summaryrefslogtreecommitdiff
path: root/indra/llmath/llsphere.cpp
diff options
context:
space:
mode:
authorAndrey Lihatskiy <alihatskiy@productengine.com>2024-05-13 17:06:17 +0300
committerGitHub <noreply@github.com>2024-05-13 17:06:17 +0300
commit9013267da2269a9bd9683862b7449db1b1093afc (patch)
tree336172dfd6468e8bafa1d9c4a229624e85ffecfb /indra/llmath/llsphere.cpp
parent0cb2c511bc2a0f54eb7b3a4c2988d7ebec96e3be (diff)
parent38c2a5bde985a6a8a96d912d432f8bdf7e5b60be (diff)
Merge pull request #1373 from secondlife/marchcat/x-ws-merge
Diffstat (limited to 'indra/llmath/llsphere.cpp')
-rw-r--r--indra/llmath/llsphere.cpp554
1 files changed, 277 insertions, 277 deletions
diff --git a/indra/llmath/llsphere.cpp b/indra/llmath/llsphere.cpp
index a8d6200488..75f9ef1772 100644
--- a/indra/llmath/llsphere.cpp
+++ b/indra/llmath/llsphere.cpp
@@ -1,4 +1,4 @@
-/**
+/**
* @file llsphere.cpp
* @author Andrew Meadows
* @brief Simple line class that can compute nearest approach between two lines
@@ -6,21 +6,21 @@
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
- *
+ *
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
- *
+ *
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
- *
+ *
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
+ *
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
@@ -30,342 +30,342 @@
#include "llsphere.h"
LLSphere::LLSphere()
-: mCenter(0.f, 0.f, 0.f),
- mRadius(0.f)
+: mCenter(0.f, 0.f, 0.f),
+ mRadius(0.f)
{ }
LLSphere::LLSphere( const LLVector3& center, F32 radius)
{
- set(center, radius);
+ set(center, radius);
}
void LLSphere::set( const LLVector3& center, F32 radius )
{
- mCenter = center;
- setRadius(radius);
+ mCenter = center;
+ setRadius(radius);
}
void LLSphere::setCenter( const LLVector3& center)
{
- mCenter = center;
+ mCenter = center;
}
void LLSphere::setRadius( F32 radius)
{
- if (radius < 0.f)
- {
- radius = -radius;
- }
- mRadius = radius;
+ if (radius < 0.f)
+ {
+ radius = -radius;
+ }
+ mRadius = radius;
}
-
+
const LLVector3& LLSphere::getCenter() const
{
- return mCenter;
+ return mCenter;
}
F32 LLSphere::getRadius() const
{
- return mRadius;
+ return mRadius;
}
// returns 'TRUE' if this sphere completely contains other_sphere
BOOL LLSphere::contains(const LLSphere& other_sphere) const
{
- F32 separation = (mCenter - other_sphere.mCenter).length();
- return (mRadius >= separation + other_sphere.mRadius) ? TRUE : FALSE;
+ F32 separation = (mCenter - other_sphere.mCenter).length();
+ return (mRadius >= separation + other_sphere.mRadius) ? TRUE : FALSE;
}
// returns 'TRUE' if this sphere completely contains other_sphere
BOOL LLSphere::overlaps(const LLSphere& other_sphere) const
{
- F32 separation = (mCenter - other_sphere.mCenter).length();
- return (separation <= mRadius + other_sphere.mRadius) ? TRUE : FALSE;
+ F32 separation = (mCenter - other_sphere.mCenter).length();
+ return (separation <= mRadius + other_sphere.mRadius) ? TRUE : FALSE;
}
// returns overlap
// negative overlap is closest approach
F32 LLSphere::getOverlap(const LLSphere& other_sphere) const
{
- // separation is distance from other_sphere's edge and this center
- return (mCenter - other_sphere.mCenter).length() - mRadius - other_sphere.mRadius;
+ // separation is distance from other_sphere's edge and this center
+ return (mCenter - other_sphere.mCenter).length() - mRadius - other_sphere.mRadius;
}
bool LLSphere::operator==(const LLSphere& rhs) const
{
- // TODO? -- use approximate equality for centers?
- return (mRadius == rhs.mRadius
- && mCenter == rhs.mCenter);
+ // TODO? -- use approximate equality for centers?
+ return (mRadius == rhs.mRadius
+ && mCenter == rhs.mCenter);
}
std::ostream& operator<<( std::ostream& output_stream, const LLSphere& sphere)
{
- output_stream << "{center=" << sphere.mCenter << "," << "radius=" << sphere.mRadius << "}";
- return output_stream;
+ output_stream << "{center=" << sphere.mCenter << "," << "radius=" << sphere.mRadius << "}";
+ return output_stream;
}
-// static
+// static
// removes any spheres that are contained in others
void LLSphere::collapse(std::vector<LLSphere>& sphere_list)
{
- std::vector<LLSphere>::iterator first_itr = sphere_list.begin();
- while (first_itr != sphere_list.end())
- {
- bool delete_from_front = false;
-
- std::vector<LLSphere>::iterator second_itr = first_itr;
- ++second_itr;
- while (second_itr != sphere_list.end())
- {
- if (second_itr->contains(*first_itr))
- {
- delete_from_front = true;
- break;
- }
- else if (first_itr->contains(*second_itr))
- {
- sphere_list.erase(second_itr++);
- }
- else
- {
- ++second_itr;
- }
- }
-
- if (delete_from_front)
- {
- sphere_list.erase(first_itr++);
- }
- else
- {
- ++first_itr;
- }
- }
+ std::vector<LLSphere>::iterator first_itr = sphere_list.begin();
+ while (first_itr != sphere_list.end())
+ {
+ bool delete_from_front = false;
+
+ std::vector<LLSphere>::iterator second_itr = first_itr;
+ ++second_itr;
+ while (second_itr != sphere_list.end())
+ {
+ if (second_itr->contains(*first_itr))
+ {
+ delete_from_front = true;
+ break;
+ }
+ else if (first_itr->contains(*second_itr))
+ {
+ sphere_list.erase(second_itr++);
+ }
+ else
+ {
+ ++second_itr;
+ }
+ }
+
+ if (delete_from_front)
+ {
+ sphere_list.erase(first_itr++);
+ }
+ else
+ {
+ ++first_itr;
+ }
+ }
}
// static
// returns the bounding sphere that contains both spheres
LLSphere LLSphere::getBoundingSphere(const LLSphere& first_sphere, const LLSphere& second_sphere)
{
- LLVector3 direction = second_sphere.mCenter - first_sphere.mCenter;
-
- // HACK -- it is possible to get enough floating point error in the
- // other getBoundingSphere() method that we have to add some slop
- // at the end. Unfortunately, this breaks the link-order invarience
- // for the linkability tests... unless we also apply the same slop
- // here.
- F32 half_milimeter = 0.0005f;
-
- F32 distance = direction.length();
- if (0.f == distance)
- {
- direction.setVec(1.f, 0.f, 0.f);
- }
- else
- {
- direction.normVec();
- }
- // the 'edge' is measured from the first_sphere's center
- F32 max_edge = 0.f;
- F32 min_edge = 0.f;
-
- max_edge = llmax(max_edge + first_sphere.getRadius(), max_edge + distance + second_sphere.getRadius() + half_milimeter);
- min_edge = llmin(min_edge - first_sphere.getRadius(), min_edge + distance - second_sphere.getRadius() - half_milimeter);
- F32 radius = 0.5f * (max_edge - min_edge);
- LLVector3 center = first_sphere.mCenter + (0.5f * (max_edge + min_edge)) * direction;
- return LLSphere(center, radius);
+ LLVector3 direction = second_sphere.mCenter - first_sphere.mCenter;
+
+ // HACK -- it is possible to get enough floating point error in the
+ // other getBoundingSphere() method that we have to add some slop
+ // at the end. Unfortunately, this breaks the link-order invarience
+ // for the linkability tests... unless we also apply the same slop
+ // here.
+ F32 half_milimeter = 0.0005f;
+
+ F32 distance = direction.length();
+ if (0.f == distance)
+ {
+ direction.setVec(1.f, 0.f, 0.f);
+ }
+ else
+ {
+ direction.normVec();
+ }
+ // the 'edge' is measured from the first_sphere's center
+ F32 max_edge = 0.f;
+ F32 min_edge = 0.f;
+
+ max_edge = llmax(max_edge + first_sphere.getRadius(), max_edge + distance + second_sphere.getRadius() + half_milimeter);
+ min_edge = llmin(min_edge - first_sphere.getRadius(), min_edge + distance - second_sphere.getRadius() - half_milimeter);
+ F32 radius = 0.5f * (max_edge - min_edge);
+ LLVector3 center = first_sphere.mCenter + (0.5f * (max_edge + min_edge)) * direction;
+ return LLSphere(center, radius);
}
// static
// returns the bounding sphere that contains an arbitrary set of spheres
LLSphere LLSphere::getBoundingSphere(const std::vector<LLSphere>& sphere_list)
{
- // this algorithm can get relatively inaccurate when the sphere
- // collection is 'small' (contained within a bounding sphere of about
- // 2 meters or less)
- // TODO -- improve the accuracy for small collections of spheres
-
- LLSphere bounding_sphere( LLVector3(0.f, 0.f, 0.f), 0.f );
- S32 sphere_count = sphere_list.size();
- if (1 == sphere_count)
- {
- // trivial case -- single sphere
- std::vector<LLSphere>::const_iterator sphere_itr = sphere_list.begin();
- bounding_sphere = *sphere_itr;
- }
- else if (2 == sphere_count)
- {
- // trivial case -- two spheres
- std::vector<LLSphere>::const_iterator first_sphere = sphere_list.begin();
- std::vector<LLSphere>::const_iterator second_sphere = first_sphere;
- ++second_sphere;
- bounding_sphere = LLSphere::getBoundingSphere(*first_sphere, *second_sphere);
- }
- else if (sphere_count > 0)
- {
- // non-trivial case -- we will approximate the solution
- //
- // NOTE -- there is a fancy/fast way to do this for large
- // numbers of arbirary N-dimensional spheres -- you can look it
- // up on the net. We're dealing with 3D spheres at collection
- // sizes of 256 spheres or smaller, so we just use this
- // brute force method.
-
- // TODO -- perhaps would be worthwile to test for the solution where
- // the largest spanning radius just happens to work. That is, where
- // there are really two spheres that determine the bounding sphere,
- // and all others are contained therein.
-
- // compute the AABB
- std::vector<LLSphere>::const_iterator first_itr = sphere_list.begin();
- LLVector3 max_corner = first_itr->getCenter() + first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f);
- LLVector3 min_corner = first_itr->getCenter() - first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f);
- {
- std::vector<LLSphere>::const_iterator sphere_itr = sphere_list.begin();
- for (++sphere_itr; sphere_itr != sphere_list.end(); ++sphere_itr)
- {
- LLVector3 center = sphere_itr->getCenter();
- F32 radius = sphere_itr->getRadius();
- for (S32 i=0; i<3; ++i)
- {
- if (center.mV[i] + radius > max_corner.mV[i])
- {
- max_corner.mV[i] = center.mV[i] + radius;
- }
- if (center.mV[i] - radius < min_corner.mV[i])
- {
- min_corner.mV[i] = center.mV[i] - radius;
- }
- }
- }
- }
-
- // get the starting center and radius from the AABB
- LLVector3 diagonal = max_corner - min_corner;
- F32 bounding_radius = 0.5f * diagonal.length();
- LLVector3 bounding_center = 0.5f * (max_corner + min_corner);
-
- // compute the starting step-size
- F32 minimum_radius = 0.5f * llmin(diagonal.mV[VX], llmin(diagonal.mV[VY], diagonal.mV[VZ]));
- F32 step_length = bounding_radius - minimum_radius;
- //S32 step_count = 0;
- //S32 max_step_count = 12;
- F32 half_milimeter = 0.0005f;
-
- // wander the center around in search of tighter solutions
- S32 last_dx = 2; // 2 is out of bounds --> no match
- S32 last_dy = 2;
- S32 last_dz = 2;
-
- while (step_length > half_milimeter
- /*&& step_count < max_step_count*/)
- {
- // the algorithm for testing the maximum radius could be expensive enough
- // that it makes sense to NOT duplicate testing when possible, so we keep
- // track of where we last tested, and only test the new points
-
- S32 best_dx = 0;
- S32 best_dy = 0;
- S32 best_dz = 0;
-
- // sample near the center of the box
- bool found_better_center = false;
- for (S32 dx = -1; dx < 2; ++dx)
- {
- for (S32 dy = -1; dy < 2; ++dy)
- {
- for (S32 dz = -1; dz < 2; ++dz)
- {
- if (dx == 0 && dy == 0 && dz == 0)
- {
- continue;
- }
-
- // count the number of indecies that match the last_*'s
- S32 match_count = 0;
- if (last_dx == dx) ++match_count;
- if (last_dy == dy) ++match_count;
- if (last_dz == dz) ++match_count;
- if (match_count == 2)
- {
- // we've already tested this point
- continue;
- }
-
- LLVector3 center = bounding_center;
- center.mV[VX] += (F32) dx * step_length;
- center.mV[VY] += (F32) dy * step_length;
- center.mV[VZ] += (F32) dz * step_length;
-
- // compute the radius of the bounding sphere
- F32 max_radius = 0.f;
- std::vector<LLSphere>::const_iterator sphere_itr;
- for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr)
- {
- F32 radius = (sphere_itr->getCenter() - center).length() + sphere_itr->getRadius();
- if (radius > max_radius)
- {
- max_radius = radius;
- }
- }
- if (max_radius < bounding_radius)
- {
- best_dx = dx;
- best_dy = dy;
- best_dz = dz;
- bounding_center = center;
- bounding_radius = max_radius;
- found_better_center = true;
- }
- }
- }
- }
- if (found_better_center)
- {
- // remember where we came from so we can avoid retesting
- last_dx = -best_dx;
- last_dy = -best_dy;
- last_dz = -best_dz;
- }
- else
- {
- // reduce the step size
- step_length *= 0.5f;
- //++step_count;
- // reset the last_*'s
- last_dx = 2; // 2 is out of bounds --> no match
- last_dy = 2;
- last_dz = 2;
- }
- }
-
- // HACK -- it is possible to get enough floating point error for the
- // bounding sphere to too small on the order of 10e-6, but we only need
- // it to be accurate to within about half a millimeter
- bounding_radius += half_milimeter;
-
- // this algorithm can get relatively inaccurate when the sphere
- // collection is 'small' (contained within a bounding sphere of about
- // 2 meters or less)
- // TODO -- fix this
- /* debug code
- {
- std::vector<LLSphere>::const_iterator sphere_itr;
- for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr)
- {
- F32 radius = (sphere_itr->getCenter() - bounding_center).length() + sphere_itr->getRadius();
- if (radius + 0.1f > bounding_radius)
- {
- std::cout << " rad = " << radius << " bounding - rad = " << (bounding_radius - radius) << std::endl;
- }
- }
- std::cout << "\n" << std::endl;
- }
- */
-
- bounding_sphere.set(bounding_center, bounding_radius);
- }
- return bounding_sphere;
+ // this algorithm can get relatively inaccurate when the sphere
+ // collection is 'small' (contained within a bounding sphere of about
+ // 2 meters or less)
+ // TODO -- improve the accuracy for small collections of spheres
+
+ LLSphere bounding_sphere( LLVector3(0.f, 0.f, 0.f), 0.f );
+ S32 sphere_count = sphere_list.size();
+ if (1 == sphere_count)
+ {
+ // trivial case -- single sphere
+ std::vector<LLSphere>::const_iterator sphere_itr = sphere_list.begin();
+ bounding_sphere = *sphere_itr;
+ }
+ else if (2 == sphere_count)
+ {
+ // trivial case -- two spheres
+ std::vector<LLSphere>::const_iterator first_sphere = sphere_list.begin();
+ std::vector<LLSphere>::const_iterator second_sphere = first_sphere;
+ ++second_sphere;
+ bounding_sphere = LLSphere::getBoundingSphere(*first_sphere, *second_sphere);
+ }
+ else if (sphere_count > 0)
+ {
+ // non-trivial case -- we will approximate the solution
+ //
+ // NOTE -- there is a fancy/fast way to do this for large
+ // numbers of arbirary N-dimensional spheres -- you can look it
+ // up on the net. We're dealing with 3D spheres at collection
+ // sizes of 256 spheres or smaller, so we just use this
+ // brute force method.
+
+ // TODO -- perhaps would be worthwile to test for the solution where
+ // the largest spanning radius just happens to work. That is, where
+ // there are really two spheres that determine the bounding sphere,
+ // and all others are contained therein.
+
+ // compute the AABB
+ std::vector<LLSphere>::const_iterator first_itr = sphere_list.begin();
+ LLVector3 max_corner = first_itr->getCenter() + first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f);
+ LLVector3 min_corner = first_itr->getCenter() - first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f);
+ {
+ std::vector<LLSphere>::const_iterator sphere_itr = sphere_list.begin();
+ for (++sphere_itr; sphere_itr != sphere_list.end(); ++sphere_itr)
+ {
+ LLVector3 center = sphere_itr->getCenter();
+ F32 radius = sphere_itr->getRadius();
+ for (S32 i=0; i<3; ++i)
+ {
+ if (center.mV[i] + radius > max_corner.mV[i])
+ {
+ max_corner.mV[i] = center.mV[i] + radius;
+ }
+ if (center.mV[i] - radius < min_corner.mV[i])
+ {
+ min_corner.mV[i] = center.mV[i] - radius;
+ }
+ }
+ }
+ }
+
+ // get the starting center and radius from the AABB
+ LLVector3 diagonal = max_corner - min_corner;
+ F32 bounding_radius = 0.5f * diagonal.length();
+ LLVector3 bounding_center = 0.5f * (max_corner + min_corner);
+
+ // compute the starting step-size
+ F32 minimum_radius = 0.5f * llmin(diagonal.mV[VX], llmin(diagonal.mV[VY], diagonal.mV[VZ]));
+ F32 step_length = bounding_radius - minimum_radius;
+ //S32 step_count = 0;
+ //S32 max_step_count = 12;
+ F32 half_milimeter = 0.0005f;
+
+ // wander the center around in search of tighter solutions
+ S32 last_dx = 2; // 2 is out of bounds --> no match
+ S32 last_dy = 2;
+ S32 last_dz = 2;
+
+ while (step_length > half_milimeter
+ /*&& step_count < max_step_count*/)
+ {
+ // the algorithm for testing the maximum radius could be expensive enough
+ // that it makes sense to NOT duplicate testing when possible, so we keep
+ // track of where we last tested, and only test the new points
+
+ S32 best_dx = 0;
+ S32 best_dy = 0;
+ S32 best_dz = 0;
+
+ // sample near the center of the box
+ bool found_better_center = false;
+ for (S32 dx = -1; dx < 2; ++dx)
+ {
+ for (S32 dy = -1; dy < 2; ++dy)
+ {
+ for (S32 dz = -1; dz < 2; ++dz)
+ {
+ if (dx == 0 && dy == 0 && dz == 0)
+ {
+ continue;
+ }
+
+ // count the number of indecies that match the last_*'s
+ S32 match_count = 0;
+ if (last_dx == dx) ++match_count;
+ if (last_dy == dy) ++match_count;
+ if (last_dz == dz) ++match_count;
+ if (match_count == 2)
+ {
+ // we've already tested this point
+ continue;
+ }
+
+ LLVector3 center = bounding_center;
+ center.mV[VX] += (F32) dx * step_length;
+ center.mV[VY] += (F32) dy * step_length;
+ center.mV[VZ] += (F32) dz * step_length;
+
+ // compute the radius of the bounding sphere
+ F32 max_radius = 0.f;
+ std::vector<LLSphere>::const_iterator sphere_itr;
+ for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr)
+ {
+ F32 radius = (sphere_itr->getCenter() - center).length() + sphere_itr->getRadius();
+ if (radius > max_radius)
+ {
+ max_radius = radius;
+ }
+ }
+ if (max_radius < bounding_radius)
+ {
+ best_dx = dx;
+ best_dy = dy;
+ best_dz = dz;
+ bounding_center = center;
+ bounding_radius = max_radius;
+ found_better_center = true;
+ }
+ }
+ }
+ }
+ if (found_better_center)
+ {
+ // remember where we came from so we can avoid retesting
+ last_dx = -best_dx;
+ last_dy = -best_dy;
+ last_dz = -best_dz;
+ }
+ else
+ {
+ // reduce the step size
+ step_length *= 0.5f;
+ //++step_count;
+ // reset the last_*'s
+ last_dx = 2; // 2 is out of bounds --> no match
+ last_dy = 2;
+ last_dz = 2;
+ }
+ }
+
+ // HACK -- it is possible to get enough floating point error for the
+ // bounding sphere to too small on the order of 10e-6, but we only need
+ // it to be accurate to within about half a millimeter
+ bounding_radius += half_milimeter;
+
+ // this algorithm can get relatively inaccurate when the sphere
+ // collection is 'small' (contained within a bounding sphere of about
+ // 2 meters or less)
+ // TODO -- fix this
+ /* debug code
+ {
+ std::vector<LLSphere>::const_iterator sphere_itr;
+ for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr)
+ {
+ F32 radius = (sphere_itr->getCenter() - bounding_center).length() + sphere_itr->getRadius();
+ if (radius + 0.1f > bounding_radius)
+ {
+ std::cout << " rad = " << radius << " bounding - rad = " << (bounding_radius - radius) << std::endl;
+ }
+ }
+ std::cout << "\n" << std::endl;
+ }
+ */
+
+ bounding_sphere.set(bounding_center, bounding_radius);
+ }
+ return bounding_sphere;
}