diff options
author | Roxie Linden <roxie@lindenlab.com> | 2024-05-20 12:59:59 -0700 |
---|---|---|
committer | Roxie Linden <roxie@lindenlab.com> | 2024-05-20 12:59:59 -0700 |
commit | 3a212d9608492ae64a3a32f80790371b90be9e9e (patch) | |
tree | fcb3901b838af753e40c2ddd1ce84b95a6c2f603 /indra/llmath/llquaternion.h | |
parent | c7461061b8113fa258611b1a31f16a119fad1a2c (diff) | |
parent | e1623bb276f83a43ce7a197e388720c05bdefe61 (diff) |
Merge branch 'spaces-merge' into roxie/webrtc-voice
Diffstat (limited to 'indra/llmath/llquaternion.h')
-rw-r--r-- | indra/llmath/llquaternion.h | 738 |
1 files changed, 369 insertions, 369 deletions
diff --git a/indra/llmath/llquaternion.h b/indra/llmath/llquaternion.h index aaa868352a..be7f119a2b 100644 --- a/indra/llmath/llquaternion.h +++ b/indra/llmath/llquaternion.h @@ -5,21 +5,21 @@ * $LicenseInfo:firstyear=2000&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. - * + * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. - * + * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. - * + * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - * + * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ @@ -40,138 +40,138 @@ class LLVector3d; class LLMatrix4; class LLMatrix3; -// NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!! -// Moreover, it is written assuming that all vectors and matricies -// passed as arguments are normalized and unitary respectively. -// VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail. +// NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!! +// Moreover, it is written assuming that all vectors and matricies +// passed as arguments are normalized and unitary respectively. +// VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail. static const U32 LENGTHOFQUAT = 4; class LLQuaternion { public: - F32 mQ[LENGTHOFQUAT]; - - static const LLQuaternion DEFAULT; - - LLQuaternion(); // Initializes Quaternion to (0,0,0,1) - explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4 - explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3 - LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normalize(x, y, z, w) - LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) - LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) - LLQuaternion(const F32 *q); // Initializes Quaternion to normalize(x, y, z, w) - LLQuaternion(const LLVector3 &x_axis, - const LLVector3 &y_axis, - const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis] + F32 mQ[LENGTHOFQUAT]; + + static const LLQuaternion DEFAULT; + + LLQuaternion(); // Initializes Quaternion to (0,0,0,1) + explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4 + explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3 + LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normalize(x, y, z, w) + LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) + LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) + LLQuaternion(const F32 *q); // Initializes Quaternion to normalize(x, y, z, w) + LLQuaternion(const LLVector3 &x_axis, + const LLVector3 &y_axis, + const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis] explicit LLQuaternion(const LLSD &sd); // Initializes Quaternion from LLSD array. LLSD getValue() const; void setValue(const LLSD& sd); - BOOL isIdentity() const; - BOOL isNotIdentity() const; - BOOL isFinite() const; // checks to see if all values of LLQuaternion are finite - void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization - void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization - void loadIdentity(); // Loads the quaternion that represents the identity rotation - - bool isEqualEps(const LLQuaternion &quat, F32 epsilon) const; - bool isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const; - - const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w) - const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion - const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW]) - const LLQuaternion& set(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat) - const LLQuaternion& set(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat) + BOOL isIdentity() const; + BOOL isNotIdentity() const; + BOOL isFinite() const; // checks to see if all values of LLQuaternion are finite + void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization + void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization + void loadIdentity(); // Loads the quaternion that represents the identity rotation + + bool isEqualEps(const LLQuaternion &quat, F32 epsilon) const; + bool isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const; + + const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w) + const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion + const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW]) + const LLQuaternion& set(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat) + const LLQuaternion& set(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat) const LLQuaternion& setFromAzimuthAndAltitude(F32 azimuth, F32 altitude); - - const LLQuaternion& setAngleAxis(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z) - const LLQuaternion& setAngleAxis(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) - const LLQuaternion& setAngleAxis(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) - const LLQuaternion& setEulerAngles(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll) - - const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // deprecated - const LLQuaternion& setQuat(const LLQuaternion &quat); // deprecated - const LLQuaternion& setQuat(const F32 *q); // deprecated - const LLQuaternion& setQuat(const LLMatrix3 &mat); // deprecated - const LLQuaternion& setQuat(const LLMatrix4 &mat); // deprecated - const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // deprecated - const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // deprecated - const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // deprecated - const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // deprecated - - LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion - LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion - void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z - void getAngleAxis(F32* angle, LLVector3 &vec) const; - void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const; + + const LLQuaternion& setAngleAxis(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z) + const LLQuaternion& setAngleAxis(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) + const LLQuaternion& setAngleAxis(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) + const LLQuaternion& setEulerAngles(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll) + + const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // deprecated + const LLQuaternion& setQuat(const LLQuaternion &quat); // deprecated + const LLQuaternion& setQuat(const F32 *q); // deprecated + const LLQuaternion& setQuat(const LLMatrix3 &mat); // deprecated + const LLQuaternion& setQuat(const LLMatrix4 &mat); // deprecated + const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // deprecated + const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // deprecated + const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // deprecated + const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // deprecated + + LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion + LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion + void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z + void getAngleAxis(F32* angle, LLVector3 &vec) const; + void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const; void getAzimuthAndAltitude(F32 &azimuth, F32 &altitude); - F32 normalize(); // Normalizes Quaternion and returns magnitude - F32 normQuat(); // deprecated - - const LLQuaternion& conjugate(void); // Conjugates Quaternion and returns result - const LLQuaternion& conjQuat(void); // deprecated - - // Other useful methods - const LLQuaternion& transpose(); // transpose (same as conjugate) - const LLQuaternion& transQuat(); // deprecated - - void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b - const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians - - // Standard operators - friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a - friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition - friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction - friend LLQuaternion operator-(const LLQuaternion &a); // Negation - friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale - friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale - friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b - friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a) - bool operator==(const LLQuaternion &b) const; // Returns a == b - bool operator!=(const LLQuaternion &b) const; // Returns a != b - F64 operator[](int idx) const { return mQ[idx]; } - - friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b - - friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot - friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot - friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot - - // Non-standard operators - friend F32 dot(const LLQuaternion &a, const LLQuaternion &b); - friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q - friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q - friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q - friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q - friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q - friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q - - LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized - void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized - - enum Order { - XYZ = 0, - YZX = 1, - ZXY = 2, - XZY = 3, - YXZ = 4, - ZYX = 5 - }; - // Creates a quaternions from maya's rotation representation, - // which is 3 rotations (in DEGREES) in the specified order - friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order); - - // Conversions between Order and strings like "xyz" or "ZYX" - friend const char *OrderToString( const Order order ); - friend Order StringToOrder( const char *str ); - - static BOOL parseQuat(const std::string& buf, LLQuaternion* value); - - // For debugging, only - //static U32 mMultCount; + F32 normalize(); // Normalizes Quaternion and returns magnitude + F32 normQuat(); // deprecated + + const LLQuaternion& conjugate(void); // Conjugates Quaternion and returns result + const LLQuaternion& conjQuat(void); // deprecated + + // Other useful methods + const LLQuaternion& transpose(); // transpose (same as conjugate) + const LLQuaternion& transQuat(); // deprecated + + void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b + const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians + + // Standard operators + friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a + friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition + friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction + friend LLQuaternion operator-(const LLQuaternion &a); // Negation + friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale + friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale + friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b + friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a) + bool operator==(const LLQuaternion &b) const; // Returns a == b + bool operator!=(const LLQuaternion &b) const; // Returns a != b + F64 operator[](int idx) const { return mQ[idx]; } + + friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b + + friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot + friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot + friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot + + // Non-standard operators + friend F32 dot(const LLQuaternion &a, const LLQuaternion &b); + friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q + friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q + friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q + friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q + friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q + friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q + + LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized + void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized + + enum Order { + XYZ = 0, + YZX = 1, + ZXY = 2, + XZY = 3, + YXZ = 4, + ZYX = 5 + }; + // Creates a quaternions from maya's rotation representation, + // which is 3 rotations (in DEGREES) in the specified order + friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order); + + // Conversions between Order and strings like "xyz" or "ZYX" + friend const char *OrderToString( const Order order ); + friend Order StringToOrder( const char *str ); + + static BOOL parseQuat(const std::string& buf, LLQuaternion* value); + + // For debugging, only + //static U32 mMultCount; }; inline LLSD LLQuaternion::getValue() const @@ -193,369 +193,369 @@ inline void LLQuaternion::setValue(const LLSD& sd) } // checker -inline BOOL LLQuaternion::isFinite() const +inline BOOL LLQuaternion::isFinite() const { - return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS])); + return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS])); } inline BOOL LLQuaternion::isIdentity() const { - return - ( mQ[VX] == 0.f ) && - ( mQ[VY] == 0.f ) && - ( mQ[VZ] == 0.f ) && - ( mQ[VS] == 1.f ); + return + ( mQ[VX] == 0.f ) && + ( mQ[VY] == 0.f ) && + ( mQ[VZ] == 0.f ) && + ( mQ[VS] == 1.f ); } inline BOOL LLQuaternion::isNotIdentity() const { - return - ( mQ[VX] != 0.f ) || - ( mQ[VY] != 0.f ) || - ( mQ[VZ] != 0.f ) || - ( mQ[VS] != 1.f ); + return + ( mQ[VX] != 0.f ) || + ( mQ[VY] != 0.f ) || + ( mQ[VZ] != 0.f ) || + ( mQ[VS] != 1.f ); } inline LLQuaternion::LLQuaternion(void) { - mQ[VX] = 0.f; - mQ[VY] = 0.f; - mQ[VZ] = 0.f; - mQ[VS] = 1.f; + mQ[VX] = 0.f; + mQ[VY] = 0.f; + mQ[VZ] = 0.f; + mQ[VS] = 1.f; } inline LLQuaternion::LLQuaternion(F32 x, F32 y, F32 z, F32 w) { - mQ[VX] = x; - mQ[VY] = y; - mQ[VZ] = z; - mQ[VS] = w; + mQ[VX] = x; + mQ[VY] = y; + mQ[VZ] = z; + mQ[VS] = w; - //RN: don't normalize this case as its used mainly for temporaries during calculations - //normalize(); - /* - F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); - mag -= 1.f; - mag = fabs(mag); - llassert(mag < 10.f*FP_MAG_THRESHOLD); - */ + //RN: don't normalize this case as its used mainly for temporaries during calculations + //normalize(); + /* + F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); + mag -= 1.f; + mag = fabs(mag); + llassert(mag < 10.f*FP_MAG_THRESHOLD); + */ } inline LLQuaternion::LLQuaternion(const F32 *q) { - mQ[VX] = q[VX]; - mQ[VY] = q[VY]; - mQ[VZ] = q[VZ]; - mQ[VS] = q[VW]; + mQ[VX] = q[VX]; + mQ[VY] = q[VY]; + mQ[VZ] = q[VZ]; + mQ[VS] = q[VW]; - normalize(); - /* - F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); - mag -= 1.f; - mag = fabs(mag); - llassert(mag < FP_MAG_THRESHOLD); - */ + normalize(); + /* + F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); + mag -= 1.f; + mag = fabs(mag); + llassert(mag < FP_MAG_THRESHOLD); + */ } inline void LLQuaternion::loadIdentity() { - mQ[VX] = 0.0f; - mQ[VY] = 0.0f; - mQ[VZ] = 0.0f; - mQ[VW] = 1.0f; + mQ[VX] = 0.0f; + mQ[VY] = 0.0f; + mQ[VZ] = 0.0f; + mQ[VW] = 1.0f; } inline bool LLQuaternion::isEqualEps(const LLQuaternion &quat, F32 epsilon) const { - return ( fabs(mQ[VX] - quat.mQ[VX]) < epsilon - && fabs(mQ[VY] - quat.mQ[VY]) < epsilon - && fabs(mQ[VZ] - quat.mQ[VZ]) < epsilon - && fabs(mQ[VS] - quat.mQ[VS]) < epsilon ); + return ( fabs(mQ[VX] - quat.mQ[VX]) < epsilon + && fabs(mQ[VY] - quat.mQ[VY]) < epsilon + && fabs(mQ[VZ] - quat.mQ[VZ]) < epsilon + && fabs(mQ[VS] - quat.mQ[VS]) < epsilon ); } inline bool LLQuaternion::isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const { - return ( fabs(mQ[VX] - quat.mQ[VX]) > epsilon - || fabs(mQ[VY] - quat.mQ[VY]) > epsilon - || fabs(mQ[VZ] - quat.mQ[VZ]) > epsilon - || fabs(mQ[VS] - quat.mQ[VS]) > epsilon ); + return ( fabs(mQ[VX] - quat.mQ[VX]) > epsilon + || fabs(mQ[VY] - quat.mQ[VY]) > epsilon + || fabs(mQ[VZ] - quat.mQ[VZ]) > epsilon + || fabs(mQ[VS] - quat.mQ[VS]) > epsilon ); } -inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w) +inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w) { - mQ[VX] = x; - mQ[VY] = y; - mQ[VZ] = z; - mQ[VS] = w; - normalize(); - return (*this); + mQ[VX] = x; + mQ[VY] = y; + mQ[VZ] = z; + mQ[VS] = w; + normalize(); + return (*this); } -inline const LLQuaternion& LLQuaternion::set(const LLQuaternion &quat) +inline const LLQuaternion& LLQuaternion::set(const LLQuaternion &quat) { - mQ[VX] = quat.mQ[VX]; - mQ[VY] = quat.mQ[VY]; - mQ[VZ] = quat.mQ[VZ]; - mQ[VW] = quat.mQ[VW]; - normalize(); - return (*this); + mQ[VX] = quat.mQ[VX]; + mQ[VY] = quat.mQ[VY]; + mQ[VZ] = quat.mQ[VZ]; + mQ[VW] = quat.mQ[VW]; + normalize(); + return (*this); } -inline const LLQuaternion& LLQuaternion::set(const F32 *q) +inline const LLQuaternion& LLQuaternion::set(const F32 *q) { - mQ[VX] = q[VX]; - mQ[VY] = q[VY]; - mQ[VZ] = q[VZ]; - mQ[VS] = q[VW]; - normalize(); - return (*this); + mQ[VX] = q[VX]; + mQ[VY] = q[VY]; + mQ[VZ] = q[VZ]; + mQ[VS] = q[VW]; + normalize(); + return (*this); } // deprecated -inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w) +inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w) { - mQ[VX] = x; - mQ[VY] = y; - mQ[VZ] = z; - mQ[VS] = w; - normalize(); - return (*this); + mQ[VX] = x; + mQ[VY] = y; + mQ[VZ] = z; + mQ[VS] = w; + normalize(); + return (*this); } // deprecated -inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat) +inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat) { - mQ[VX] = quat.mQ[VX]; - mQ[VY] = quat.mQ[VY]; - mQ[VZ] = quat.mQ[VZ]; - mQ[VW] = quat.mQ[VW]; - normalize(); - return (*this); + mQ[VX] = quat.mQ[VX]; + mQ[VY] = quat.mQ[VY]; + mQ[VZ] = quat.mQ[VZ]; + mQ[VW] = quat.mQ[VW]; + normalize(); + return (*this); } // deprecated -inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q) +inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q) { - mQ[VX] = q[VX]; - mQ[VY] = q[VY]; - mQ[VZ] = q[VZ]; - mQ[VS] = q[VW]; - normalize(); - return (*this); + mQ[VX] = q[VX]; + mQ[VY] = q[VY]; + mQ[VZ] = q[VZ]; + mQ[VS] = q[VW]; + normalize(); + return (*this); } inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const { - F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component - if (v > FP_MAG_THRESHOLD) - { - F32 oomag = 1.0f / v; - F32 w = mQ[VW]; - if (w < 0.0f) - { - w = -w; // make VW positive - oomag = -oomag; // invert the axis - } - *x = mQ[VX] * oomag; // normalize the axis - *y = mQ[VY] * oomag; - *z = mQ[VZ] * oomag; - *angle = 2.0f * atan2f(v, w); // get the angle - } - else - { - *angle = 0.0f; // no rotation - *x = 0.0f; // around some dummy axis - *y = 0.0f; - *z = 1.0f; - } + F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component + if (v > FP_MAG_THRESHOLD) + { + F32 oomag = 1.0f / v; + F32 w = mQ[VW]; + if (w < 0.0f) + { + w = -w; // make VW positive + oomag = -oomag; // invert the axis + } + *x = mQ[VX] * oomag; // normalize the axis + *y = mQ[VY] * oomag; + *z = mQ[VZ] * oomag; + *angle = 2.0f * atan2f(v, w); // get the angle + } + else + { + *angle = 0.0f; // no rotation + *x = 0.0f; // around some dummy axis + *y = 0.0f; + *z = 1.0f; + } } inline const LLQuaternion& LLQuaternion::conjugate() { - mQ[VX] *= -1.f; - mQ[VY] *= -1.f; - mQ[VZ] *= -1.f; - return (*this); + mQ[VX] *= -1.f; + mQ[VY] *= -1.f; + mQ[VZ] *= -1.f; + return (*this); } inline const LLQuaternion& LLQuaternion::conjQuat() { - mQ[VX] *= -1.f; - mQ[VY] *= -1.f; - mQ[VZ] *= -1.f; - return (*this); + mQ[VX] *= -1.f; + mQ[VY] *= -1.f; + mQ[VZ] *= -1.f; + return (*this); } // Transpose inline const LLQuaternion& LLQuaternion::transpose() { - mQ[VX] *= -1.f; - mQ[VY] *= -1.f; - mQ[VZ] *= -1.f; - return (*this); + mQ[VX] *= -1.f; + mQ[VY] *= -1.f; + mQ[VZ] *= -1.f; + return (*this); } // deprecated inline const LLQuaternion& LLQuaternion::transQuat() { - mQ[VX] *= -1.f; - mQ[VY] *= -1.f; - mQ[VZ] *= -1.f; - return (*this); + mQ[VX] *= -1.f; + mQ[VY] *= -1.f; + mQ[VZ] *= -1.f; + return (*this); } -inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b) +inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b) { - return LLQuaternion( - a.mQ[VX] + b.mQ[VX], - a.mQ[VY] + b.mQ[VY], - a.mQ[VZ] + b.mQ[VZ], - a.mQ[VW] + b.mQ[VW] ); + return LLQuaternion( + a.mQ[VX] + b.mQ[VX], + a.mQ[VY] + b.mQ[VY], + a.mQ[VZ] + b.mQ[VZ], + a.mQ[VW] + b.mQ[VW] ); } -inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b) +inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b) { - return LLQuaternion( - a.mQ[VX] - b.mQ[VX], - a.mQ[VY] - b.mQ[VY], - a.mQ[VZ] - b.mQ[VZ], - a.mQ[VW] - b.mQ[VW] ); + return LLQuaternion( + a.mQ[VX] - b.mQ[VX], + a.mQ[VY] - b.mQ[VY], + a.mQ[VZ] - b.mQ[VZ], + a.mQ[VW] - b.mQ[VW] ); } -inline LLQuaternion operator-(const LLQuaternion &a) +inline LLQuaternion operator-(const LLQuaternion &a) { - return LLQuaternion( - -a.mQ[VX], - -a.mQ[VY], - -a.mQ[VZ], - -a.mQ[VW] ); + return LLQuaternion( + -a.mQ[VX], + -a.mQ[VY], + -a.mQ[VZ], + -a.mQ[VW] ); } -inline LLQuaternion operator*(F32 a, const LLQuaternion &q) +inline LLQuaternion operator*(F32 a, const LLQuaternion &q) { - return LLQuaternion( - a * q.mQ[VX], - a * q.mQ[VY], - a * q.mQ[VZ], - a * q.mQ[VW] ); + return LLQuaternion( + a * q.mQ[VX], + a * q.mQ[VY], + a * q.mQ[VZ], + a * q.mQ[VW] ); } -inline LLQuaternion operator*(const LLQuaternion &q, F32 a) +inline LLQuaternion operator*(const LLQuaternion &q, F32 a) { - return LLQuaternion( - a * q.mQ[VX], - a * q.mQ[VY], - a * q.mQ[VZ], - a * q.mQ[VW] ); + return LLQuaternion( + a * q.mQ[VX], + a * q.mQ[VY], + a * q.mQ[VZ], + a * q.mQ[VW] ); } -inline LLQuaternion operator~(const LLQuaternion &a) +inline LLQuaternion operator~(const LLQuaternion &a) { - LLQuaternion q(a); - q.conjQuat(); - return q; + LLQuaternion q(a); + q.conjQuat(); + return q; } -inline bool LLQuaternion::operator==(const LLQuaternion &b) const +inline bool LLQuaternion::operator==(const LLQuaternion &b) const { - return ( (mQ[VX] == b.mQ[VX]) - &&(mQ[VY] == b.mQ[VY]) - &&(mQ[VZ] == b.mQ[VZ]) - &&(mQ[VS] == b.mQ[VS])); + return ( (mQ[VX] == b.mQ[VX]) + &&(mQ[VY] == b.mQ[VY]) + &&(mQ[VZ] == b.mQ[VZ]) + &&(mQ[VS] == b.mQ[VS])); } -inline bool LLQuaternion::operator!=(const LLQuaternion &b) const +inline bool LLQuaternion::operator!=(const LLQuaternion &b) const { - return ( (mQ[VX] != b.mQ[VX]) - ||(mQ[VY] != b.mQ[VY]) - ||(mQ[VZ] != b.mQ[VZ]) - ||(mQ[VS] != b.mQ[VS])); + return ( (mQ[VX] != b.mQ[VX]) + ||(mQ[VY] != b.mQ[VY]) + ||(mQ[VZ] != b.mQ[VZ]) + ||(mQ[VS] != b.mQ[VS])); } -inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b) +inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b) { #if 1 - LLQuaternion q( - b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1], - b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2], - b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0], - b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2] - ); - a = q; + LLQuaternion q( + b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1], + b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2], + b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0], + b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2] + ); + a = q; #else - a = a * b; + a = a * b; #endif - return a; + return a; } const F32 ONE_PART_IN_A_MILLION = 0.000001f; -inline F32 LLQuaternion::normalize() -{ - F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); - - if (mag > FP_MAG_THRESHOLD) - { - // Floating point error can prevent some quaternions from achieving - // exact unity length. When trying to renormalize such quaternions we - // can oscillate between multiple quantized states. To prevent such - // drifts we only renomalize if the length is far enough from unity. - if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION) - { - F32 oomag = 1.f/mag; - mQ[VX] *= oomag; - mQ[VY] *= oomag; - mQ[VZ] *= oomag; - mQ[VS] *= oomag; - } - } - else - { - // we were given a very bad quaternion so we set it to identity - mQ[VX] = 0.f; - mQ[VY] = 0.f; - mQ[VZ] = 0.f; - mQ[VS] = 1.f; - } - - return mag; +inline F32 LLQuaternion::normalize() +{ + F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); + + if (mag > FP_MAG_THRESHOLD) + { + // Floating point error can prevent some quaternions from achieving + // exact unity length. When trying to renormalize such quaternions we + // can oscillate between multiple quantized states. To prevent such + // drifts we only renomalize if the length is far enough from unity. + if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION) + { + F32 oomag = 1.f/mag; + mQ[VX] *= oomag; + mQ[VY] *= oomag; + mQ[VZ] *= oomag; + mQ[VS] *= oomag; + } + } + else + { + // we were given a very bad quaternion so we set it to identity + mQ[VX] = 0.f; + mQ[VY] = 0.f; + mQ[VZ] = 0.f; + mQ[VS] = 1.f; + } + + return mag; } // deprecated -inline F32 LLQuaternion::normQuat() -{ - F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); - - if (mag > FP_MAG_THRESHOLD) - { - if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION) - { - // only renormalize if length not close enough to 1.0 already - F32 oomag = 1.f/mag; - mQ[VX] *= oomag; - mQ[VY] *= oomag; - mQ[VZ] *= oomag; - mQ[VS] *= oomag; - } - } - else - { - mQ[VX] = 0.f; - mQ[VY] = 0.f; - mQ[VZ] = 0.f; - mQ[VS] = 1.f; - } - - return mag; +inline F32 LLQuaternion::normQuat() +{ + F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); + + if (mag > FP_MAG_THRESHOLD) + { + if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION) + { + // only renormalize if length not close enough to 1.0 already + F32 oomag = 1.f/mag; + mQ[VX] *= oomag; + mQ[VY] *= oomag; + mQ[VZ] *= oomag; + mQ[VS] *= oomag; + } + } + else + { + mQ[VX] = 0.f; + mQ[VY] = 0.f; + mQ[VZ] = 0.f; + mQ[VS] = 1.f; + } + + return mag; } LLQuaternion::Order StringToOrder( const char *str ); @@ -566,11 +566,11 @@ LLQuaternion::Order StringToOrder( const char *str ); // --------------------- // A quaternion is a point in 4-dimensional complex space. // Q = { Qx, Qy, Qz, Qw } -// +// // // Why Quaternions? // ---------------- -// The set of quaternions that make up the the 4-D unit sphere +// The set of quaternions that make up the the 4-D unit sphere // can be mapped to the set of all rotations in 3-D space. Sometimes // it is easier to describe/manipulate rotations in quaternion space // than rotation-matrix space. @@ -581,22 +581,22 @@ LLQuaternion::Order StringToOrder( const char *str ); // In order to take advantage of quaternions we need to know how to // go from rotation-matricies to quaternions and back. We also have // to agree what variety of rotations we're generating. -// -// Consider the equation... v' = v * R +// +// Consider the equation... v' = v * R // // There are two ways to think about rotations of vectors. // 1) v' is the same vector in a different reference frame // 2) v' is a new vector in the same reference frame // // bookmark -- which way are we using? -// -// +// +// // Quaternion from Angle-Axis: // --------------------------- -// Suppose we wanted to represent a rotation of some angle (theta) +// Suppose we wanted to represent a rotation of some angle (theta) // about some axis ({Ax, Ay, Az})... // -// axis of rotation = {Ax, Ay, Az} +// axis of rotation = {Ax, Ay, Az} // angle_of_rotation = theta // // s = sin(0.5 * theta) |