diff options
author | Andrey Lihatskiy <alihatskiy@productengine.com> | 2024-05-13 17:06:17 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-05-13 17:06:17 +0300 |
commit | 9013267da2269a9bd9683862b7449db1b1093afc (patch) | |
tree | 336172dfd6468e8bafa1d9c4a229624e85ffecfb /indra/llmath/llsphere.cpp | |
parent | 0cb2c511bc2a0f54eb7b3a4c2988d7ebec96e3be (diff) | |
parent | 38c2a5bde985a6a8a96d912d432f8bdf7e5b60be (diff) |
Merge pull request #1373 from secondlife/marchcat/x-ws-merge
Diffstat (limited to 'indra/llmath/llsphere.cpp')
-rw-r--r-- | indra/llmath/llsphere.cpp | 554 |
1 files changed, 277 insertions, 277 deletions
diff --git a/indra/llmath/llsphere.cpp b/indra/llmath/llsphere.cpp index a8d6200488..75f9ef1772 100644 --- a/indra/llmath/llsphere.cpp +++ b/indra/llmath/llsphere.cpp @@ -1,4 +1,4 @@ -/** +/** * @file llsphere.cpp * @author Andrew Meadows * @brief Simple line class that can compute nearest approach between two lines @@ -6,21 +6,21 @@ * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. - * + * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. - * + * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. - * + * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - * + * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ @@ -30,342 +30,342 @@ #include "llsphere.h" LLSphere::LLSphere() -: mCenter(0.f, 0.f, 0.f), - mRadius(0.f) +: mCenter(0.f, 0.f, 0.f), + mRadius(0.f) { } LLSphere::LLSphere( const LLVector3& center, F32 radius) { - set(center, radius); + set(center, radius); } void LLSphere::set( const LLVector3& center, F32 radius ) { - mCenter = center; - setRadius(radius); + mCenter = center; + setRadius(radius); } void LLSphere::setCenter( const LLVector3& center) { - mCenter = center; + mCenter = center; } void LLSphere::setRadius( F32 radius) { - if (radius < 0.f) - { - radius = -radius; - } - mRadius = radius; + if (radius < 0.f) + { + radius = -radius; + } + mRadius = radius; } - + const LLVector3& LLSphere::getCenter() const { - return mCenter; + return mCenter; } F32 LLSphere::getRadius() const { - return mRadius; + return mRadius; } // returns 'TRUE' if this sphere completely contains other_sphere BOOL LLSphere::contains(const LLSphere& other_sphere) const { - F32 separation = (mCenter - other_sphere.mCenter).length(); - return (mRadius >= separation + other_sphere.mRadius) ? TRUE : FALSE; + F32 separation = (mCenter - other_sphere.mCenter).length(); + return (mRadius >= separation + other_sphere.mRadius) ? TRUE : FALSE; } // returns 'TRUE' if this sphere completely contains other_sphere BOOL LLSphere::overlaps(const LLSphere& other_sphere) const { - F32 separation = (mCenter - other_sphere.mCenter).length(); - return (separation <= mRadius + other_sphere.mRadius) ? TRUE : FALSE; + F32 separation = (mCenter - other_sphere.mCenter).length(); + return (separation <= mRadius + other_sphere.mRadius) ? TRUE : FALSE; } // returns overlap // negative overlap is closest approach F32 LLSphere::getOverlap(const LLSphere& other_sphere) const { - // separation is distance from other_sphere's edge and this center - return (mCenter - other_sphere.mCenter).length() - mRadius - other_sphere.mRadius; + // separation is distance from other_sphere's edge and this center + return (mCenter - other_sphere.mCenter).length() - mRadius - other_sphere.mRadius; } bool LLSphere::operator==(const LLSphere& rhs) const { - // TODO? -- use approximate equality for centers? - return (mRadius == rhs.mRadius - && mCenter == rhs.mCenter); + // TODO? -- use approximate equality for centers? + return (mRadius == rhs.mRadius + && mCenter == rhs.mCenter); } std::ostream& operator<<( std::ostream& output_stream, const LLSphere& sphere) { - output_stream << "{center=" << sphere.mCenter << "," << "radius=" << sphere.mRadius << "}"; - return output_stream; + output_stream << "{center=" << sphere.mCenter << "," << "radius=" << sphere.mRadius << "}"; + return output_stream; } -// static +// static // removes any spheres that are contained in others void LLSphere::collapse(std::vector<LLSphere>& sphere_list) { - std::vector<LLSphere>::iterator first_itr = sphere_list.begin(); - while (first_itr != sphere_list.end()) - { - bool delete_from_front = false; - - std::vector<LLSphere>::iterator second_itr = first_itr; - ++second_itr; - while (second_itr != sphere_list.end()) - { - if (second_itr->contains(*first_itr)) - { - delete_from_front = true; - break; - } - else if (first_itr->contains(*second_itr)) - { - sphere_list.erase(second_itr++); - } - else - { - ++second_itr; - } - } - - if (delete_from_front) - { - sphere_list.erase(first_itr++); - } - else - { - ++first_itr; - } - } + std::vector<LLSphere>::iterator first_itr = sphere_list.begin(); + while (first_itr != sphere_list.end()) + { + bool delete_from_front = false; + + std::vector<LLSphere>::iterator second_itr = first_itr; + ++second_itr; + while (second_itr != sphere_list.end()) + { + if (second_itr->contains(*first_itr)) + { + delete_from_front = true; + break; + } + else if (first_itr->contains(*second_itr)) + { + sphere_list.erase(second_itr++); + } + else + { + ++second_itr; + } + } + + if (delete_from_front) + { + sphere_list.erase(first_itr++); + } + else + { + ++first_itr; + } + } } // static // returns the bounding sphere that contains both spheres LLSphere LLSphere::getBoundingSphere(const LLSphere& first_sphere, const LLSphere& second_sphere) { - LLVector3 direction = second_sphere.mCenter - first_sphere.mCenter; - - // HACK -- it is possible to get enough floating point error in the - // other getBoundingSphere() method that we have to add some slop - // at the end. Unfortunately, this breaks the link-order invarience - // for the linkability tests... unless we also apply the same slop - // here. - F32 half_milimeter = 0.0005f; - - F32 distance = direction.length(); - if (0.f == distance) - { - direction.setVec(1.f, 0.f, 0.f); - } - else - { - direction.normVec(); - } - // the 'edge' is measured from the first_sphere's center - F32 max_edge = 0.f; - F32 min_edge = 0.f; - - max_edge = llmax(max_edge + first_sphere.getRadius(), max_edge + distance + second_sphere.getRadius() + half_milimeter); - min_edge = llmin(min_edge - first_sphere.getRadius(), min_edge + distance - second_sphere.getRadius() - half_milimeter); - F32 radius = 0.5f * (max_edge - min_edge); - LLVector3 center = first_sphere.mCenter + (0.5f * (max_edge + min_edge)) * direction; - return LLSphere(center, radius); + LLVector3 direction = second_sphere.mCenter - first_sphere.mCenter; + + // HACK -- it is possible to get enough floating point error in the + // other getBoundingSphere() method that we have to add some slop + // at the end. Unfortunately, this breaks the link-order invarience + // for the linkability tests... unless we also apply the same slop + // here. + F32 half_milimeter = 0.0005f; + + F32 distance = direction.length(); + if (0.f == distance) + { + direction.setVec(1.f, 0.f, 0.f); + } + else + { + direction.normVec(); + } + // the 'edge' is measured from the first_sphere's center + F32 max_edge = 0.f; + F32 min_edge = 0.f; + + max_edge = llmax(max_edge + first_sphere.getRadius(), max_edge + distance + second_sphere.getRadius() + half_milimeter); + min_edge = llmin(min_edge - first_sphere.getRadius(), min_edge + distance - second_sphere.getRadius() - half_milimeter); + F32 radius = 0.5f * (max_edge - min_edge); + LLVector3 center = first_sphere.mCenter + (0.5f * (max_edge + min_edge)) * direction; + return LLSphere(center, radius); } // static // returns the bounding sphere that contains an arbitrary set of spheres LLSphere LLSphere::getBoundingSphere(const std::vector<LLSphere>& sphere_list) { - // this algorithm can get relatively inaccurate when the sphere - // collection is 'small' (contained within a bounding sphere of about - // 2 meters or less) - // TODO -- improve the accuracy for small collections of spheres - - LLSphere bounding_sphere( LLVector3(0.f, 0.f, 0.f), 0.f ); - S32 sphere_count = sphere_list.size(); - if (1 == sphere_count) - { - // trivial case -- single sphere - std::vector<LLSphere>::const_iterator sphere_itr = sphere_list.begin(); - bounding_sphere = *sphere_itr; - } - else if (2 == sphere_count) - { - // trivial case -- two spheres - std::vector<LLSphere>::const_iterator first_sphere = sphere_list.begin(); - std::vector<LLSphere>::const_iterator second_sphere = first_sphere; - ++second_sphere; - bounding_sphere = LLSphere::getBoundingSphere(*first_sphere, *second_sphere); - } - else if (sphere_count > 0) - { - // non-trivial case -- we will approximate the solution - // - // NOTE -- there is a fancy/fast way to do this for large - // numbers of arbirary N-dimensional spheres -- you can look it - // up on the net. We're dealing with 3D spheres at collection - // sizes of 256 spheres or smaller, so we just use this - // brute force method. - - // TODO -- perhaps would be worthwile to test for the solution where - // the largest spanning radius just happens to work. That is, where - // there are really two spheres that determine the bounding sphere, - // and all others are contained therein. - - // compute the AABB - std::vector<LLSphere>::const_iterator first_itr = sphere_list.begin(); - LLVector3 max_corner = first_itr->getCenter() + first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f); - LLVector3 min_corner = first_itr->getCenter() - first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f); - { - std::vector<LLSphere>::const_iterator sphere_itr = sphere_list.begin(); - for (++sphere_itr; sphere_itr != sphere_list.end(); ++sphere_itr) - { - LLVector3 center = sphere_itr->getCenter(); - F32 radius = sphere_itr->getRadius(); - for (S32 i=0; i<3; ++i) - { - if (center.mV[i] + radius > max_corner.mV[i]) - { - max_corner.mV[i] = center.mV[i] + radius; - } - if (center.mV[i] - radius < min_corner.mV[i]) - { - min_corner.mV[i] = center.mV[i] - radius; - } - } - } - } - - // get the starting center and radius from the AABB - LLVector3 diagonal = max_corner - min_corner; - F32 bounding_radius = 0.5f * diagonal.length(); - LLVector3 bounding_center = 0.5f * (max_corner + min_corner); - - // compute the starting step-size - F32 minimum_radius = 0.5f * llmin(diagonal.mV[VX], llmin(diagonal.mV[VY], diagonal.mV[VZ])); - F32 step_length = bounding_radius - minimum_radius; - //S32 step_count = 0; - //S32 max_step_count = 12; - F32 half_milimeter = 0.0005f; - - // wander the center around in search of tighter solutions - S32 last_dx = 2; // 2 is out of bounds --> no match - S32 last_dy = 2; - S32 last_dz = 2; - - while (step_length > half_milimeter - /*&& step_count < max_step_count*/) - { - // the algorithm for testing the maximum radius could be expensive enough - // that it makes sense to NOT duplicate testing when possible, so we keep - // track of where we last tested, and only test the new points - - S32 best_dx = 0; - S32 best_dy = 0; - S32 best_dz = 0; - - // sample near the center of the box - bool found_better_center = false; - for (S32 dx = -1; dx < 2; ++dx) - { - for (S32 dy = -1; dy < 2; ++dy) - { - for (S32 dz = -1; dz < 2; ++dz) - { - if (dx == 0 && dy == 0 && dz == 0) - { - continue; - } - - // count the number of indecies that match the last_*'s - S32 match_count = 0; - if (last_dx == dx) ++match_count; - if (last_dy == dy) ++match_count; - if (last_dz == dz) ++match_count; - if (match_count == 2) - { - // we've already tested this point - continue; - } - - LLVector3 center = bounding_center; - center.mV[VX] += (F32) dx * step_length; - center.mV[VY] += (F32) dy * step_length; - center.mV[VZ] += (F32) dz * step_length; - - // compute the radius of the bounding sphere - F32 max_radius = 0.f; - std::vector<LLSphere>::const_iterator sphere_itr; - for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr) - { - F32 radius = (sphere_itr->getCenter() - center).length() + sphere_itr->getRadius(); - if (radius > max_radius) - { - max_radius = radius; - } - } - if (max_radius < bounding_radius) - { - best_dx = dx; - best_dy = dy; - best_dz = dz; - bounding_center = center; - bounding_radius = max_radius; - found_better_center = true; - } - } - } - } - if (found_better_center) - { - // remember where we came from so we can avoid retesting - last_dx = -best_dx; - last_dy = -best_dy; - last_dz = -best_dz; - } - else - { - // reduce the step size - step_length *= 0.5f; - //++step_count; - // reset the last_*'s - last_dx = 2; // 2 is out of bounds --> no match - last_dy = 2; - last_dz = 2; - } - } - - // HACK -- it is possible to get enough floating point error for the - // bounding sphere to too small on the order of 10e-6, but we only need - // it to be accurate to within about half a millimeter - bounding_radius += half_milimeter; - - // this algorithm can get relatively inaccurate when the sphere - // collection is 'small' (contained within a bounding sphere of about - // 2 meters or less) - // TODO -- fix this - /* debug code - { - std::vector<LLSphere>::const_iterator sphere_itr; - for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr) - { - F32 radius = (sphere_itr->getCenter() - bounding_center).length() + sphere_itr->getRadius(); - if (radius + 0.1f > bounding_radius) - { - std::cout << " rad = " << radius << " bounding - rad = " << (bounding_radius - radius) << std::endl; - } - } - std::cout << "\n" << std::endl; - } - */ - - bounding_sphere.set(bounding_center, bounding_radius); - } - return bounding_sphere; + // this algorithm can get relatively inaccurate when the sphere + // collection is 'small' (contained within a bounding sphere of about + // 2 meters or less) + // TODO -- improve the accuracy for small collections of spheres + + LLSphere bounding_sphere( LLVector3(0.f, 0.f, 0.f), 0.f ); + S32 sphere_count = sphere_list.size(); + if (1 == sphere_count) + { + // trivial case -- single sphere + std::vector<LLSphere>::const_iterator sphere_itr = sphere_list.begin(); + bounding_sphere = *sphere_itr; + } + else if (2 == sphere_count) + { + // trivial case -- two spheres + std::vector<LLSphere>::const_iterator first_sphere = sphere_list.begin(); + std::vector<LLSphere>::const_iterator second_sphere = first_sphere; + ++second_sphere; + bounding_sphere = LLSphere::getBoundingSphere(*first_sphere, *second_sphere); + } + else if (sphere_count > 0) + { + // non-trivial case -- we will approximate the solution + // + // NOTE -- there is a fancy/fast way to do this for large + // numbers of arbirary N-dimensional spheres -- you can look it + // up on the net. We're dealing with 3D spheres at collection + // sizes of 256 spheres or smaller, so we just use this + // brute force method. + + // TODO -- perhaps would be worthwile to test for the solution where + // the largest spanning radius just happens to work. That is, where + // there are really two spheres that determine the bounding sphere, + // and all others are contained therein. + + // compute the AABB + std::vector<LLSphere>::const_iterator first_itr = sphere_list.begin(); + LLVector3 max_corner = first_itr->getCenter() + first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f); + LLVector3 min_corner = first_itr->getCenter() - first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f); + { + std::vector<LLSphere>::const_iterator sphere_itr = sphere_list.begin(); + for (++sphere_itr; sphere_itr != sphere_list.end(); ++sphere_itr) + { + LLVector3 center = sphere_itr->getCenter(); + F32 radius = sphere_itr->getRadius(); + for (S32 i=0; i<3; ++i) + { + if (center.mV[i] + radius > max_corner.mV[i]) + { + max_corner.mV[i] = center.mV[i] + radius; + } + if (center.mV[i] - radius < min_corner.mV[i]) + { + min_corner.mV[i] = center.mV[i] - radius; + } + } + } + } + + // get the starting center and radius from the AABB + LLVector3 diagonal = max_corner - min_corner; + F32 bounding_radius = 0.5f * diagonal.length(); + LLVector3 bounding_center = 0.5f * (max_corner + min_corner); + + // compute the starting step-size + F32 minimum_radius = 0.5f * llmin(diagonal.mV[VX], llmin(diagonal.mV[VY], diagonal.mV[VZ])); + F32 step_length = bounding_radius - minimum_radius; + //S32 step_count = 0; + //S32 max_step_count = 12; + F32 half_milimeter = 0.0005f; + + // wander the center around in search of tighter solutions + S32 last_dx = 2; // 2 is out of bounds --> no match + S32 last_dy = 2; + S32 last_dz = 2; + + while (step_length > half_milimeter + /*&& step_count < max_step_count*/) + { + // the algorithm for testing the maximum radius could be expensive enough + // that it makes sense to NOT duplicate testing when possible, so we keep + // track of where we last tested, and only test the new points + + S32 best_dx = 0; + S32 best_dy = 0; + S32 best_dz = 0; + + // sample near the center of the box + bool found_better_center = false; + for (S32 dx = -1; dx < 2; ++dx) + { + for (S32 dy = -1; dy < 2; ++dy) + { + for (S32 dz = -1; dz < 2; ++dz) + { + if (dx == 0 && dy == 0 && dz == 0) + { + continue; + } + + // count the number of indecies that match the last_*'s + S32 match_count = 0; + if (last_dx == dx) ++match_count; + if (last_dy == dy) ++match_count; + if (last_dz == dz) ++match_count; + if (match_count == 2) + { + // we've already tested this point + continue; + } + + LLVector3 center = bounding_center; + center.mV[VX] += (F32) dx * step_length; + center.mV[VY] += (F32) dy * step_length; + center.mV[VZ] += (F32) dz * step_length; + + // compute the radius of the bounding sphere + F32 max_radius = 0.f; + std::vector<LLSphere>::const_iterator sphere_itr; + for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr) + { + F32 radius = (sphere_itr->getCenter() - center).length() + sphere_itr->getRadius(); + if (radius > max_radius) + { + max_radius = radius; + } + } + if (max_radius < bounding_radius) + { + best_dx = dx; + best_dy = dy; + best_dz = dz; + bounding_center = center; + bounding_radius = max_radius; + found_better_center = true; + } + } + } + } + if (found_better_center) + { + // remember where we came from so we can avoid retesting + last_dx = -best_dx; + last_dy = -best_dy; + last_dz = -best_dz; + } + else + { + // reduce the step size + step_length *= 0.5f; + //++step_count; + // reset the last_*'s + last_dx = 2; // 2 is out of bounds --> no match + last_dy = 2; + last_dz = 2; + } + } + + // HACK -- it is possible to get enough floating point error for the + // bounding sphere to too small on the order of 10e-6, but we only need + // it to be accurate to within about half a millimeter + bounding_radius += half_milimeter; + + // this algorithm can get relatively inaccurate when the sphere + // collection is 'small' (contained within a bounding sphere of about + // 2 meters or less) + // TODO -- fix this + /* debug code + { + std::vector<LLSphere>::const_iterator sphere_itr; + for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr) + { + F32 radius = (sphere_itr->getCenter() - bounding_center).length() + sphere_itr->getRadius(); + if (radius + 0.1f > bounding_radius) + { + std::cout << " rad = " << radius << " bounding - rad = " << (bounding_radius - radius) << std::endl; + } + } + std::cout << "\n" << std::endl; + } + */ + + bounding_sphere.set(bounding_center, bounding_radius); + } + return bounding_sphere; } |