diff options
author | Ansariel <ansariel.hiller@phoenixviewer.com> | 2024-05-22 21:25:21 +0200 |
---|---|---|
committer | Andrey Lihatskiy <alihatskiy@productengine.com> | 2024-05-22 22:40:26 +0300 |
commit | e2e37cced861b98de8c1a7c9c0d3a50d2d90e433 (patch) | |
tree | 1bb897489ce524986f6196201c10ac0d8861aa5f /indra/llmath/m3math.cpp | |
parent | 069ea06848f766466f1a281144c82a0f2bd79f3a (diff) |
Fix line endlings
Diffstat (limited to 'indra/llmath/m3math.cpp')
-rw-r--r-- | indra/llmath/m3math.cpp | 1180 |
1 files changed, 590 insertions, 590 deletions
diff --git a/indra/llmath/m3math.cpp b/indra/llmath/m3math.cpp index e48c47d1ef..472d340af5 100644 --- a/indra/llmath/m3math.cpp +++ b/indra/llmath/m3math.cpp @@ -1,590 +1,590 @@ -/**
- * @file m3math.cpp
- * @brief LLMatrix3 class implementation.
- *
- * $LicenseInfo:firstyear=2000&license=viewerlgpl$
- * Second Life Viewer Source Code
- * Copyright (C) 2010, Linden Research, Inc.
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation;
- * version 2.1 of the License only.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
- * $/LicenseInfo$
- */
-
-#include "linden_common.h"
-
-//#include "vmath.h"
-#include "v3math.h"
-#include "v3dmath.h"
-#include "v4math.h"
-#include "m4math.h"
-#include "m3math.h"
-#include "llquaternion.h"
-
-// LLMatrix3
-
-// ji
-// LLMatrix3 = |00 01 02 |
-// |10 11 12 |
-// |20 21 22 |
-
-// LLMatrix3 = |fx fy fz | forward-axis
-// |lx ly lz | left-axis
-// |ux uy uz | up-axis
-
-
-// Constructors
-
-
-LLMatrix3::LLMatrix3(const LLQuaternion &q)
-{
- setRot(q);
-}
-
-
-LLMatrix3::LLMatrix3(const F32 angle, const LLVector3 &vec)
-{
- LLQuaternion quat(angle, vec);
- setRot(quat);
-}
-
-LLMatrix3::LLMatrix3(const F32 angle, const LLVector3d &vec)
-{
- LLVector3 vec_f;
- vec_f.setVec(vec);
- LLQuaternion quat(angle, vec_f);
- setRot(quat);
-}
-
-LLMatrix3::LLMatrix3(const F32 angle, const LLVector4 &vec)
-{
- LLQuaternion quat(angle, vec);
- setRot(quat);
-}
-
-LLMatrix3::LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw)
-{
- setRot(roll,pitch,yaw);
-}
-
-// From Matrix and Quaternion FAQ
-void LLMatrix3::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const
-{
- F64 angle_x, angle_y, angle_z;
- F64 cx, cy, cz; // cosine of angle_x, angle_y, angle_z
- F64 sx, sz; // sine of angle_x, angle_y, angle_z
-
- angle_y = asin(llclamp(mMatrix[2][0], -1.f, 1.f));
- cy = cos(angle_y);
-
- if (fabs(cy) > 0.005) // non-zero
- {
- // no gimbal lock
- cx = mMatrix[2][2] / cy;
- sx = - mMatrix[2][1] / cy;
-
- angle_x = (F32) atan2(sx, cx);
-
- cz = mMatrix[0][0] / cy;
- sz = - mMatrix[1][0] / cy;
-
- angle_z = (F32) atan2(sz, cz);
- }
- else
- {
- // yup, gimbal lock
- angle_x = 0;
-
- // some tricky math thereby avoided, see article
-
- cz = mMatrix[1][1];
- sz = mMatrix[0][1];
-
- angle_z = atan2(sz, cz);
- }
-
- *roll = (F32)angle_x;
- *pitch = (F32)angle_y;
- *yaw = (F32)angle_z;
-}
-
-
-// Clear and Assignment Functions
-
-const LLMatrix3& LLMatrix3::setIdentity()
-{
- mMatrix[0][0] = 1.f;
- mMatrix[0][1] = 0.f;
- mMatrix[0][2] = 0.f;
-
- mMatrix[1][0] = 0.f;
- mMatrix[1][1] = 1.f;
- mMatrix[1][2] = 0.f;
-
- mMatrix[2][0] = 0.f;
- mMatrix[2][1] = 0.f;
- mMatrix[2][2] = 1.f;
- return (*this);
-}
-
-const LLMatrix3& LLMatrix3::clear()
-{
- mMatrix[0][0] = 0.f;
- mMatrix[0][1] = 0.f;
- mMatrix[0][2] = 0.f;
-
- mMatrix[1][0] = 0.f;
- mMatrix[1][1] = 0.f;
- mMatrix[1][2] = 0.f;
-
- mMatrix[2][0] = 0.f;
- mMatrix[2][1] = 0.f;
- mMatrix[2][2] = 0.f;
- return (*this);
-}
-
-const LLMatrix3& LLMatrix3::setZero()
-{
- mMatrix[0][0] = 0.f;
- mMatrix[0][1] = 0.f;
- mMatrix[0][2] = 0.f;
-
- mMatrix[1][0] = 0.f;
- mMatrix[1][1] = 0.f;
- mMatrix[1][2] = 0.f;
-
- mMatrix[2][0] = 0.f;
- mMatrix[2][1] = 0.f;
- mMatrix[2][2] = 0.f;
- return (*this);
-}
-
-// various useful mMatrix functions
-
-const LLMatrix3& LLMatrix3::transpose()
-{
- // transpose the matrix
- F32 temp;
- temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp;
- temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp;
- temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp;
- return *this;
-}
-
-
-F32 LLMatrix3::determinant() const
-{
- // Is this a useful method when we assume the matrices are valid rotation
- // matrices throughout this implementation?
- return mMatrix[0][0] * (mMatrix[1][1] * mMatrix[2][2] - mMatrix[1][2] * mMatrix[2][1]) +
- mMatrix[0][1] * (mMatrix[1][2] * mMatrix[2][0] - mMatrix[1][0] * mMatrix[2][2]) +
- mMatrix[0][2] * (mMatrix[1][0] * mMatrix[2][1] - mMatrix[1][1] * mMatrix[2][0]);
-}
-
-// inverts this matrix
-void LLMatrix3::invert()
-{
- // fails silently if determinant is zero too small
- F32 det = determinant();
- const F32 VERY_SMALL_DETERMINANT = 0.000001f;
- if (fabs(det) > VERY_SMALL_DETERMINANT)
- {
- // invertiable
- LLMatrix3 t(*this);
- mMatrix[VX][VX] = ( t.mMatrix[VY][VY] * t.mMatrix[VZ][VZ] - t.mMatrix[VY][VZ] * t.mMatrix[VZ][VY] ) / det;
- mMatrix[VY][VX] = ( t.mMatrix[VY][VZ] * t.mMatrix[VZ][VX] - t.mMatrix[VY][VX] * t.mMatrix[VZ][VZ] ) / det;
- mMatrix[VZ][VX] = ( t.mMatrix[VY][VX] * t.mMatrix[VZ][VY] - t.mMatrix[VY][VY] * t.mMatrix[VZ][VX] ) / det;
- mMatrix[VX][VY] = ( t.mMatrix[VZ][VY] * t.mMatrix[VX][VZ] - t.mMatrix[VZ][VZ] * t.mMatrix[VX][VY] ) / det;
- mMatrix[VY][VY] = ( t.mMatrix[VZ][VZ] * t.mMatrix[VX][VX] - t.mMatrix[VZ][VX] * t.mMatrix[VX][VZ] ) / det;
- mMatrix[VZ][VY] = ( t.mMatrix[VZ][VX] * t.mMatrix[VX][VY] - t.mMatrix[VZ][VY] * t.mMatrix[VX][VX] ) / det;
- mMatrix[VX][VZ] = ( t.mMatrix[VX][VY] * t.mMatrix[VY][VZ] - t.mMatrix[VX][VZ] * t.mMatrix[VY][VY] ) / det;
- mMatrix[VY][VZ] = ( t.mMatrix[VX][VZ] * t.mMatrix[VY][VX] - t.mMatrix[VX][VX] * t.mMatrix[VY][VZ] ) / det;
- mMatrix[VZ][VZ] = ( t.mMatrix[VX][VX] * t.mMatrix[VY][VY] - t.mMatrix[VX][VY] * t.mMatrix[VY][VX] ) / det;
- }
-}
-
-// does not assume a rotation matrix, and does not divide by determinant, assuming results will be renormalized
-const LLMatrix3& LLMatrix3::adjointTranspose()
-{
- LLMatrix3 adjoint_transpose;
- adjoint_transpose.mMatrix[VX][VX] = mMatrix[VY][VY] * mMatrix[VZ][VZ] - mMatrix[VY][VZ] * mMatrix[VZ][VY] ;
- adjoint_transpose.mMatrix[VY][VX] = mMatrix[VY][VZ] * mMatrix[VZ][VX] - mMatrix[VY][VX] * mMatrix[VZ][VZ] ;
- adjoint_transpose.mMatrix[VZ][VX] = mMatrix[VY][VX] * mMatrix[VZ][VY] - mMatrix[VY][VY] * mMatrix[VZ][VX] ;
- adjoint_transpose.mMatrix[VX][VY] = mMatrix[VZ][VY] * mMatrix[VX][VZ] - mMatrix[VZ][VZ] * mMatrix[VX][VY] ;
- adjoint_transpose.mMatrix[VY][VY] = mMatrix[VZ][VZ] * mMatrix[VX][VX] - mMatrix[VZ][VX] * mMatrix[VX][VZ] ;
- adjoint_transpose.mMatrix[VZ][VY] = mMatrix[VZ][VX] * mMatrix[VX][VY] - mMatrix[VZ][VY] * mMatrix[VX][VX] ;
- adjoint_transpose.mMatrix[VX][VZ] = mMatrix[VX][VY] * mMatrix[VY][VZ] - mMatrix[VX][VZ] * mMatrix[VY][VY] ;
- adjoint_transpose.mMatrix[VY][VZ] = mMatrix[VX][VZ] * mMatrix[VY][VX] - mMatrix[VX][VX] * mMatrix[VY][VZ] ;
- adjoint_transpose.mMatrix[VZ][VZ] = mMatrix[VX][VX] * mMatrix[VY][VY] - mMatrix[VX][VY] * mMatrix[VY][VX] ;
-
- *this = adjoint_transpose;
- return *this;
-}
-
-// SJB: This code is correct for a logicly stored (non-transposed) matrix;
-// Our matrices are stored transposed, OpenGL style, so this generates the
-// INVERSE quaternion (-x, -y, -z, w)!
-// Because we use similar logic in LLQuaternion::getMatrix3,
-// we are internally consistant so everything works OK :)
-LLQuaternion LLMatrix3::quaternion() const
-{
- LLQuaternion quat;
- F32 tr, s, q[4];
- U32 i, j, k;
- U32 nxt[3] = {1, 2, 0};
-
- tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2];
-
- // check the diagonal
- if (tr > 0.f)
- {
- s = (F32)sqrt (tr + 1.f);
- quat.mQ[VS] = s / 2.f;
- s = 0.5f / s;
- quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s;
- quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s;
- quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s;
- }
- else
- {
- // diagonal is negative
- i = 0;
- if (mMatrix[1][1] > mMatrix[0][0])
- i = 1;
- if (mMatrix[2][2] > mMatrix[i][i])
- i = 2;
-
- j = nxt[i];
- k = nxt[j];
-
-
- s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f);
-
- q[i] = s * 0.5f;
-
- if (s != 0.f)
- s = 0.5f / s;
-
- q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s;
- q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s;
- q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s;
-
- quat.setQuat(q);
- }
- return quat;
-}
-
-const LLMatrix3& LLMatrix3::setRot(const F32 angle, const LLVector3 &vec)
-{
- setRot(LLQuaternion(angle, vec));
- return *this;
-}
-
-const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 yaw)
-{
- // Rotates RH about x-axis by 'roll' then
- // rotates RH about the old y-axis by 'pitch' then
- // rotates RH about the original z-axis by 'yaw'.
- // .
- // /|\ yaw axis
- // | __.
- // ._ ___| /| pitch axis
- // _||\ \\ |-. /
- // \|| \_______\_|__\_/_______
- // | _ _ o o o_o_o_o o /_\_ ________\ roll axis
- // // /_______/ /__________> /
- // /_,-' // /
- // /__,-'
-
- F32 cx, sx, cy, sy, cz, sz;
- F32 cxsy, sxsy;
-
- cx = (F32)cos(roll); //A
- sx = (F32)sin(roll); //B
- cy = (F32)cos(pitch); //C
- sy = (F32)sin(pitch); //D
- cz = (F32)cos(yaw); //E
- sz = (F32)sin(yaw); //F
-
- cxsy = cx * sy; //AD
- sxsy = sx * sy; //BD
-
- mMatrix[0][0] = cy * cz;
- mMatrix[1][0] = -cy * sz;
- mMatrix[2][0] = sy;
- mMatrix[0][1] = sxsy * cz + cx * sz;
- mMatrix[1][1] = -sxsy * sz + cx * cz;
- mMatrix[2][1] = -sx * cy;
- mMatrix[0][2] = -cxsy * cz + sx * sz;
- mMatrix[1][2] = cxsy * sz + sx * cz;
- mMatrix[2][2] = cx * cy;
- return *this;
-}
-
-
-const LLMatrix3& LLMatrix3::setRot(const LLQuaternion &q)
-{
- *this = q.getMatrix3();
- return *this;
-}
-
-const LLMatrix3& LLMatrix3::setRows(const LLVector3 &fwd, const LLVector3 &left, const LLVector3 &up)
-{
- mMatrix[0][0] = fwd.mV[0];
- mMatrix[0][1] = fwd.mV[1];
- mMatrix[0][2] = fwd.mV[2];
-
- mMatrix[1][0] = left.mV[0];
- mMatrix[1][1] = left.mV[1];
- mMatrix[1][2] = left.mV[2];
-
- mMatrix[2][0] = up.mV[0];
- mMatrix[2][1] = up.mV[1];
- mMatrix[2][2] = up.mV[2];
-
- return *this;
-}
-
-const LLMatrix3& LLMatrix3::setRow( U32 rowIndex, const LLVector3& row )
-{
- llassert( rowIndex >= 0 && rowIndex < NUM_VALUES_IN_MAT3 );
-
- mMatrix[rowIndex][0] = row[0];
- mMatrix[rowIndex][1] = row[1];
- mMatrix[rowIndex][2] = row[2];
-
- return *this;
-}
-
-const LLMatrix3& LLMatrix3::setCol( U32 colIndex, const LLVector3& col )
-{
- llassert( colIndex >= 0 && colIndex < NUM_VALUES_IN_MAT3 );
-
- mMatrix[0][colIndex] = col[0];
- mMatrix[1][colIndex] = col[1];
- mMatrix[2][colIndex] = col[2];
-
- return *this;
-}
-
-const LLMatrix3& LLMatrix3::rotate(const F32 angle, const LLVector3 &vec)
-{
- LLMatrix3 mat(angle, vec);
- *this *= mat;
- return *this;
-}
-
-
-const LLMatrix3& LLMatrix3::rotate(const F32 roll, const F32 pitch, const F32 yaw)
-{
- LLMatrix3 mat(roll, pitch, yaw);
- *this *= mat;
- return *this;
-}
-
-
-const LLMatrix3& LLMatrix3::rotate(const LLQuaternion &q)
-{
- LLMatrix3 mat(q);
- *this *= mat;
- return *this;
-}
-
-void LLMatrix3::add(const LLMatrix3& other_matrix)
-{
- for (S32 i = 0; i < 3; ++i)
- {
- for (S32 j = 0; j < 3; ++j)
- {
- mMatrix[i][j] += other_matrix.mMatrix[i][j];
- }
- }
-}
-
-LLVector3 LLMatrix3::getFwdRow() const
-{
- return LLVector3(mMatrix[VX]);
-}
-
-LLVector3 LLMatrix3::getLeftRow() const
-{
- return LLVector3(mMatrix[VY]);
-}
-
-LLVector3 LLMatrix3::getUpRow() const
-{
- return LLVector3(mMatrix[VZ]);
-}
-
-
-
-const LLMatrix3& LLMatrix3::orthogonalize()
-{
- LLVector3 x_axis(mMatrix[VX]);
- LLVector3 y_axis(mMatrix[VY]);
- LLVector3 z_axis(mMatrix[VZ]);
-
- x_axis.normVec();
- y_axis -= x_axis * (x_axis * y_axis);
- y_axis.normVec();
- z_axis = x_axis % y_axis;
- setRows(x_axis, y_axis, z_axis);
- return (*this);
-}
-
-
-// LLMatrix3 Operators
-
-LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b)
-{
- U32 i, j;
- LLMatrix3 mat;
- for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
- {
- for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
- {
- mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] +
- a.mMatrix[j][1] * b.mMatrix[1][i] +
- a.mMatrix[j][2] * b.mMatrix[2][i];
- }
- }
- return mat;
-}
-
-/* Not implemented to help enforce code consistency with the syntax of
- row-major notation. This is a Good Thing.
-LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b)
-{
- LLVector3 vec;
- // matrix operates "from the left" on column vector
- vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] +
- a.mMatrix[VX][VY] * b.mV[VY] +
- a.mMatrix[VX][VZ] * b.mV[VZ];
-
- vec.mV[VY] = a.mMatrix[VY][VX] * b.mV[VX] +
- a.mMatrix[VY][VY] * b.mV[VY] +
- a.mMatrix[VY][VZ] * b.mV[VZ];
-
- vec.mV[VZ] = a.mMatrix[VZ][VX] * b.mV[VX] +
- a.mMatrix[VZ][VY] * b.mV[VY] +
- a.mMatrix[VZ][VZ] * b.mV[VZ];
- return vec;
-}
-*/
-
-
-LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b)
-{
- // matrix operates "from the right" on row vector
- return LLVector3(
- a.mV[VX] * b.mMatrix[VX][VX] +
- a.mV[VY] * b.mMatrix[VY][VX] +
- a.mV[VZ] * b.mMatrix[VZ][VX],
-
- a.mV[VX] * b.mMatrix[VX][VY] +
- a.mV[VY] * b.mMatrix[VY][VY] +
- a.mV[VZ] * b.mMatrix[VZ][VY],
-
- a.mV[VX] * b.mMatrix[VX][VZ] +
- a.mV[VY] * b.mMatrix[VY][VZ] +
- a.mV[VZ] * b.mMatrix[VZ][VZ] );
-}
-
-LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b)
-{
- // matrix operates "from the right" on row vector
- return LLVector3d(
- a.mdV[VX] * b.mMatrix[VX][VX] +
- a.mdV[VY] * b.mMatrix[VY][VX] +
- a.mdV[VZ] * b.mMatrix[VZ][VX],
-
- a.mdV[VX] * b.mMatrix[VX][VY] +
- a.mdV[VY] * b.mMatrix[VY][VY] +
- a.mdV[VZ] * b.mMatrix[VZ][VY],
-
- a.mdV[VX] * b.mMatrix[VX][VZ] +
- a.mdV[VY] * b.mMatrix[VY][VZ] +
- a.mdV[VZ] * b.mMatrix[VZ][VZ] );
-}
-
-bool operator==(const LLMatrix3 &a, const LLMatrix3 &b)
-{
- U32 i, j;
- for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
- {
- for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
- {
- if (a.mMatrix[j][i] != b.mMatrix[j][i])
- return false;
- }
- }
- return true;
-}
-
-bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b)
-{
- U32 i, j;
- for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
- {
- for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
- {
- if (a.mMatrix[j][i] != b.mMatrix[j][i])
- return true;
- }
- }
- return false;
-}
-
-const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b)
-{
- U32 i, j;
- LLMatrix3 mat;
- for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
- {
- for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
- {
- mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] +
- a.mMatrix[j][1] * b.mMatrix[1][i] +
- a.mMatrix[j][2] * b.mMatrix[2][i];
- }
- }
- a = mat;
- return a;
-}
-
-const LLMatrix3& operator*=(LLMatrix3 &a, F32 scalar )
-{
- for( U32 i = 0; i < NUM_VALUES_IN_MAT3; ++i )
- {
- for( U32 j = 0; j < NUM_VALUES_IN_MAT3; ++j )
- {
- a.mMatrix[i][j] *= scalar;
- }
- }
-
- return a;
-}
-
-std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a)
-{
- s << "{ "
- << a.mMatrix[VX][VX] << ", " << a.mMatrix[VX][VY] << ", " << a.mMatrix[VX][VZ] << "; "
- << a.mMatrix[VY][VX] << ", " << a.mMatrix[VY][VY] << ", " << a.mMatrix[VY][VZ] << "; "
- << a.mMatrix[VZ][VX] << ", " << a.mMatrix[VZ][VY] << ", " << a.mMatrix[VZ][VZ]
- << " }";
- return s;
-}
-
+/** + * @file m3math.cpp + * @brief LLMatrix3 class implementation. + * + * $LicenseInfo:firstyear=2000&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2010, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +#include "linden_common.h" + +//#include "vmath.h" +#include "v3math.h" +#include "v3dmath.h" +#include "v4math.h" +#include "m4math.h" +#include "m3math.h" +#include "llquaternion.h" + +// LLMatrix3 + +// ji +// LLMatrix3 = |00 01 02 | +// |10 11 12 | +// |20 21 22 | + +// LLMatrix3 = |fx fy fz | forward-axis +// |lx ly lz | left-axis +// |ux uy uz | up-axis + + +// Constructors + + +LLMatrix3::LLMatrix3(const LLQuaternion &q) +{ + setRot(q); +} + + +LLMatrix3::LLMatrix3(const F32 angle, const LLVector3 &vec) +{ + LLQuaternion quat(angle, vec); + setRot(quat); +} + +LLMatrix3::LLMatrix3(const F32 angle, const LLVector3d &vec) +{ + LLVector3 vec_f; + vec_f.setVec(vec); + LLQuaternion quat(angle, vec_f); + setRot(quat); +} + +LLMatrix3::LLMatrix3(const F32 angle, const LLVector4 &vec) +{ + LLQuaternion quat(angle, vec); + setRot(quat); +} + +LLMatrix3::LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw) +{ + setRot(roll,pitch,yaw); +} + +// From Matrix and Quaternion FAQ +void LLMatrix3::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const +{ + F64 angle_x, angle_y, angle_z; + F64 cx, cy, cz; // cosine of angle_x, angle_y, angle_z + F64 sx, sz; // sine of angle_x, angle_y, angle_z + + angle_y = asin(llclamp(mMatrix[2][0], -1.f, 1.f)); + cy = cos(angle_y); + + if (fabs(cy) > 0.005) // non-zero + { + // no gimbal lock + cx = mMatrix[2][2] / cy; + sx = - mMatrix[2][1] / cy; + + angle_x = (F32) atan2(sx, cx); + + cz = mMatrix[0][0] / cy; + sz = - mMatrix[1][0] / cy; + + angle_z = (F32) atan2(sz, cz); + } + else + { + // yup, gimbal lock + angle_x = 0; + + // some tricky math thereby avoided, see article + + cz = mMatrix[1][1]; + sz = mMatrix[0][1]; + + angle_z = atan2(sz, cz); + } + + *roll = (F32)angle_x; + *pitch = (F32)angle_y; + *yaw = (F32)angle_z; +} + + +// Clear and Assignment Functions + +const LLMatrix3& LLMatrix3::setIdentity() +{ + mMatrix[0][0] = 1.f; + mMatrix[0][1] = 0.f; + mMatrix[0][2] = 0.f; + + mMatrix[1][0] = 0.f; + mMatrix[1][1] = 1.f; + mMatrix[1][2] = 0.f; + + mMatrix[2][0] = 0.f; + mMatrix[2][1] = 0.f; + mMatrix[2][2] = 1.f; + return (*this); +} + +const LLMatrix3& LLMatrix3::clear() +{ + mMatrix[0][0] = 0.f; + mMatrix[0][1] = 0.f; + mMatrix[0][2] = 0.f; + + mMatrix[1][0] = 0.f; + mMatrix[1][1] = 0.f; + mMatrix[1][2] = 0.f; + + mMatrix[2][0] = 0.f; + mMatrix[2][1] = 0.f; + mMatrix[2][2] = 0.f; + return (*this); +} + +const LLMatrix3& LLMatrix3::setZero() +{ + mMatrix[0][0] = 0.f; + mMatrix[0][1] = 0.f; + mMatrix[0][2] = 0.f; + + mMatrix[1][0] = 0.f; + mMatrix[1][1] = 0.f; + mMatrix[1][2] = 0.f; + + mMatrix[2][0] = 0.f; + mMatrix[2][1] = 0.f; + mMatrix[2][2] = 0.f; + return (*this); +} + +// various useful mMatrix functions + +const LLMatrix3& LLMatrix3::transpose() +{ + // transpose the matrix + F32 temp; + temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp; + temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp; + temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp; + return *this; +} + + +F32 LLMatrix3::determinant() const +{ + // Is this a useful method when we assume the matrices are valid rotation + // matrices throughout this implementation? + return mMatrix[0][0] * (mMatrix[1][1] * mMatrix[2][2] - mMatrix[1][2] * mMatrix[2][1]) + + mMatrix[0][1] * (mMatrix[1][2] * mMatrix[2][0] - mMatrix[1][0] * mMatrix[2][2]) + + mMatrix[0][2] * (mMatrix[1][0] * mMatrix[2][1] - mMatrix[1][1] * mMatrix[2][0]); +} + +// inverts this matrix +void LLMatrix3::invert() +{ + // fails silently if determinant is zero too small + F32 det = determinant(); + const F32 VERY_SMALL_DETERMINANT = 0.000001f; + if (fabs(det) > VERY_SMALL_DETERMINANT) + { + // invertiable + LLMatrix3 t(*this); + mMatrix[VX][VX] = ( t.mMatrix[VY][VY] * t.mMatrix[VZ][VZ] - t.mMatrix[VY][VZ] * t.mMatrix[VZ][VY] ) / det; + mMatrix[VY][VX] = ( t.mMatrix[VY][VZ] * t.mMatrix[VZ][VX] - t.mMatrix[VY][VX] * t.mMatrix[VZ][VZ] ) / det; + mMatrix[VZ][VX] = ( t.mMatrix[VY][VX] * t.mMatrix[VZ][VY] - t.mMatrix[VY][VY] * t.mMatrix[VZ][VX] ) / det; + mMatrix[VX][VY] = ( t.mMatrix[VZ][VY] * t.mMatrix[VX][VZ] - t.mMatrix[VZ][VZ] * t.mMatrix[VX][VY] ) / det; + mMatrix[VY][VY] = ( t.mMatrix[VZ][VZ] * t.mMatrix[VX][VX] - t.mMatrix[VZ][VX] * t.mMatrix[VX][VZ] ) / det; + mMatrix[VZ][VY] = ( t.mMatrix[VZ][VX] * t.mMatrix[VX][VY] - t.mMatrix[VZ][VY] * t.mMatrix[VX][VX] ) / det; + mMatrix[VX][VZ] = ( t.mMatrix[VX][VY] * t.mMatrix[VY][VZ] - t.mMatrix[VX][VZ] * t.mMatrix[VY][VY] ) / det; + mMatrix[VY][VZ] = ( t.mMatrix[VX][VZ] * t.mMatrix[VY][VX] - t.mMatrix[VX][VX] * t.mMatrix[VY][VZ] ) / det; + mMatrix[VZ][VZ] = ( t.mMatrix[VX][VX] * t.mMatrix[VY][VY] - t.mMatrix[VX][VY] * t.mMatrix[VY][VX] ) / det; + } +} + +// does not assume a rotation matrix, and does not divide by determinant, assuming results will be renormalized +const LLMatrix3& LLMatrix3::adjointTranspose() +{ + LLMatrix3 adjoint_transpose; + adjoint_transpose.mMatrix[VX][VX] = mMatrix[VY][VY] * mMatrix[VZ][VZ] - mMatrix[VY][VZ] * mMatrix[VZ][VY] ; + adjoint_transpose.mMatrix[VY][VX] = mMatrix[VY][VZ] * mMatrix[VZ][VX] - mMatrix[VY][VX] * mMatrix[VZ][VZ] ; + adjoint_transpose.mMatrix[VZ][VX] = mMatrix[VY][VX] * mMatrix[VZ][VY] - mMatrix[VY][VY] * mMatrix[VZ][VX] ; + adjoint_transpose.mMatrix[VX][VY] = mMatrix[VZ][VY] * mMatrix[VX][VZ] - mMatrix[VZ][VZ] * mMatrix[VX][VY] ; + adjoint_transpose.mMatrix[VY][VY] = mMatrix[VZ][VZ] * mMatrix[VX][VX] - mMatrix[VZ][VX] * mMatrix[VX][VZ] ; + adjoint_transpose.mMatrix[VZ][VY] = mMatrix[VZ][VX] * mMatrix[VX][VY] - mMatrix[VZ][VY] * mMatrix[VX][VX] ; + adjoint_transpose.mMatrix[VX][VZ] = mMatrix[VX][VY] * mMatrix[VY][VZ] - mMatrix[VX][VZ] * mMatrix[VY][VY] ; + adjoint_transpose.mMatrix[VY][VZ] = mMatrix[VX][VZ] * mMatrix[VY][VX] - mMatrix[VX][VX] * mMatrix[VY][VZ] ; + adjoint_transpose.mMatrix[VZ][VZ] = mMatrix[VX][VX] * mMatrix[VY][VY] - mMatrix[VX][VY] * mMatrix[VY][VX] ; + + *this = adjoint_transpose; + return *this; +} + +// SJB: This code is correct for a logicly stored (non-transposed) matrix; +// Our matrices are stored transposed, OpenGL style, so this generates the +// INVERSE quaternion (-x, -y, -z, w)! +// Because we use similar logic in LLQuaternion::getMatrix3, +// we are internally consistant so everything works OK :) +LLQuaternion LLMatrix3::quaternion() const +{ + LLQuaternion quat; + F32 tr, s, q[4]; + U32 i, j, k; + U32 nxt[3] = {1, 2, 0}; + + tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2]; + + // check the diagonal + if (tr > 0.f) + { + s = (F32)sqrt (tr + 1.f); + quat.mQ[VS] = s / 2.f; + s = 0.5f / s; + quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s; + quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s; + quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s; + } + else + { + // diagonal is negative + i = 0; + if (mMatrix[1][1] > mMatrix[0][0]) + i = 1; + if (mMatrix[2][2] > mMatrix[i][i]) + i = 2; + + j = nxt[i]; + k = nxt[j]; + + + s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f); + + q[i] = s * 0.5f; + + if (s != 0.f) + s = 0.5f / s; + + q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s; + q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s; + q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s; + + quat.setQuat(q); + } + return quat; +} + +const LLMatrix3& LLMatrix3::setRot(const F32 angle, const LLVector3 &vec) +{ + setRot(LLQuaternion(angle, vec)); + return *this; +} + +const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 yaw) +{ + // Rotates RH about x-axis by 'roll' then + // rotates RH about the old y-axis by 'pitch' then + // rotates RH about the original z-axis by 'yaw'. + // . + // /|\ yaw axis + // | __. + // ._ ___| /| pitch axis + // _||\ \\ |-. / + // \|| \_______\_|__\_/_______ + // | _ _ o o o_o_o_o o /_\_ ________\ roll axis + // // /_______/ /__________> / + // /_,-' // / + // /__,-' + + F32 cx, sx, cy, sy, cz, sz; + F32 cxsy, sxsy; + + cx = (F32)cos(roll); //A + sx = (F32)sin(roll); //B + cy = (F32)cos(pitch); //C + sy = (F32)sin(pitch); //D + cz = (F32)cos(yaw); //E + sz = (F32)sin(yaw); //F + + cxsy = cx * sy; //AD + sxsy = sx * sy; //BD + + mMatrix[0][0] = cy * cz; + mMatrix[1][0] = -cy * sz; + mMatrix[2][0] = sy; + mMatrix[0][1] = sxsy * cz + cx * sz; + mMatrix[1][1] = -sxsy * sz + cx * cz; + mMatrix[2][1] = -sx * cy; + mMatrix[0][2] = -cxsy * cz + sx * sz; + mMatrix[1][2] = cxsy * sz + sx * cz; + mMatrix[2][2] = cx * cy; + return *this; +} + + +const LLMatrix3& LLMatrix3::setRot(const LLQuaternion &q) +{ + *this = q.getMatrix3(); + return *this; +} + +const LLMatrix3& LLMatrix3::setRows(const LLVector3 &fwd, const LLVector3 &left, const LLVector3 &up) +{ + mMatrix[0][0] = fwd.mV[0]; + mMatrix[0][1] = fwd.mV[1]; + mMatrix[0][2] = fwd.mV[2]; + + mMatrix[1][0] = left.mV[0]; + mMatrix[1][1] = left.mV[1]; + mMatrix[1][2] = left.mV[2]; + + mMatrix[2][0] = up.mV[0]; + mMatrix[2][1] = up.mV[1]; + mMatrix[2][2] = up.mV[2]; + + return *this; +} + +const LLMatrix3& LLMatrix3::setRow( U32 rowIndex, const LLVector3& row ) +{ + llassert( rowIndex >= 0 && rowIndex < NUM_VALUES_IN_MAT3 ); + + mMatrix[rowIndex][0] = row[0]; + mMatrix[rowIndex][1] = row[1]; + mMatrix[rowIndex][2] = row[2]; + + return *this; +} + +const LLMatrix3& LLMatrix3::setCol( U32 colIndex, const LLVector3& col ) +{ + llassert( colIndex >= 0 && colIndex < NUM_VALUES_IN_MAT3 ); + + mMatrix[0][colIndex] = col[0]; + mMatrix[1][colIndex] = col[1]; + mMatrix[2][colIndex] = col[2]; + + return *this; +} + +const LLMatrix3& LLMatrix3::rotate(const F32 angle, const LLVector3 &vec) +{ + LLMatrix3 mat(angle, vec); + *this *= mat; + return *this; +} + + +const LLMatrix3& LLMatrix3::rotate(const F32 roll, const F32 pitch, const F32 yaw) +{ + LLMatrix3 mat(roll, pitch, yaw); + *this *= mat; + return *this; +} + + +const LLMatrix3& LLMatrix3::rotate(const LLQuaternion &q) +{ + LLMatrix3 mat(q); + *this *= mat; + return *this; +} + +void LLMatrix3::add(const LLMatrix3& other_matrix) +{ + for (S32 i = 0; i < 3; ++i) + { + for (S32 j = 0; j < 3; ++j) + { + mMatrix[i][j] += other_matrix.mMatrix[i][j]; + } + } +} + +LLVector3 LLMatrix3::getFwdRow() const +{ + return LLVector3(mMatrix[VX]); +} + +LLVector3 LLMatrix3::getLeftRow() const +{ + return LLVector3(mMatrix[VY]); +} + +LLVector3 LLMatrix3::getUpRow() const +{ + return LLVector3(mMatrix[VZ]); +} + + + +const LLMatrix3& LLMatrix3::orthogonalize() +{ + LLVector3 x_axis(mMatrix[VX]); + LLVector3 y_axis(mMatrix[VY]); + LLVector3 z_axis(mMatrix[VZ]); + + x_axis.normVec(); + y_axis -= x_axis * (x_axis * y_axis); + y_axis.normVec(); + z_axis = x_axis % y_axis; + setRows(x_axis, y_axis, z_axis); + return (*this); +} + + +// LLMatrix3 Operators + +LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b) +{ + U32 i, j; + LLMatrix3 mat; + for (i = 0; i < NUM_VALUES_IN_MAT3; i++) + { + for (j = 0; j < NUM_VALUES_IN_MAT3; j++) + { + mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + + a.mMatrix[j][1] * b.mMatrix[1][i] + + a.mMatrix[j][2] * b.mMatrix[2][i]; + } + } + return mat; +} + +/* Not implemented to help enforce code consistency with the syntax of + row-major notation. This is a Good Thing. +LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b) +{ + LLVector3 vec; + // matrix operates "from the left" on column vector + vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] + + a.mMatrix[VX][VY] * b.mV[VY] + + a.mMatrix[VX][VZ] * b.mV[VZ]; + + vec.mV[VY] = a.mMatrix[VY][VX] * b.mV[VX] + + a.mMatrix[VY][VY] * b.mV[VY] + + a.mMatrix[VY][VZ] * b.mV[VZ]; + + vec.mV[VZ] = a.mMatrix[VZ][VX] * b.mV[VX] + + a.mMatrix[VZ][VY] * b.mV[VY] + + a.mMatrix[VZ][VZ] * b.mV[VZ]; + return vec; +} +*/ + + +LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b) +{ + // matrix operates "from the right" on row vector + return LLVector3( + a.mV[VX] * b.mMatrix[VX][VX] + + a.mV[VY] * b.mMatrix[VY][VX] + + a.mV[VZ] * b.mMatrix[VZ][VX], + + a.mV[VX] * b.mMatrix[VX][VY] + + a.mV[VY] * b.mMatrix[VY][VY] + + a.mV[VZ] * b.mMatrix[VZ][VY], + + a.mV[VX] * b.mMatrix[VX][VZ] + + a.mV[VY] * b.mMatrix[VY][VZ] + + a.mV[VZ] * b.mMatrix[VZ][VZ] ); +} + +LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b) +{ + // matrix operates "from the right" on row vector + return LLVector3d( + a.mdV[VX] * b.mMatrix[VX][VX] + + a.mdV[VY] * b.mMatrix[VY][VX] + + a.mdV[VZ] * b.mMatrix[VZ][VX], + + a.mdV[VX] * b.mMatrix[VX][VY] + + a.mdV[VY] * b.mMatrix[VY][VY] + + a.mdV[VZ] * b.mMatrix[VZ][VY], + + a.mdV[VX] * b.mMatrix[VX][VZ] + + a.mdV[VY] * b.mMatrix[VY][VZ] + + a.mdV[VZ] * b.mMatrix[VZ][VZ] ); +} + +bool operator==(const LLMatrix3 &a, const LLMatrix3 &b) +{ + U32 i, j; + for (i = 0; i < NUM_VALUES_IN_MAT3; i++) + { + for (j = 0; j < NUM_VALUES_IN_MAT3; j++) + { + if (a.mMatrix[j][i] != b.mMatrix[j][i]) + return false; + } + } + return true; +} + +bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b) +{ + U32 i, j; + for (i = 0; i < NUM_VALUES_IN_MAT3; i++) + { + for (j = 0; j < NUM_VALUES_IN_MAT3; j++) + { + if (a.mMatrix[j][i] != b.mMatrix[j][i]) + return true; + } + } + return false; +} + +const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b) +{ + U32 i, j; + LLMatrix3 mat; + for (i = 0; i < NUM_VALUES_IN_MAT3; i++) + { + for (j = 0; j < NUM_VALUES_IN_MAT3; j++) + { + mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + + a.mMatrix[j][1] * b.mMatrix[1][i] + + a.mMatrix[j][2] * b.mMatrix[2][i]; + } + } + a = mat; + return a; +} + +const LLMatrix3& operator*=(LLMatrix3 &a, F32 scalar ) +{ + for( U32 i = 0; i < NUM_VALUES_IN_MAT3; ++i ) + { + for( U32 j = 0; j < NUM_VALUES_IN_MAT3; ++j ) + { + a.mMatrix[i][j] *= scalar; + } + } + + return a; +} + +std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a) +{ + s << "{ " + << a.mMatrix[VX][VX] << ", " << a.mMatrix[VX][VY] << ", " << a.mMatrix[VX][VZ] << "; " + << a.mMatrix[VY][VX] << ", " << a.mMatrix[VY][VY] << ", " << a.mMatrix[VY][VZ] << "; " + << a.mMatrix[VZ][VX] << ", " << a.mMatrix[VZ][VY] << ", " << a.mMatrix[VZ][VZ] + << " }"; + return s; +} + |