diff options
author | Dave Parks <davep@lindenlab.com> | 2010-08-19 12:25:15 -0500 |
---|---|---|
committer | Dave Parks <davep@lindenlab.com> | 2010-08-19 12:25:15 -0500 |
commit | 2fea1d5d33ec1b41a3cfa4307a1bfa58d8014f88 (patch) | |
tree | 0438f2363b2a91a5ffe970a8130faa118f260e7e /indra/llmath/llquaternion.h | |
parent | bd0b3a2ddeafaf0d1669ede7ab5aee22d8da9af7 (diff) |
Integrate SIMD API from oreh/server-trunk-oreh
Diffstat (limited to 'indra/llmath/llquaternion.h')
-rw-r--r-- | indra/llmath/llquaternion.h | 1184 |
1 files changed, 594 insertions, 590 deletions
diff --git a/indra/llmath/llquaternion.h b/indra/llmath/llquaternion.h index 0769f29f23..bbd4326483 100644 --- a/indra/llmath/llquaternion.h +++ b/indra/llmath/llquaternion.h @@ -1,590 +1,594 @@ -/** - * @file llquaternion.h - * @brief LLQuaternion class header file. - * - * $LicenseInfo:firstyear=2000&license=viewergpl$ - * - * Copyright (c) 2000-2009, Linden Research, Inc. - * - * Second Life Viewer Source Code - * The source code in this file ("Source Code") is provided by Linden Lab - * to you under the terms of the GNU General Public License, version 2.0 - * ("GPL"), unless you have obtained a separate licensing agreement - * ("Other License"), formally executed by you and Linden Lab. Terms of - * the GPL can be found in doc/GPL-license.txt in this distribution, or - * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 - * - * There are special exceptions to the terms and conditions of the GPL as - * it is applied to this Source Code. View the full text of the exception - * in the file doc/FLOSS-exception.txt in this software distribution, or - * online at - * http://secondlifegrid.net/programs/open_source/licensing/flossexception - * - * By copying, modifying or distributing this software, you acknowledge - * that you have read and understood your obligations described above, - * and agree to abide by those obligations. - * - * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO - * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, - * COMPLETENESS OR PERFORMANCE. - * $/LicenseInfo$ - */ - -#ifndef LLQUATERNION_H -#define LLQUATERNION_H - -#include "llmath.h" - -class LLVector4; -class LLVector3; -class LLVector3d; -class LLMatrix4; -class LLMatrix3; - -// NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!! -// Moreover, it is written assuming that all vectors and matricies -// passed as arguments are normalized and unitary respectively. -// VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail. - -static const U32 LENGTHOFQUAT = 4; - -class LLQuaternion -{ -public: - F32 mQ[LENGTHOFQUAT]; - - static const LLQuaternion DEFAULT; - - LLQuaternion(); // Initializes Quaternion to (0,0,0,1) - explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4 - explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3 - LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normalize(x, y, z, w) - LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) - LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) - LLQuaternion(const F32 *q); // Initializes Quaternion to normalize(x, y, z, w) - LLQuaternion(const LLVector3 &x_axis, - const LLVector3 &y_axis, - const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis] - - BOOL isIdentity() const; - BOOL isNotIdentity() const; - BOOL isFinite() const; // checks to see if all values of LLQuaternion are finite - void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization - void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization - void loadIdentity(); // Loads the quaternion that represents the identity rotation - - const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w) - const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion - const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW]) - const LLQuaternion& set(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat) - const LLQuaternion& set(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat) - - const LLQuaternion& setAngleAxis(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z) - const LLQuaternion& setAngleAxis(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) - const LLQuaternion& setAngleAxis(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) - const LLQuaternion& setEulerAngles(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll) - - const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // deprecated - const LLQuaternion& setQuat(const LLQuaternion &quat); // deprecated - const LLQuaternion& setQuat(const F32 *q); // deprecated - const LLQuaternion& setQuat(const LLMatrix3 &mat); // deprecated - const LLQuaternion& setQuat(const LLMatrix4 &mat); // deprecated - const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // deprecated - const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // deprecated - const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // deprecated - const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // deprecated - - LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion - LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion - void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z - void getAngleAxis(F32* angle, LLVector3 &vec) const; - void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const; - - F32 normalize(); // Normalizes Quaternion and returns magnitude - F32 normQuat(); // deprecated - - const LLQuaternion& conjugate(void); // Conjugates Quaternion and returns result - const LLQuaternion& conjQuat(void); // deprecated - - // Other useful methods - const LLQuaternion& transpose(); // transpose (same as conjugate) - const LLQuaternion& transQuat(); // deprecated - - void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b - const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians - - // Standard operators - friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a - friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition - friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction - friend LLQuaternion operator-(const LLQuaternion &a); // Negation - friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale - friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale - friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b - friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a) - bool operator==(const LLQuaternion &b) const; // Returns a == b - bool operator!=(const LLQuaternion &b) const; // Returns a != b - - friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b - - friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot - friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot - friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot - - // Non-standard operators - friend F32 dot(const LLQuaternion &a, const LLQuaternion &b); - friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q - friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q - friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q - friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q - friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q - friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q - - LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized - void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized - - enum Order { - XYZ = 0, - YZX = 1, - ZXY = 2, - XZY = 3, - YXZ = 4, - ZYX = 5 - }; - // Creates a quaternions from maya's rotation representation, - // which is 3 rotations (in DEGREES) in the specified order - friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order); - - // Conversions between Order and strings like "xyz" or "ZYX" - friend const char *OrderToString( const Order order ); - friend Order StringToOrder( const char *str ); - - static BOOL parseQuat(const std::string& buf, LLQuaternion* value); - - // For debugging, only - //static U32 mMultCount; -}; - -// checker -inline BOOL LLQuaternion::isFinite() const -{ - return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS])); -} - -inline BOOL LLQuaternion::isIdentity() const -{ - return - ( mQ[VX] == 0.f ) && - ( mQ[VY] == 0.f ) && - ( mQ[VZ] == 0.f ) && - ( mQ[VS] == 1.f ); -} - -inline BOOL LLQuaternion::isNotIdentity() const -{ - return - ( mQ[VX] != 0.f ) || - ( mQ[VY] != 0.f ) || - ( mQ[VZ] != 0.f ) || - ( mQ[VS] != 1.f ); -} - - - -inline LLQuaternion::LLQuaternion(void) -{ - mQ[VX] = 0.f; - mQ[VY] = 0.f; - mQ[VZ] = 0.f; - mQ[VS] = 1.f; -} - -inline LLQuaternion::LLQuaternion(F32 x, F32 y, F32 z, F32 w) -{ - mQ[VX] = x; - mQ[VY] = y; - mQ[VZ] = z; - mQ[VS] = w; - - //RN: don't normalize this case as its used mainly for temporaries during calculations - //normalize(); - /* - F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); - mag -= 1.f; - mag = fabs(mag); - llassert(mag < 10.f*FP_MAG_THRESHOLD); - */ -} - -inline LLQuaternion::LLQuaternion(const F32 *q) -{ - mQ[VX] = q[VX]; - mQ[VY] = q[VY]; - mQ[VZ] = q[VZ]; - mQ[VS] = q[VW]; - - normalize(); - /* - F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); - mag -= 1.f; - mag = fabs(mag); - llassert(mag < FP_MAG_THRESHOLD); - */ -} - - -inline void LLQuaternion::loadIdentity() -{ - mQ[VX] = 0.0f; - mQ[VY] = 0.0f; - mQ[VZ] = 0.0f; - mQ[VW] = 1.0f; -} - - -inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w) -{ - mQ[VX] = x; - mQ[VY] = y; - mQ[VZ] = z; - mQ[VS] = w; - normalize(); - return (*this); -} - -inline const LLQuaternion& LLQuaternion::set(const LLQuaternion &quat) -{ - mQ[VX] = quat.mQ[VX]; - mQ[VY] = quat.mQ[VY]; - mQ[VZ] = quat.mQ[VZ]; - mQ[VW] = quat.mQ[VW]; - normalize(); - return (*this); -} - -inline const LLQuaternion& LLQuaternion::set(const F32 *q) -{ - mQ[VX] = q[VX]; - mQ[VY] = q[VY]; - mQ[VZ] = q[VZ]; - mQ[VS] = q[VW]; - normalize(); - return (*this); -} - - -// deprecated -inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w) -{ - mQ[VX] = x; - mQ[VY] = y; - mQ[VZ] = z; - mQ[VS] = w; - normalize(); - return (*this); -} - -// deprecated -inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat) -{ - mQ[VX] = quat.mQ[VX]; - mQ[VY] = quat.mQ[VY]; - mQ[VZ] = quat.mQ[VZ]; - mQ[VW] = quat.mQ[VW]; - normalize(); - return (*this); -} - -// deprecated -inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q) -{ - mQ[VX] = q[VX]; - mQ[VY] = q[VY]; - mQ[VZ] = q[VZ]; - mQ[VS] = q[VW]; - normalize(); - return (*this); -} - -// There may be a cheaper way that avoids the sqrt. -// Does sin_a = VX*VX + VY*VY + VZ*VZ? -// Copied from Matrix and Quaternion FAQ 1.12 -inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const -{ - F32 cos_a = mQ[VW]; - if (cos_a > 1.0f) cos_a = 1.0f; - if (cos_a < -1.0f) cos_a = -1.0f; - - F32 sin_a = (F32) sqrt( 1.0f - cos_a * cos_a ); - - if ( fabs( sin_a ) < 0.0005f ) - sin_a = 1.0f; - else - sin_a = 1.f/sin_a; - - F32 temp_angle = 2.0f * (F32) acos( cos_a ); - if (temp_angle > F_PI) - { - // The (angle,axis) pair should never have angles outside [PI, -PI] - // since we want the _shortest_ (angle,axis) solution. - // Since acos is defined for [0, PI], and we multiply by 2.0, we - // can push the angle outside the acceptible range. - // When this happens we set the angle to the other portion of a - // full 2PI rotation, and negate the axis, which reverses the - // direction of the rotation (by the right-hand rule). - *angle = 2.f * F_PI - temp_angle; - *x = - mQ[VX] * sin_a; - *y = - mQ[VY] * sin_a; - *z = - mQ[VZ] * sin_a; - } - else - { - *angle = temp_angle; - *x = mQ[VX] * sin_a; - *y = mQ[VY] * sin_a; - *z = mQ[VZ] * sin_a; - } -} - -inline const LLQuaternion& LLQuaternion::conjugate() -{ - mQ[VX] *= -1.f; - mQ[VY] *= -1.f; - mQ[VZ] *= -1.f; - return (*this); -} - -inline const LLQuaternion& LLQuaternion::conjQuat() -{ - mQ[VX] *= -1.f; - mQ[VY] *= -1.f; - mQ[VZ] *= -1.f; - return (*this); -} - -// Transpose -inline const LLQuaternion& LLQuaternion::transpose() -{ - mQ[VX] *= -1.f; - mQ[VY] *= -1.f; - mQ[VZ] *= -1.f; - return (*this); -} - -// deprecated -inline const LLQuaternion& LLQuaternion::transQuat() -{ - mQ[VX] *= -1.f; - mQ[VY] *= -1.f; - mQ[VZ] *= -1.f; - return (*this); -} - - -inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b) -{ - return LLQuaternion( - a.mQ[VX] + b.mQ[VX], - a.mQ[VY] + b.mQ[VY], - a.mQ[VZ] + b.mQ[VZ], - a.mQ[VW] + b.mQ[VW] ); -} - - -inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b) -{ - return LLQuaternion( - a.mQ[VX] - b.mQ[VX], - a.mQ[VY] - b.mQ[VY], - a.mQ[VZ] - b.mQ[VZ], - a.mQ[VW] - b.mQ[VW] ); -} - - -inline LLQuaternion operator-(const LLQuaternion &a) -{ - return LLQuaternion( - -a.mQ[VX], - -a.mQ[VY], - -a.mQ[VZ], - -a.mQ[VW] ); -} - - -inline LLQuaternion operator*(F32 a, const LLQuaternion &q) -{ - return LLQuaternion( - a * q.mQ[VX], - a * q.mQ[VY], - a * q.mQ[VZ], - a * q.mQ[VW] ); -} - - -inline LLQuaternion operator*(const LLQuaternion &q, F32 a) -{ - return LLQuaternion( - a * q.mQ[VX], - a * q.mQ[VY], - a * q.mQ[VZ], - a * q.mQ[VW] ); -} - -inline LLQuaternion operator~(const LLQuaternion &a) -{ - LLQuaternion q(a); - q.conjQuat(); - return q; -} - -inline bool LLQuaternion::operator==(const LLQuaternion &b) const -{ - return ( (mQ[VX] == b.mQ[VX]) - &&(mQ[VY] == b.mQ[VY]) - &&(mQ[VZ] == b.mQ[VZ]) - &&(mQ[VS] == b.mQ[VS])); -} - -inline bool LLQuaternion::operator!=(const LLQuaternion &b) const -{ - return ( (mQ[VX] != b.mQ[VX]) - ||(mQ[VY] != b.mQ[VY]) - ||(mQ[VZ] != b.mQ[VZ]) - ||(mQ[VS] != b.mQ[VS])); -} - -inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b) -{ -#if 1 - LLQuaternion q( - b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1], - b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2], - b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0], - b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2] - ); - a = q; -#else - a = a * b; -#endif - return a; -} - -const F32 ONE_PART_IN_A_MILLION = 0.000001f; - -inline F32 LLQuaternion::normalize() -{ - F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); - - if (mag > FP_MAG_THRESHOLD) - { - // Floating point error can prevent some quaternions from achieving - // exact unity length. When trying to renormalize such quaternions we - // can oscillate between multiple quantized states. To prevent such - // drifts we only renomalize if the length is far enough from unity. - if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION) - { - F32 oomag = 1.f/mag; - mQ[VX] *= oomag; - mQ[VY] *= oomag; - mQ[VZ] *= oomag; - mQ[VS] *= oomag; - } - } - else - { - // we were given a very bad quaternion so we set it to identity - mQ[VX] = 0.f; - mQ[VY] = 0.f; - mQ[VZ] = 0.f; - mQ[VS] = 1.f; - } - - return mag; -} - -// deprecated -inline F32 LLQuaternion::normQuat() -{ - F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); - - if (mag > FP_MAG_THRESHOLD) - { - if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION) - { - // only renormalize if length not close enough to 1.0 already - F32 oomag = 1.f/mag; - mQ[VX] *= oomag; - mQ[VY] *= oomag; - mQ[VZ] *= oomag; - mQ[VS] *= oomag; - } - } - else - { - mQ[VX] = 0.f; - mQ[VY] = 0.f; - mQ[VZ] = 0.f; - mQ[VS] = 1.f; - } - - return mag; -} - -LLQuaternion::Order StringToOrder( const char *str ); - -// Some notes about Quaternions - -// What is a Quaternion? -// --------------------- -// A quaternion is a point in 4-dimensional complex space. -// Q = { Qx, Qy, Qz, Qw } -// -// -// Why Quaternions? -// ---------------- -// The set of quaternions that make up the the 4-D unit sphere -// can be mapped to the set of all rotations in 3-D space. Sometimes -// it is easier to describe/manipulate rotations in quaternion space -// than rotation-matrix space. -// -// -// How Quaternions? -// ---------------- -// In order to take advantage of quaternions we need to know how to -// go from rotation-matricies to quaternions and back. We also have -// to agree what variety of rotations we're generating. -// -// Consider the equation... v' = v * R -// -// There are two ways to think about rotations of vectors. -// 1) v' is the same vector in a different reference frame -// 2) v' is a new vector in the same reference frame -// -// bookmark -- which way are we using? -// -// -// Quaternion from Angle-Axis: -// --------------------------- -// Suppose we wanted to represent a rotation of some angle (theta) -// about some axis ({Ax, Ay, Az})... -// -// axis of rotation = {Ax, Ay, Az} -// angle_of_rotation = theta -// -// s = sin(0.5 * theta) -// c = cos(0.5 * theta) -// Q = { s * Ax, s * Ay, s * Az, c } -// -// -// 3x3 Matrix from Quaternion -// -------------------------- -// -// | | -// | 1 - 2 * (y^2 + z^2) 2 * (x * y + z * w) 2 * (y * w - x * z) | -// | | -// M = | 2 * (x * y - z * w) 1 - 2 * (x^2 + z^2) 2 * (y * z + x * w) | -// | | -// | 2 * (x * z + y * w) 2 * (y * z - x * w) 1 - 2 * (x^2 + y^2) | -// | | - -#endif +/**
+ * @file llquaternion.h
+ * @brief LLQuaternion class header file.
+ *
+ * $LicenseInfo:firstyear=2000&license=viewergpl$
+ *
+ * Copyright (c) 2000-2009, Linden Research, Inc.
+ *
+ * Second Life Viewer Source Code
+ * The source code in this file ("Source Code") is provided by Linden Lab
+ * to you under the terms of the GNU General Public License, version 2.0
+ * ("GPL"), unless you have obtained a separate licensing agreement
+ * ("Other License"), formally executed by you and Linden Lab. Terms of
+ * the GPL can be found in doc/GPL-license.txt in this distribution, or
+ * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
+ *
+ * There are special exceptions to the terms and conditions of the GPL as
+ * it is applied to this Source Code. View the full text of the exception
+ * in the file doc/FLOSS-exception.txt in this software distribution, or
+ * online at
+ * http://secondlifegrid.net/programs/open_source/licensing/flossexception
+ *
+ * By copying, modifying or distributing this software, you acknowledge
+ * that you have read and understood your obligations described above,
+ * and agree to abide by those obligations.
+ *
+ * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
+ * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
+ * COMPLETENESS OR PERFORMANCE.
+ * $/LicenseInfo$
+ */
+
+#ifndef LLQUATERNION_H
+#define LLQUATERNION_H
+
+#include <iostream>
+
+#ifndef LLMATH_H //enforce specific include order to avoid tangling inline dependencies
+#error "Please include llmath.h first."
+#endif
+
+class LLVector4;
+class LLVector3;
+class LLVector3d;
+class LLMatrix4;
+class LLMatrix3;
+
+// NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!!
+// Moreover, it is written assuming that all vectors and matricies
+// passed as arguments are normalized and unitary respectively.
+// VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail.
+
+static const U32 LENGTHOFQUAT = 4;
+
+class LLQuaternion
+{
+public:
+ F32 mQ[LENGTHOFQUAT];
+
+ static const LLQuaternion DEFAULT;
+
+ LLQuaternion(); // Initializes Quaternion to (0,0,0,1)
+ explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4
+ explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3
+ LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normalize(x, y, z, w)
+ LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
+ LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
+ LLQuaternion(const F32 *q); // Initializes Quaternion to normalize(x, y, z, w)
+ LLQuaternion(const LLVector3 &x_axis,
+ const LLVector3 &y_axis,
+ const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis]
+
+ BOOL isIdentity() const;
+ BOOL isNotIdentity() const;
+ BOOL isFinite() const; // checks to see if all values of LLQuaternion are finite
+ void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization
+ void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization
+ void loadIdentity(); // Loads the quaternion that represents the identity rotation
+
+ const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w)
+ const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion
+ const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW])
+ const LLQuaternion& set(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat)
+ const LLQuaternion& set(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat)
+
+ const LLQuaternion& setAngleAxis(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z)
+ const LLQuaternion& setAngleAxis(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
+ const LLQuaternion& setAngleAxis(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
+ const LLQuaternion& setEulerAngles(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll)
+
+ const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // deprecated
+ const LLQuaternion& setQuat(const LLQuaternion &quat); // deprecated
+ const LLQuaternion& setQuat(const F32 *q); // deprecated
+ const LLQuaternion& setQuat(const LLMatrix3 &mat); // deprecated
+ const LLQuaternion& setQuat(const LLMatrix4 &mat); // deprecated
+ const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // deprecated
+ const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // deprecated
+ const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // deprecated
+ const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // deprecated
+
+ LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion
+ LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion
+ void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z
+ void getAngleAxis(F32* angle, LLVector3 &vec) const;
+ void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const;
+
+ F32 normalize(); // Normalizes Quaternion and returns magnitude
+ F32 normQuat(); // deprecated
+
+ const LLQuaternion& conjugate(void); // Conjugates Quaternion and returns result
+ const LLQuaternion& conjQuat(void); // deprecated
+
+ // Other useful methods
+ const LLQuaternion& transpose(); // transpose (same as conjugate)
+ const LLQuaternion& transQuat(); // deprecated
+
+ void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b
+ const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians
+
+ // Standard operators
+ friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a
+ friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition
+ friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction
+ friend LLQuaternion operator-(const LLQuaternion &a); // Negation
+ friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale
+ friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale
+ friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b
+ friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a)
+ bool operator==(const LLQuaternion &b) const; // Returns a == b
+ bool operator!=(const LLQuaternion &b) const; // Returns a != b
+
+ friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b
+
+ friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot
+ friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot
+ friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot
+
+ // Non-standard operators
+ friend F32 dot(const LLQuaternion &a, const LLQuaternion &b);
+ friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q
+ friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q
+ friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q
+ friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q
+ friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q
+ friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q
+
+ LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized
+ void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized
+
+ enum Order {
+ XYZ = 0,
+ YZX = 1,
+ ZXY = 2,
+ XZY = 3,
+ YXZ = 4,
+ ZYX = 5
+ };
+ // Creates a quaternions from maya's rotation representation,
+ // which is 3 rotations (in DEGREES) in the specified order
+ friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order);
+
+ // Conversions between Order and strings like "xyz" or "ZYX"
+ friend const char *OrderToString( const Order order );
+ friend Order StringToOrder( const char *str );
+
+ static BOOL parseQuat(const std::string& buf, LLQuaternion* value);
+
+ // For debugging, only
+ //static U32 mMultCount;
+};
+
+// checker
+inline BOOL LLQuaternion::isFinite() const
+{
+ return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS]));
+}
+
+inline BOOL LLQuaternion::isIdentity() const
+{
+ return
+ ( mQ[VX] == 0.f ) &&
+ ( mQ[VY] == 0.f ) &&
+ ( mQ[VZ] == 0.f ) &&
+ ( mQ[VS] == 1.f );
+}
+
+inline BOOL LLQuaternion::isNotIdentity() const
+{
+ return
+ ( mQ[VX] != 0.f ) ||
+ ( mQ[VY] != 0.f ) ||
+ ( mQ[VZ] != 0.f ) ||
+ ( mQ[VS] != 1.f );
+}
+
+
+
+inline LLQuaternion::LLQuaternion(void)
+{
+ mQ[VX] = 0.f;
+ mQ[VY] = 0.f;
+ mQ[VZ] = 0.f;
+ mQ[VS] = 1.f;
+}
+
+inline LLQuaternion::LLQuaternion(F32 x, F32 y, F32 z, F32 w)
+{
+ mQ[VX] = x;
+ mQ[VY] = y;
+ mQ[VZ] = z;
+ mQ[VS] = w;
+
+ //RN: don't normalize this case as its used mainly for temporaries during calculations
+ //normalize();
+ /*
+ F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
+ mag -= 1.f;
+ mag = fabs(mag);
+ llassert(mag < 10.f*FP_MAG_THRESHOLD);
+ */
+}
+
+inline LLQuaternion::LLQuaternion(const F32 *q)
+{
+ mQ[VX] = q[VX];
+ mQ[VY] = q[VY];
+ mQ[VZ] = q[VZ];
+ mQ[VS] = q[VW];
+
+ normalize();
+ /*
+ F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
+ mag -= 1.f;
+ mag = fabs(mag);
+ llassert(mag < FP_MAG_THRESHOLD);
+ */
+}
+
+
+inline void LLQuaternion::loadIdentity()
+{
+ mQ[VX] = 0.0f;
+ mQ[VY] = 0.0f;
+ mQ[VZ] = 0.0f;
+ mQ[VW] = 1.0f;
+}
+
+
+inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w)
+{
+ mQ[VX] = x;
+ mQ[VY] = y;
+ mQ[VZ] = z;
+ mQ[VS] = w;
+ normalize();
+ return (*this);
+}
+
+inline const LLQuaternion& LLQuaternion::set(const LLQuaternion &quat)
+{
+ mQ[VX] = quat.mQ[VX];
+ mQ[VY] = quat.mQ[VY];
+ mQ[VZ] = quat.mQ[VZ];
+ mQ[VW] = quat.mQ[VW];
+ normalize();
+ return (*this);
+}
+
+inline const LLQuaternion& LLQuaternion::set(const F32 *q)
+{
+ mQ[VX] = q[VX];
+ mQ[VY] = q[VY];
+ mQ[VZ] = q[VZ];
+ mQ[VS] = q[VW];
+ normalize();
+ return (*this);
+}
+
+
+// deprecated
+inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w)
+{
+ mQ[VX] = x;
+ mQ[VY] = y;
+ mQ[VZ] = z;
+ mQ[VS] = w;
+ normalize();
+ return (*this);
+}
+
+// deprecated
+inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat)
+{
+ mQ[VX] = quat.mQ[VX];
+ mQ[VY] = quat.mQ[VY];
+ mQ[VZ] = quat.mQ[VZ];
+ mQ[VW] = quat.mQ[VW];
+ normalize();
+ return (*this);
+}
+
+// deprecated
+inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q)
+{
+ mQ[VX] = q[VX];
+ mQ[VY] = q[VY];
+ mQ[VZ] = q[VZ];
+ mQ[VS] = q[VW];
+ normalize();
+ return (*this);
+}
+
+// There may be a cheaper way that avoids the sqrt.
+// Does sin_a = VX*VX + VY*VY + VZ*VZ?
+// Copied from Matrix and Quaternion FAQ 1.12
+inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const
+{
+ F32 cos_a = mQ[VW];
+ if (cos_a > 1.0f) cos_a = 1.0f;
+ if (cos_a < -1.0f) cos_a = -1.0f;
+
+ F32 sin_a = (F32) sqrt( 1.0f - cos_a * cos_a );
+
+ if ( fabs( sin_a ) < 0.0005f )
+ sin_a = 1.0f;
+ else
+ sin_a = 1.f/sin_a;
+
+ F32 temp_angle = 2.0f * (F32) acos( cos_a );
+ if (temp_angle > F_PI)
+ {
+ // The (angle,axis) pair should never have angles outside [PI, -PI]
+ // since we want the _shortest_ (angle,axis) solution.
+ // Since acos is defined for [0, PI], and we multiply by 2.0, we
+ // can push the angle outside the acceptible range.
+ // When this happens we set the angle to the other portion of a
+ // full 2PI rotation, and negate the axis, which reverses the
+ // direction of the rotation (by the right-hand rule).
+ *angle = 2.f * F_PI - temp_angle;
+ *x = - mQ[VX] * sin_a;
+ *y = - mQ[VY] * sin_a;
+ *z = - mQ[VZ] * sin_a;
+ }
+ else
+ {
+ *angle = temp_angle;
+ *x = mQ[VX] * sin_a;
+ *y = mQ[VY] * sin_a;
+ *z = mQ[VZ] * sin_a;
+ }
+}
+
+inline const LLQuaternion& LLQuaternion::conjugate()
+{
+ mQ[VX] *= -1.f;
+ mQ[VY] *= -1.f;
+ mQ[VZ] *= -1.f;
+ return (*this);
+}
+
+inline const LLQuaternion& LLQuaternion::conjQuat()
+{
+ mQ[VX] *= -1.f;
+ mQ[VY] *= -1.f;
+ mQ[VZ] *= -1.f;
+ return (*this);
+}
+
+// Transpose
+inline const LLQuaternion& LLQuaternion::transpose()
+{
+ mQ[VX] *= -1.f;
+ mQ[VY] *= -1.f;
+ mQ[VZ] *= -1.f;
+ return (*this);
+}
+
+// deprecated
+inline const LLQuaternion& LLQuaternion::transQuat()
+{
+ mQ[VX] *= -1.f;
+ mQ[VY] *= -1.f;
+ mQ[VZ] *= -1.f;
+ return (*this);
+}
+
+
+inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b)
+{
+ return LLQuaternion(
+ a.mQ[VX] + b.mQ[VX],
+ a.mQ[VY] + b.mQ[VY],
+ a.mQ[VZ] + b.mQ[VZ],
+ a.mQ[VW] + b.mQ[VW] );
+}
+
+
+inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b)
+{
+ return LLQuaternion(
+ a.mQ[VX] - b.mQ[VX],
+ a.mQ[VY] - b.mQ[VY],
+ a.mQ[VZ] - b.mQ[VZ],
+ a.mQ[VW] - b.mQ[VW] );
+}
+
+
+inline LLQuaternion operator-(const LLQuaternion &a)
+{
+ return LLQuaternion(
+ -a.mQ[VX],
+ -a.mQ[VY],
+ -a.mQ[VZ],
+ -a.mQ[VW] );
+}
+
+
+inline LLQuaternion operator*(F32 a, const LLQuaternion &q)
+{
+ return LLQuaternion(
+ a * q.mQ[VX],
+ a * q.mQ[VY],
+ a * q.mQ[VZ],
+ a * q.mQ[VW] );
+}
+
+
+inline LLQuaternion operator*(const LLQuaternion &q, F32 a)
+{
+ return LLQuaternion(
+ a * q.mQ[VX],
+ a * q.mQ[VY],
+ a * q.mQ[VZ],
+ a * q.mQ[VW] );
+}
+
+inline LLQuaternion operator~(const LLQuaternion &a)
+{
+ LLQuaternion q(a);
+ q.conjQuat();
+ return q;
+}
+
+inline bool LLQuaternion::operator==(const LLQuaternion &b) const
+{
+ return ( (mQ[VX] == b.mQ[VX])
+ &&(mQ[VY] == b.mQ[VY])
+ &&(mQ[VZ] == b.mQ[VZ])
+ &&(mQ[VS] == b.mQ[VS]));
+}
+
+inline bool LLQuaternion::operator!=(const LLQuaternion &b) const
+{
+ return ( (mQ[VX] != b.mQ[VX])
+ ||(mQ[VY] != b.mQ[VY])
+ ||(mQ[VZ] != b.mQ[VZ])
+ ||(mQ[VS] != b.mQ[VS]));
+}
+
+inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b)
+{
+#if 1
+ LLQuaternion q(
+ b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1],
+ b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2],
+ b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0],
+ b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2]
+ );
+ a = q;
+#else
+ a = a * b;
+#endif
+ return a;
+}
+
+const F32 ONE_PART_IN_A_MILLION = 0.000001f;
+
+inline F32 LLQuaternion::normalize()
+{
+ F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
+
+ if (mag > FP_MAG_THRESHOLD)
+ {
+ // Floating point error can prevent some quaternions from achieving
+ // exact unity length. When trying to renormalize such quaternions we
+ // can oscillate between multiple quantized states. To prevent such
+ // drifts we only renomalize if the length is far enough from unity.
+ if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
+ {
+ F32 oomag = 1.f/mag;
+ mQ[VX] *= oomag;
+ mQ[VY] *= oomag;
+ mQ[VZ] *= oomag;
+ mQ[VS] *= oomag;
+ }
+ }
+ else
+ {
+ // we were given a very bad quaternion so we set it to identity
+ mQ[VX] = 0.f;
+ mQ[VY] = 0.f;
+ mQ[VZ] = 0.f;
+ mQ[VS] = 1.f;
+ }
+
+ return mag;
+}
+
+// deprecated
+inline F32 LLQuaternion::normQuat()
+{
+ F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
+
+ if (mag > FP_MAG_THRESHOLD)
+ {
+ if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
+ {
+ // only renormalize if length not close enough to 1.0 already
+ F32 oomag = 1.f/mag;
+ mQ[VX] *= oomag;
+ mQ[VY] *= oomag;
+ mQ[VZ] *= oomag;
+ mQ[VS] *= oomag;
+ }
+ }
+ else
+ {
+ mQ[VX] = 0.f;
+ mQ[VY] = 0.f;
+ mQ[VZ] = 0.f;
+ mQ[VS] = 1.f;
+ }
+
+ return mag;
+}
+
+LLQuaternion::Order StringToOrder( const char *str );
+
+// Some notes about Quaternions
+
+// What is a Quaternion?
+// ---------------------
+// A quaternion is a point in 4-dimensional complex space.
+// Q = { Qx, Qy, Qz, Qw }
+//
+//
+// Why Quaternions?
+// ----------------
+// The set of quaternions that make up the the 4-D unit sphere
+// can be mapped to the set of all rotations in 3-D space. Sometimes
+// it is easier to describe/manipulate rotations in quaternion space
+// than rotation-matrix space.
+//
+//
+// How Quaternions?
+// ----------------
+// In order to take advantage of quaternions we need to know how to
+// go from rotation-matricies to quaternions and back. We also have
+// to agree what variety of rotations we're generating.
+//
+// Consider the equation... v' = v * R
+//
+// There are two ways to think about rotations of vectors.
+// 1) v' is the same vector in a different reference frame
+// 2) v' is a new vector in the same reference frame
+//
+// bookmark -- which way are we using?
+//
+//
+// Quaternion from Angle-Axis:
+// ---------------------------
+// Suppose we wanted to represent a rotation of some angle (theta)
+// about some axis ({Ax, Ay, Az})...
+//
+// axis of rotation = {Ax, Ay, Az}
+// angle_of_rotation = theta
+//
+// s = sin(0.5 * theta)
+// c = cos(0.5 * theta)
+// Q = { s * Ax, s * Ay, s * Az, c }
+//
+//
+// 3x3 Matrix from Quaternion
+// --------------------------
+//
+// | |
+// | 1 - 2 * (y^2 + z^2) 2 * (x * y + z * w) 2 * (y * w - x * z) |
+// | |
+// M = | 2 * (x * y - z * w) 1 - 2 * (x^2 + z^2) 2 * (y * z + x * w) |
+// | |
+// | 2 * (x * z + y * w) 2 * (y * z - x * w) 1 - 2 * (x^2 + y^2) |
+// | |
+
+#endif
|