"), formally executed by you and Linden Lab. Terms of + * the GPL can be found in doc/GPL-license.txt in this distribution, or + * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 + * + * There are special exceptions to the terms and conditions of the GPL as + * it is applied to this Source Code. View the full text of the exception + * in the file doc/FLOSS-exception.txt in this software distribution, or + * online at + * http://secondlifegrid.net/programs/open_source/licensing/flossexception + * + * By copying, modifying or distributing this software, you acknowledge + * that you have read and understood your obligations described above, + * and agree to abide by those obligations. + * + * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO + * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, + * COMPLETENESS OR PERFORMANCE. + * $/LicenseInfo$ + */ + +#include "linden_common.h" + +#include <tut/tut.hpp> + +#include "lltut.h" +#include "../llsimplestat.h" +#include "llsd.h" +#include "llmath.h" + +// @brief Used as a pointer cast type to get access to LLSimpleStatCounter +class TutStatCounter: public LLSimpleStatCounter +{ +public: + TutStatCounter(); // Not defined + ~TutStatCounter(); // Not defined + void operator=(const TutStatCounter &); // Not defined + + void setRawCount(U32 c) { mCount = c; } + U32 getRawCount() const { return mCount; } +}; + + +namespace tut +{ + struct stat_counter_index + {}; + typedef test_group<stat_counter_index> stat_counter_index_t; + typedef stat_counter_index_t::object stat_counter_index_object_t; + tut::stat_counter_index_t tut_stat_counter_index("stat_counter_test"); + + // Testing LLSimpleStatCounter's external interface + template<> template<> + void stat_counter_index_object_t::test<1>() + { + LLSimpleStatCounter c1; + ensure("Initialized counter is zero", (0 == c1.getCount())); + + ensure("Counter increment return is 1", (1 == ++c1)); + ensure("Counter increment return is 2", (2 == ++c1)); + + ensure("Current counter is 2", (2 == c1.getCount())); + + c1.reset(); + ensure("Counter is 0 after reset", (0 == c1.getCount())); + + ensure("Counter increment return is 1", (1 == ++c1)); + } + + // Testing LLSimpleStatCounter's internal state + template<> template<> + void stat_counter_index_object_t::test<2>() + { + LLSimpleStatCounter c1; + TutStatCounter * tc1 = (TutStatCounter *) &c1; + + ensure("Initialized private counter is zero", (0 == tc1->getRawCount())); + + ++c1; + ++c1; + + ensure("Current private counter is 2", (2 == tc1->getRawCount())); + + c1.reset(); + ensure("Raw counter is 0 after reset", (0 == tc1->getRawCount())); + } + + // Testing LLSimpleStatCounter's wrapping behavior + template<> template<> + void stat_counter_index_object_t::test<3>() + { + LLSimpleStatCounter c1; + TutStatCounter * tc1 = (TutStatCounter *) &c1; + + tc1->setRawCount(U32_MAX); + ensure("Initialized private counter is zero", (U32_MAX == c1.getCount())); + + ensure("Increment of max value wraps to 0", (0 == ++c1)); + } + + // Testing LLSimpleStatMMM's external behavior + template<> template<> + void stat_counter_index_object_t::test<4>() + { + LLSimpleStatMMM<> m1; + typedef LLSimpleStatMMM<>::Value lcl_float; + lcl_float zero(0); + + // Freshly-constructed + ensure("Constructed MMM<> has 0 count", (0 == m1.getCount())); + ensure("Constructed MMM<> has 0 min", (zero == m1.getMin())); + ensure("Constructed MMM<> has 0 max", (zero == m1.getMax())); + ensure("Constructed MMM<> has 0 mean no div-by-zero", (zero == m1.getMean())); + + // Single insert + m1.record(1.0); + ensure("Single insert MMM<> has 1 count", (1 == m1.getCount())); + ensure("Single insert MMM<> has 1.0 min", (1.0 == m1.getMin())); + ensure("Single insert MMM<> has 1.0 max", (1.0 == m1.getMax())); + ensure("Single insert MMM<> has 1.0 mean", (1.0 == m1.getMean())); + + // Second insert + m1.record(3.0); + ensure("2nd insert MMM<> has 2 count", (2 == m1.getCount())); + ensure("2nd insert MMM<> has 1.0 min", (1.0 == m1.getMin())); + ensure("2nd insert MMM<> has 3.0 max", (3.0 == m1.getMax())); + ensure_approximately_equals("2nd insert MMM<> has 2.0 mean", m1.getMean(), lcl_float(2.0), 1); + + // Third insert + m1.record(5.0); + ensure("3rd insert MMM<> has 3 count", (3 == m1.getCount())); + ensure("3rd insert MMM<> has 1.0 min", (1.0 == m1.getMin())); + ensure("3rd insert MMM<> has 5.0 max", (5.0 == m1.getMax())); + ensure_approximately_equals("3rd insert MMM<> has 3.0 mean", m1.getMean(), lcl_float(3.0), 1); + + // Fourth insert + m1.record(1000000.0); + ensure("4th insert MMM<> has 4 count", (4 == m1.getCount())); + ensure("4th insert MMM<> has 1.0 min", (1.0 == m1.getMin())); + ensure("4th insert MMM<> has 100000.0 max", (1000000.0 == m1.getMax())); + ensure_approximately_equals("4th insert MMM<> has 250002.0 mean", m1.getMean(), lcl_float(250002.0), 1); + + // Reset + m1.reset(); + ensure("Reset MMM<> has 0 count", (0 == m1.getCount())); + ensure("Reset MMM<> has 0 min", (zero == m1.getMin())); + ensure("Reset MMM<> has 0 max", (zero == m1.getMax())); + ensure("Reset MMM<> has 0 mean no div-by-zero", (zero == m1.getMean())); + } + + // Testing LLSimpleStatMMM's response to large values + template<> template<> + void stat_counter_index_object_t::test<5>() + { + LLSimpleStatMMM<> m1; + typedef LLSimpleStatMMM<>::Value lcl_float; + lcl_float zero(0); + + // Insert overflowing values + const lcl_float bignum(F32_MAX / 2); + + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(zero); + + ensure("Overflowed MMM<> has 8 count", (8 == m1.getCount())); + ensure("Overflowed MMM<> has 0 min", (zero == m1.getMin())); + ensure("Overflowed MMM<> has huge max", (bignum == m1.getMax())); + ensure("Overflowed MMM<> has fetchable mean", (1.0 == m1.getMean() || true)); + // We should be infinte but not interested in proving the IEEE standard here. + LLSD sd1(m1.getMean()); + // std::cout << "Thingy: " << m1.getMean() << " and as LLSD: " << sd1 << std::endl; + ensure("Overflowed MMM<> produces LLSDable Real", (sd1.isReal())); + } + + // Testing LLSimpleStatMMM<F32>'s external behavior + template<> template<> + void stat_counter_index_object_t::test<6>() + { + LLSimpleStatMMM<F32> m1; + typedef LLSimpleStatMMM<F32>::Value lcl_float; + lcl_float zero(0); + + // Freshly-constructed + ensure("Constructed MMM<F32> has 0 count", (0 == m1.getCount())); + ensure("Constructed MMM<F32> has 0 min", (zero == m1.getMin())); + ensure("Constructed MMM<F32> has 0 max", (zero == m1.getMax())); + ensure("Constructed MMM<F32> has 0 mean no div-by-zero", (zero == m1.getMean())); + + // Single insert + m1.record(1.0); + ensure("Single insert MMM<F32> has 1 count", (1 == m1.getCount())); + ensure("Single insert MMM<F32> has 1.0 min", (1.0 == m1.getMin())); + ensure("Single insert MMM<F32> has 1.0 max", (1.0 == m1.getMax())); + ensure("Single insert MMM<F32> has 1.0 mean", (1.0 == m1.getMean())); + + // Second insert + m1.record(3.0); + ensure("2nd insert MMM<F32> has 2 count", (2 == m1.getCount())); + ensure("2nd insert MMM<F32> has 1.0 min", (1.0 == m1.getMin())); + ensure("2nd insert MMM<F32> has 3.0 max", (3.0 == m1.getMax())); + ensure_approximately_equals("2nd insert MMM<F32> has 2.0 mean", m1.getMean(), lcl_float(2.0), 1); + + // Third insert + m1.record(5.0); + ensure("3rd insert MMM<F32> has 3 count", (3 == m1.getCount())); + ensure("3rd insert MMM<F32> has 1.0 min", (1.0 == m1.getMin())); + ensure("3rd insert MMM<F32> has 5.0 max", (5.0 == m1.getMax())); + ensure_approximately_equals("3rd insert MMM<F32> has 3.0 mean", m1.getMean(), lcl_float(3.0), 1); + + // Fourth insert + m1.record(1000000.0); + ensure("4th insert MMM<F32> has 4 count", (4 == m1.getCount())); + ensure("4th insert MMM<F32> has 1.0 min", (1.0 == m1.getMin())); + ensure("4th insert MMM<F32> has 1000000.0 max", (1000000.0 == m1.getMax())); + ensure_approximately_equals("4th insert MMM<F32> has 250002.0 mean", m1.getMean(), lcl_float(250002.0), 1); + + // Reset + m1.reset(); + ensure("Reset MMM<F32> has 0 count", (0 == m1.getCount())); + ensure("Reset MMM<F32> has 0 min", (zero == m1.getMin())); + ensure("Reset MMM<F32> has 0 max", (zero == m1.getMax())); + ensure("Reset MMM<F32> has 0 mean no div-by-zero", (zero == m1.getMean())); + } + + // Testing LLSimpleStatMMM's response to large values + template<> template<> + void stat_counter_index_object_t::test<7>() + { + LLSimpleStatMMM<F32> m1; + typedef LLSimpleStatMMM<F32>::Value lcl_float; + lcl_float zero(0); + + // Insert overflowing values + const lcl_float bignum(F32_MAX / 2); + + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(zero); + + ensure("Overflowed MMM<F32> has 8 count", (8 == m1.getCount())); + ensure("Overflowed MMM<F32> has 0 min", (zero == m1.getMin())); + ensure("Overflowed MMM<F32> has huge max", (bignum == m1.getMax())); + ensure("Overflowed MMM<F32> has fetchable mean", (1.0 == m1.getMean() || true)); + // We should be infinte but not interested in proving the IEEE standard here. + LLSD sd1(m1.getMean()); + // std::cout << "Thingy: " << m1.getMean() << " and as LLSD: " << sd1 << std::endl; + ensure("Overflowed MMM<F32> produces LLSDable Real", (sd1.isReal())); + } + + // Testing LLSimpleStatMMM<F64>'s external behavior + template<> template<> + void stat_counter_index_object_t::test<8>() + { + LLSimpleStatMMM<F64> m1; + typedef LLSimpleStatMMM<F64>::Value lcl_float; + lcl_float zero(0); + + // Freshly-constructed + ensure("Constructed MMM<F64> has 0 count", (0 == m1.getCount())); + ensure("Constructed MMM<F64> has 0 min", (zero == m1.getMin())); + ensure("Constructed MMM<F64> has 0 max", (zero == m1.getMax())); + ensure("Constructed MMM<F64> has 0 mean no div-by-zero", (zero == m1.getMean())); + + // Single insert + m1.record(1.0); + ensure("Single insert MMM<F64> has 1 count", (1 == m1.getCount())); + ensure("Single insert MMM<F64> has 1.0 min", (1.0 == m1.getMin())); + ensure("Single insert MMM<F64> has 1.0 max", (1.0 == m1.getMax())); + ensure("Single insert MMM<F64> has 1.0 mean", (1.0 == m1.getMean())); + + // Second insert + m1.record(3.0); + ensure("2nd insert MMM<F64> has 2 count", (2 == m1.getCount())); + ensure("2nd insert MMM<F64> has 1.0 min", (1.0 == m1.getMin())); + ensure("2nd insert MMM<F64> has 3.0 max", (3.0 == m1.getMax())); + ensure_approximately_equals("2nd insert MMM<F64> has 2.0 mean", m1.getMean(), lcl_float(2.0), 1); + + // Third insert + m1.record(5.0); + ensure("3rd insert MMM<F64> has 3 count", (3 == m1.getCount())); + ensure("3rd insert MMM<F64> has 1.0 min", (1.0 == m1.getMin())); + ensure("3rd insert MMM<F64> has 5.0 max", (5.0 == m1.getMax())); + ensure_approximately_equals("3rd insert MMM<F64> has 3.0 mean", m1.getMean(), lcl_float(3.0), 1); + + // Fourth insert + m1.record(1000000.0); + ensure("4th insert MMM<F64> has 4 count", (4 == m1.getCount())); + ensure("4th insert MMM<F64> has 1.0 min", (1.0 == m1.getMin())); + ensure("4th insert MMM<F64> has 1000000.0 max", (1000000.0 == m1.getMax())); + ensure_approximately_equals("4th insert MMM<F64> has 250002.0 mean", m1.getMean(), lcl_float(250002.0), 1); + + // Reset + m1.reset(); + ensure("Reset MMM<F64> has 0 count", (0 == m1.getCount())); + ensure("Reset MMM<F64> has 0 min", (zero == m1.getMin())); + ensure("Reset MMM<F64> has 0 max", (zero == m1.getMax())); + ensure("Reset MMM<F64> has 0 mean no div-by-zero", (zero == m1.getMean())); + } + + // Testing LLSimpleStatMMM's response to large values + template<> template<> + void stat_counter_index_object_t::test<9>() + { + LLSimpleStatMMM<F64> m1; + typedef LLSimpleStatMMM<F64>::Value lcl_float; + lcl_float zero(0); + + // Insert overflowing values + const lcl_float bignum(F64_MAX / 2); + + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(zero); + + ensure("Overflowed MMM<F64> has 8 count", (8 == m1.getCount())); + ensure("Overflowed MMM<F64> has 0 min", (zero == m1.getMin())); + ensure("Overflowed MMM<F64> has huge max", (bignum == m1.getMax())); + ensure("Overflowed MMM<F64> has fetchable mean", (1.0 == m1.getMean() || true)); + // We should be infinte but not interested in proving the IEEE standard here. + LLSD sd1(m1.getMean()); + // std::cout << "Thingy: " << m1.getMean() << " and as LLSD: " << sd1 << std::endl; + ensure("Overflowed MMM<F64> produces LLSDable Real", (sd1.isReal())); + } + + // Testing LLSimpleStatMMM<U64>'s external behavior + template<> template<> + void stat_counter_index_object_t::test<10>() + { + LLSimpleStatMMM<U64> m1; + typedef LLSimpleStatMMM<U64>::Value lcl_int; + lcl_int zero(0); + + // Freshly-constructed + ensure("Constructed MMM<U64> has 0 count", (0 == m1.getCount())); + ensure("Constructed MMM<U64> has 0 min", (zero == m1.getMin())); + ensure("Constructed MMM<U64> has 0 max", (zero == m1.getMax())); + ensure("Constructed MMM<U64> has 0 mean no div-by-zero", (zero == m1.getMean())); + + // Single insert + m1.record(1); + ensure("Single insert MMM<U64> has 1 count", (1 == m1.getCount())); + ensure("Single insert MMM<U64> has 1 min", (1 == m1.getMin())); + ensure("Single insert MMM<U64> has 1 max", (1 == m1.getMax())); + ensure("Single insert MMM<U64> has 1 mean", (1 == m1.getMean())); + + // Second insert + m1.record(3); + ensure("2nd insert MMM<U64> has 2 count", (2 == m1.getCount())); + ensure("2nd insert MMM<U64> has 1 min", (1 == m1.getMin())); + ensure("2nd insert MMM<U64> has 3 max", (3 == m1.getMax())); + ensure("2nd insert MMM<U64> has 2 mean", (2 == m1.getMean())); + + // Third insert + m1.record(5); + ensure("3rd insert MMM<U64> has 3 count", (3 == m1.getCount())); + ensure("3rd insert MMM<U64> has 1 min", (1 == m1.getMin())); + ensure("3rd insert MMM<U64> has 5 max", (5 == m1.getMax())); + ensure("3rd insert MMM<U64> has 3 mean", (3 == m1.getMean())); + + // Fourth insert + m1.record(U64L(1000000000000)); + ensure("4th insert MMM<U64> has 4 count", (4 == m1.getCount())); + ensure("4th insert MMM<U64> has 1 min", (1 == m1.getMin())); + ensure("4th insert MMM<U64> has 1000000000000ULL max", (U64L(1000000000000) == m1.getMax())); + ensure("4th insert MMM<U64> has 250000000002ULL mean", (U64L( 250000000002) == m1.getMean())); + + // Reset + m1.reset(); + ensure("Reset MMM<U64> has 0 count", (0 == m1.getCount())); + ensure("Reset MMM<U64> has 0 min", (zero == m1.getMin())); + ensure("Reset MMM<U64> has 0 max", (zero == m1.getMax())); + ensure("Reset MMM<U64> has 0 mean no div-by-zero", (zero == m1.getMean())); + } + + // Testing LLSimpleStatMMM's response to large values + template<> template<> + void stat_counter_index_object_t::test<11>() + { + LLSimpleStatMMM<U64> m1; + typedef LLSimpleStatMMM<U64>::Value lcl_int; + lcl_int zero(0); + + // Insert overflowing values + const lcl_int bignum(U64L(0xffffffffffffffff) / 2); + + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(bignum); + m1.record(zero); + + ensure("Overflowed MMM<U64> has 8 count", (8 == m1.getCount())); + ensure("Overflowed MMM<U64> has 0 min", (zero == m1.getMin())); + ensure("Overflowed MMM<U64> has huge max", (bignum == m1.getMax())); + ensure("Overflowed MMM<U64> has fetchable mean", (zero == m1.getMean() || true)); + } + + // Testing LLSimpleStatCounter's merge() method + template<> template<> + void stat_counter_index_object_t::test<12>() + { + LLSimpleStatCounter c1; + LLSimpleStatCounter c2; + + ++c1; + ++c1; + ++c1; + ++c1; + + ++c2; + ++c2; + c2.merge(c1); + + ensure_equals("4 merged into 2 results in 6", 6, c2.getCount()); + + ensure_equals("Source of merge is undamaged", 4, c1.getCount()); + } + + // Testing LLSimpleStatMMM's merge() method + template<> template<> + void stat_counter_index_object_t::test<13>() + { + LLSimpleStatMMM<> m1; + LLSimpleStatMMM<> m2; + + m1.record(3.5); + m1.record(4.5); + m1.record(5.5); + m1.record(6.5); + + m2.record(5.0); + m2.record(7.0); + m2.record(9.0); + + m2.merge(m1); + + ensure_equals("Count after merge (p1)", 7, m2.getCount()); + ensure_approximately_equals("Min after merge (p1)", F32(3.5), m2.getMin(), 22); + ensure_approximately_equals("Max after merge (p1)", F32(9.0), m2.getMax(), 22); + ensure_approximately_equals("Mean after merge (p1)", F32(41.000/7.000), m2.getMean(), 22); + + + ensure_equals("Source count of merge is undamaged (p1)", 4, m1.getCount()); + ensure_approximately_equals("Source min of merge is undamaged (p1)", F32(3.5), m1.getMin(), 22); + ensure_approximately_equals("Source max of merge is undamaged (p1)", F32(6.5), m1.getMax(), 22); + ensure_approximately_equals("Source mean of merge is undamaged (p1)", F32(5.0), m1.getMean(), 22); + + m2.reset(); + + m2.record(-22.0); + m2.record(-1.0); + m2.record(30.0); + + m2.merge(m1); + + ensure_equals("Count after merge (p2)", 7, m2.getCount()); + ensure_approximately_equals("Min after merge (p2)", F32(-22.0), m2.getMin(), 22); + ensure_approximately_equals("Max after merge (p2)", F32(30.0), m2.getMax(), 22); + ensure_approximately_equals("Mean after merge (p2)", F32(27.000/7.000), m2.getMean(), 22); + + } + + // Testing LLSimpleStatMMM's merge() method when src contributes nothing + template<> template<> + void stat_counter_index_object_t::test<14>() + { + LLSimpleStatMMM<> m1; + LLSimpleStatMMM<> m2; + + m2.record(5.0); + m2.record(7.0); + m2.record(9.0); + + m2.merge(m1); + + ensure_equals("Count after merge (p1)", 3, m2.getCount()); + ensure_approximately_equals("Min after merge (p1)", F32(5.0), m2.getMin(), 22); + ensure_approximately_equals("Max after merge (p1)", F32(9.0), m2.getMax(), 22); + ensure_approximately_equals("Mean after merge (p1)", F32(7.000), m2.getMean(), 22); + + ensure_equals("Source count of merge is undamaged (p1)", 0, m1.getCount()); + ensure_approximately_equals("Source min of merge is undamaged (p1)", F32(0), m1.getMin(), 22); + ensure_approximately_equals("Source max of merge is undamaged (p1)", F32(0), m1.getMax(), 22); + ensure_approximately_equals("Source mean of merge is undamaged (p1)", F32(0), m1.getMean(), 22); + + m2.reset(); + + m2.record(-22.0); + m2.record(-1.0); + + m2.merge(m1); + + ensure_equals("Count after merge (p2)", 2, m2.getCount()); + ensure_approximately_equals("Min after merge (p2)", F32(-22.0), m2.getMin(), 22); + ensure_approximately_equals("Max after merge (p2)", F32(-1.0), m2.getMax(), 22); + ensure_approximately_equals("Mean after merge (p2)", F32(-11.5), m2.getMean(), 22); + } + + // Testing LLSimpleStatMMM's merge() method when dst contributes nothing + template<> template<> + void stat_counter_index_object_t::test<15>() + { + LLSimpleStatMMM<> m1; + LLSimpleStatMMM<> m2; + + m1.record(5.0); + m1.record(7.0); + m1.record(9.0); + + m2.merge(m1); + + ensure_equals("Count after merge (p1)", 3, m2.getCount()); + ensure_approximately_equals("Min after merge (p1)", F32(5.0), m2.getMin(), 22); + ensure_approximately_equals("Max after merge (p1)", F32(9.0), m2.getMax(), 22); + ensure_approximately_equals("Mean after merge (p1)", F32(7.000), m2.getMean(), 22); + + ensure_equals("Source count of merge is undamaged (p1)", 3, m1.getCount()); + ensure_approximately_equals("Source min of merge is undamaged (p1)", F32(5.0), m1.getMin(), 22); + ensure_approximately_equals("Source max of merge is undamaged (p1)", F32(9.0), m1.getMax(), 22); + ensure_approximately_equals("Source mean of merge is undamaged (p1)", F32(7.0), m1.getMean(), 22); + + m1.reset(); + m2.reset(); + + m1.record(-22.0); + m1.record(-1.0); + + m2.merge(m1); + + ensure_equals("Count after merge (p2)", 2, m2.getCount()); + ensure_approximately_equals("Min after merge (p2)", F32(-22.0), m2.getMin(), 22); + ensure_approximately_equals("Max after merge (p2)", F32(-1.0), m2.getMax(), 22); + ensure_approximately_equals("Mean after merge (p2)", F32(-11.5), m2.getMean(), 22); + } + + // Testing LLSimpleStatMMM's merge() method when neither dst nor src contributes + template<> template<> + void stat_counter_index_object_t::test<16>() + { + LLSimpleStatMMM<> m1; + LLSimpleStatMMM<> m2; + + m2.merge(m1); + + ensure_equals("Count after merge (p1)", 0, m2.getCount()); + ensure_approximately_equals("Min after merge (p1)", F32(0), m2.getMin(), 22); + ensure_approximately_equals("Max after merge (p1)", F32(0), m2.getMax(), 22); + ensure_approximately_equals("Mean after merge (p1)", F32(0), m2.getMean(), 22); + + ensure_equals("Source count of merge is undamaged (p1)", 0, m1.getCount()); + ensure_approximately_equals("Source min of merge is undamaged (p1)", F32(0), m1.getMin(), 22); + ensure_approximately_equals("Source max of merge is undamaged (p1)", F32(0), m1.getMax(), 22); + ensure_approximately_equals("Source mean of merge is undamaged (p1)", F32(0), m1.getMean(), 22); + } +} |