diff options
author | Nat Goodspeed <nat@lindenlab.com> | 2024-05-15 12:18:31 -0400 |
---|---|---|
committer | Nat Goodspeed <nat@lindenlab.com> | 2024-05-15 12:18:31 -0400 |
commit | 7ccf02515ad3f9e3bf795d651fe4b3c0d773f353 (patch) | |
tree | c4adc897c07f652e617e91fbf41c12b823acc808 /indra/llmath/llquaternion.cpp | |
parent | 1abf5f18d6afc7ae9e1b1562b92e5c1ce33b722f (diff) | |
parent | e7eced3c87310b15ac20cc3cd470d67686104a14 (diff) |
Merge commit 'e7eced3' into lua-timers for whitespace fixes.
Diffstat (limited to 'indra/llmath/llquaternion.cpp')
-rw-r--r-- | indra/llmath/llquaternion.cpp | 1226 |
1 files changed, 613 insertions, 613 deletions
diff --git a/indra/llmath/llquaternion.cpp b/indra/llmath/llquaternion.cpp index 57a976b57a..ce0a88c26f 100644 --- a/indra/llmath/llquaternion.cpp +++ b/indra/llmath/llquaternion.cpp @@ -5,28 +5,28 @@ * $LicenseInfo:firstyear=2000&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. - * + * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. - * + * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. - * + * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - * + * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" -#include "llmath.h" // for F_PI +#include "llmath.h" // for F_PI #include "llquaternion.h" @@ -41,67 +41,67 @@ // WARNING: Don't use this for global const definitions! using this // at the top of a *.cpp file might not give you what you think. const LLQuaternion LLQuaternion::DEFAULT; - + // Constructors LLQuaternion::LLQuaternion(const LLMatrix4 &mat) { - *this = mat.quaternion(); - normalize(); + *this = mat.quaternion(); + normalize(); } LLQuaternion::LLQuaternion(const LLMatrix3 &mat) { - *this = mat.quaternion(); - normalize(); + *this = mat.quaternion(); + normalize(); } LLQuaternion::LLQuaternion(F32 angle, const LLVector4 &vec) { - F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); - if (mag > FP_MAG_THRESHOLD) - { - angle *= 0.5; - F32 c = cosf(angle); - F32 s = sinf(angle) / mag; - mQ[VX] = vec.mV[VX] * s; - mQ[VY] = vec.mV[VY] * s; - mQ[VZ] = vec.mV[VZ] * s; - mQ[VW] = c; - } - else - { - loadIdentity(); - } + F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = vec.mV[VX] * s; + mQ[VY] = vec.mV[VY] * s; + mQ[VZ] = vec.mV[VZ] * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } } LLQuaternion::LLQuaternion(F32 angle, const LLVector3 &vec) { - F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); - if (mag > FP_MAG_THRESHOLD) - { - angle *= 0.5; - F32 c = cosf(angle); - F32 s = sinf(angle) / mag; - mQ[VX] = vec.mV[VX] * s; - mQ[VY] = vec.mV[VY] * s; - mQ[VZ] = vec.mV[VZ] * s; - mQ[VW] = c; - } - else - { - loadIdentity(); - } + F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = vec.mV[VX] * s; + mQ[VY] = vec.mV[VY] * s; + mQ[VZ] = vec.mV[VZ] * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } } LLQuaternion::LLQuaternion(const LLVector3 &x_axis, - const LLVector3 &y_axis, - const LLVector3 &z_axis) + const LLVector3 &y_axis, + const LLVector3 &z_axis) { - LLMatrix3 mat; - mat.setRows(x_axis, y_axis, z_axis); - *this = mat.quaternion(); - normalize(); + LLMatrix3 mat; + mat.setRows(x_axis, y_axis, z_axis); + *this = mat.quaternion(); + normalize(); } LLQuaternion::LLQuaternion(const LLSD &sd) @@ -110,34 +110,34 @@ LLQuaternion::LLQuaternion(const LLSD &sd) } // Quatizations -void LLQuaternion::quantize16(F32 lower, F32 upper) +void LLQuaternion::quantize16(F32 lower, F32 upper) { - F32 x = mQ[VX]; - F32 y = mQ[VY]; - F32 z = mQ[VZ]; - F32 s = mQ[VS]; + F32 x = mQ[VX]; + F32 y = mQ[VY]; + F32 z = mQ[VZ]; + F32 s = mQ[VS]; - x = U16_to_F32(F32_to_U16_ROUND(x, lower, upper), lower, upper); - y = U16_to_F32(F32_to_U16_ROUND(y, lower, upper), lower, upper); - z = U16_to_F32(F32_to_U16_ROUND(z, lower, upper), lower, upper); - s = U16_to_F32(F32_to_U16_ROUND(s, lower, upper), lower, upper); + x = U16_to_F32(F32_to_U16_ROUND(x, lower, upper), lower, upper); + y = U16_to_F32(F32_to_U16_ROUND(y, lower, upper), lower, upper); + z = U16_to_F32(F32_to_U16_ROUND(z, lower, upper), lower, upper); + s = U16_to_F32(F32_to_U16_ROUND(s, lower, upper), lower, upper); - mQ[VX] = x; - mQ[VY] = y; - mQ[VZ] = z; - mQ[VS] = s; + mQ[VX] = x; + mQ[VY] = y; + mQ[VZ] = z; + mQ[VS] = s; - normalize(); + normalize(); } -void LLQuaternion::quantize8(F32 lower, F32 upper) +void LLQuaternion::quantize8(F32 lower, F32 upper) { - mQ[VX] = U8_to_F32(F32_to_U8_ROUND(mQ[VX], lower, upper), lower, upper); - mQ[VY] = U8_to_F32(F32_to_U8_ROUND(mQ[VY], lower, upper), lower, upper); - mQ[VZ] = U8_to_F32(F32_to_U8_ROUND(mQ[VZ], lower, upper), lower, upper); - mQ[VS] = U8_to_F32(F32_to_U8_ROUND(mQ[VS], lower, upper), lower, upper); + mQ[VX] = U8_to_F32(F32_to_U8_ROUND(mQ[VX], lower, upper), lower, upper); + mQ[VY] = U8_to_F32(F32_to_U8_ROUND(mQ[VY], lower, upper), lower, upper); + mQ[VZ] = U8_to_F32(F32_to_U8_ROUND(mQ[VZ], lower, upper), lower, upper); + mQ[VS] = U8_to_F32(F32_to_U8_ROUND(mQ[VS], lower, upper), lower, upper); - normalize(); + normalize(); } // LLVector3 Magnitude and Normalization Functions @@ -145,190 +145,190 @@ void LLQuaternion::quantize8(F32 lower, F32 upper) // Set LLQuaternion routines -const LLQuaternion& LLQuaternion::setAngleAxis(F32 angle, F32 x, F32 y, F32 z) -{ - F32 mag = sqrtf(x * x + y * y + z * z); - if (mag > FP_MAG_THRESHOLD) - { - angle *= 0.5; - F32 c = cosf(angle); - F32 s = sinf(angle) / mag; - mQ[VX] = x * s; - mQ[VY] = y * s; - mQ[VZ] = z * s; - mQ[VW] = c; - } - else - { - loadIdentity(); - } - return (*this); -} - -const LLQuaternion& LLQuaternion::setAngleAxis(F32 angle, const LLVector3 &vec) -{ - F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); - if (mag > FP_MAG_THRESHOLD) - { - angle *= 0.5; - F32 c = cosf(angle); - F32 s = sinf(angle) / mag; - mQ[VX] = vec.mV[VX] * s; - mQ[VY] = vec.mV[VY] * s; - mQ[VZ] = vec.mV[VZ] * s; - mQ[VW] = c; - } - else - { - loadIdentity(); - } - return (*this); -} - -const LLQuaternion& LLQuaternion::setAngleAxis(F32 angle, const LLVector4 &vec) -{ - F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); - if (mag > FP_MAG_THRESHOLD) - { - angle *= 0.5; - F32 c = cosf(angle); - F32 s = sinf(angle) / mag; - mQ[VX] = vec.mV[VX] * s; - mQ[VY] = vec.mV[VY] * s; - mQ[VZ] = vec.mV[VZ] * s; - mQ[VW] = c; - } - else - { - loadIdentity(); - } - return (*this); -} - -const LLQuaternion& LLQuaternion::setEulerAngles(F32 roll, F32 pitch, F32 yaw) -{ - LLMatrix3 rot_mat(roll, pitch, yaw); - rot_mat.orthogonalize(); - *this = rot_mat.quaternion(); - - normalize(); - return (*this); +const LLQuaternion& LLQuaternion::setAngleAxis(F32 angle, F32 x, F32 y, F32 z) +{ + F32 mag = sqrtf(x * x + y * y + z * z); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = x * s; + mQ[VY] = y * s; + mQ[VZ] = z * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } + return (*this); +} + +const LLQuaternion& LLQuaternion::setAngleAxis(F32 angle, const LLVector3 &vec) +{ + F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = vec.mV[VX] * s; + mQ[VY] = vec.mV[VY] * s; + mQ[VZ] = vec.mV[VZ] * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } + return (*this); +} + +const LLQuaternion& LLQuaternion::setAngleAxis(F32 angle, const LLVector4 &vec) +{ + F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = vec.mV[VX] * s; + mQ[VY] = vec.mV[VY] * s; + mQ[VZ] = vec.mV[VZ] * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } + return (*this); +} + +const LLQuaternion& LLQuaternion::setEulerAngles(F32 roll, F32 pitch, F32 yaw) +{ + LLMatrix3 rot_mat(roll, pitch, yaw); + rot_mat.orthogonalize(); + *this = rot_mat.quaternion(); + + normalize(); + return (*this); } // deprecated -const LLQuaternion& LLQuaternion::set(const LLMatrix3 &mat) +const LLQuaternion& LLQuaternion::set(const LLMatrix3 &mat) { - *this = mat.quaternion(); - normalize(); - return (*this); + *this = mat.quaternion(); + normalize(); + return (*this); } // deprecated -const LLQuaternion& LLQuaternion::set(const LLMatrix4 &mat) +const LLQuaternion& LLQuaternion::set(const LLMatrix4 &mat) { - *this = mat.quaternion(); - normalize(); - return (*this); + *this = mat.quaternion(); + normalize(); + return (*this); } // deprecated -const LLQuaternion& LLQuaternion::setQuat(F32 angle, F32 x, F32 y, F32 z) -{ - F32 mag = sqrtf(x * x + y * y + z * z); - if (mag > FP_MAG_THRESHOLD) - { - angle *= 0.5; - F32 c = cosf(angle); - F32 s = sinf(angle) / mag; - mQ[VX] = x * s; - mQ[VY] = y * s; - mQ[VZ] = z * s; - mQ[VW] = c; - } - else - { - loadIdentity(); - } - return (*this); +const LLQuaternion& LLQuaternion::setQuat(F32 angle, F32 x, F32 y, F32 z) +{ + F32 mag = sqrtf(x * x + y * y + z * z); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = x * s; + mQ[VY] = y * s; + mQ[VZ] = z * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } + return (*this); } // deprecated -const LLQuaternion& LLQuaternion::setQuat(F32 angle, const LLVector3 &vec) -{ - F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); - if (mag > FP_MAG_THRESHOLD) - { - angle *= 0.5; - F32 c = cosf(angle); - F32 s = sinf(angle) / mag; - mQ[VX] = vec.mV[VX] * s; - mQ[VY] = vec.mV[VY] * s; - mQ[VZ] = vec.mV[VZ] * s; - mQ[VW] = c; - } - else - { - loadIdentity(); - } - return (*this); -} - -const LLQuaternion& LLQuaternion::setQuat(F32 angle, const LLVector4 &vec) -{ - F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); - if (mag > FP_MAG_THRESHOLD) - { - angle *= 0.5; - F32 c = cosf(angle); - F32 s = sinf(angle) / mag; - mQ[VX] = vec.mV[VX] * s; - mQ[VY] = vec.mV[VY] * s; - mQ[VZ] = vec.mV[VZ] * s; - mQ[VW] = c; - } - else - { - loadIdentity(); - } - return (*this); -} - -const LLQuaternion& LLQuaternion::setQuat(F32 roll, F32 pitch, F32 yaw) -{ - roll *= 0.5f; - pitch *= 0.5f; - yaw *= 0.5f; - F32 sinX = sinf(roll); - F32 cosX = cosf(roll); - F32 sinY = sinf(pitch); - F32 cosY = cosf(pitch); - F32 sinZ = sinf(yaw); - F32 cosZ = cosf(yaw); - mQ[VW] = cosX * cosY * cosZ - sinX * sinY * sinZ; - mQ[VX] = sinX * cosY * cosZ + cosX * sinY * sinZ; - mQ[VY] = cosX * sinY * cosZ - sinX * cosY * sinZ; - mQ[VZ] = cosX * cosY * sinZ + sinX * sinY * cosZ; - return (*this); -} - -const LLQuaternion& LLQuaternion::setQuat(const LLMatrix3 &mat) -{ - *this = mat.quaternion(); - normalize(); - return (*this); -} - -const LLQuaternion& LLQuaternion::setQuat(const LLMatrix4 &mat) -{ - *this = mat.quaternion(); - normalize(); - return (*this); +const LLQuaternion& LLQuaternion::setQuat(F32 angle, const LLVector3 &vec) +{ + F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = vec.mV[VX] * s; + mQ[VY] = vec.mV[VY] * s; + mQ[VZ] = vec.mV[VZ] * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } + return (*this); +} + +const LLQuaternion& LLQuaternion::setQuat(F32 angle, const LLVector4 &vec) +{ + F32 mag = sqrtf(vec.mV[VX] * vec.mV[VX] + vec.mV[VY] * vec.mV[VY] + vec.mV[VZ] * vec.mV[VZ]); + if (mag > FP_MAG_THRESHOLD) + { + angle *= 0.5; + F32 c = cosf(angle); + F32 s = sinf(angle) / mag; + mQ[VX] = vec.mV[VX] * s; + mQ[VY] = vec.mV[VY] * s; + mQ[VZ] = vec.mV[VZ] * s; + mQ[VW] = c; + } + else + { + loadIdentity(); + } + return (*this); +} + +const LLQuaternion& LLQuaternion::setQuat(F32 roll, F32 pitch, F32 yaw) +{ + roll *= 0.5f; + pitch *= 0.5f; + yaw *= 0.5f; + F32 sinX = sinf(roll); + F32 cosX = cosf(roll); + F32 sinY = sinf(pitch); + F32 cosY = cosf(pitch); + F32 sinZ = sinf(yaw); + F32 cosZ = cosf(yaw); + mQ[VW] = cosX * cosY * cosZ - sinX * sinY * sinZ; + mQ[VX] = sinX * cosY * cosZ + cosX * sinY * sinZ; + mQ[VY] = cosX * sinY * cosZ - sinX * cosY * sinZ; + mQ[VZ] = cosX * cosY * sinZ + sinX * sinY * cosZ; + return (*this); +} + +const LLQuaternion& LLQuaternion::setQuat(const LLMatrix3 &mat) +{ + *this = mat.quaternion(); + normalize(); + return (*this); +} + +const LLQuaternion& LLQuaternion::setQuat(const LLMatrix4 &mat) +{ + *this = mat.quaternion(); + normalize(); + return (*this); //#if 1 -// // NOTE: LLQuaternion's are actually inverted with respect to -// // the matrices, so this code also assumes inverted quaternions -// // (-x, -y, -z, w). The result is that roll,pitch,yaw are applied -// // in reverse order (yaw,pitch,roll). -// F64 cosX = cos(roll); +// // NOTE: LLQuaternion's are actually inverted with respect to +// // the matrices, so this code also assumes inverted quaternions +// // (-x, -y, -z, w). The result is that roll,pitch,yaw are applied +// // in reverse order (yaw,pitch,roll). +// F64 cosX = cos(roll); // F64 cosY = cos(pitch); // F64 cosZ = cos(yaw); // @@ -337,24 +337,24 @@ const LLQuaternion& LLQuaternion::setQuat(const LLMatrix4 &mat) // F64 sinZ = sin(yaw); // // mQ[VW] = (F32)sqrt(cosY*cosZ - sinX*sinY*sinZ + cosX*cosZ + cosX*cosY + 1.0)*.5; -// if (fabs(mQ[VW]) < F_APPROXIMATELY_ZERO) -// { -// // null rotation, any axis will do -// mQ[VX] = 0.0f; -// mQ[VY] = 1.0f; -// mQ[VZ] = 0.0f; -// } -// else -// { -// F32 inv_s = 1.0f / (4.0f * mQ[VW]); -// mQ[VX] = (F32)-(-sinX*cosY - cosX*sinY*sinZ - sinX*cosZ) * inv_s; -// mQ[VY] = (F32)-(-cosX*sinY*cosZ + sinX*sinZ - sinY) * inv_s; -// mQ[VZ] = (F32)-(-cosY*sinZ - sinX*sinY*cosZ - cosX*sinZ) * inv_s; -// } +// if (fabs(mQ[VW]) < F_APPROXIMATELY_ZERO) +// { +// // null rotation, any axis will do +// mQ[VX] = 0.0f; +// mQ[VY] = 1.0f; +// mQ[VZ] = 0.0f; +// } +// else +// { +// F32 inv_s = 1.0f / (4.0f * mQ[VW]); +// mQ[VX] = (F32)-(-sinX*cosY - cosX*sinY*sinZ - sinX*cosZ) * inv_s; +// mQ[VY] = (F32)-(-cosX*sinY*cosZ + sinX*sinZ - sinY) * inv_s; +// mQ[VZ] = (F32)-(-cosY*sinZ - sinX*sinY*cosZ - cosX*sinZ) * inv_s; +// } // //#else // This only works on a certain subset of roll/pitch/yaw -// -// F64 cosX = cosf(roll/2.0); +// +// F64 cosX = cosf(roll/2.0); // F64 cosY = cosf(pitch/2.0); // F64 cosZ = cosf(yaw/2.0); // @@ -368,19 +368,19 @@ const LLQuaternion& LLQuaternion::setQuat(const LLMatrix4 &mat) // mQ[VZ] = (F32)(cosX*cosY*sinZ - sinX*sinY*cosZ); //#endif // -// normalize(); -// return (*this); +// normalize(); +// return (*this); } // SJB: This code is correct for a logicly stored (non-transposed) matrix; -// Our matrices are stored transposed, OpenGL style, so this generates the -// INVERSE matrix, or the CORRECT matrix form an INVERSE quaternion. -// Because we use similar logic in LLMatrix3::quaternion(), -// we are internally consistant so everything works OK :) -LLMatrix3 LLQuaternion::getMatrix3(void) const +// Our matrices are stored transposed, OpenGL style, so this generates the +// INVERSE matrix, or the CORRECT matrix form an INVERSE quaternion. +// Because we use similar logic in LLMatrix3::quaternion(), +// we are internally consistant so everything works OK :) +LLMatrix3 LLQuaternion::getMatrix3(void) const { - LLMatrix3 mat; - F32 xx, xy, xz, xw, yy, yz, yw, zz, zw; + LLMatrix3 mat; + F32 xx, xy, xz, xw, yy, yz, yw, zz, zw; xx = mQ[VX] * mQ[VX]; xy = mQ[VX] * mQ[VY]; @@ -395,24 +395,24 @@ LLMatrix3 LLQuaternion::getMatrix3(void) const zw = mQ[VZ] * mQ[VW]; mat.mMatrix[0][0] = 1.f - 2.f * ( yy + zz ); - mat.mMatrix[0][1] = 2.f * ( xy + zw ); - mat.mMatrix[0][2] = 2.f * ( xz - yw ); + mat.mMatrix[0][1] = 2.f * ( xy + zw ); + mat.mMatrix[0][2] = 2.f * ( xz - yw ); - mat.mMatrix[1][0] = 2.f * ( xy - zw ); + mat.mMatrix[1][0] = 2.f * ( xy - zw ); mat.mMatrix[1][1] = 1.f - 2.f * ( xx + zz ); - mat.mMatrix[1][2] = 2.f * ( yz + xw ); + mat.mMatrix[1][2] = 2.f * ( yz + xw ); - mat.mMatrix[2][0] = 2.f * ( xz + yw ); - mat.mMatrix[2][1] = 2.f * ( yz - xw ); + mat.mMatrix[2][0] = 2.f * ( xz + yw ); + mat.mMatrix[2][1] = 2.f * ( yz - xw ); mat.mMatrix[2][2] = 1.f - 2.f * ( xx + yy ); - return mat; + return mat; } -LLMatrix4 LLQuaternion::getMatrix4(void) const +LLMatrix4 LLQuaternion::getMatrix4(void) const { - LLMatrix4 mat; - F32 xx, xy, xz, xw, yy, yz, yw, zz, zw; + LLMatrix4 mat; + F32 xx, xy, xz, xw, yy, yz, yw, zz, zw; xx = mQ[VX] * mQ[VX]; xy = mQ[VX] * mQ[VY]; @@ -427,20 +427,20 @@ LLMatrix4 LLQuaternion::getMatrix4(void) const zw = mQ[VZ] * mQ[VW]; mat.mMatrix[0][0] = 1.f - 2.f * ( yy + zz ); - mat.mMatrix[0][1] = 2.f * ( xy + zw ); - mat.mMatrix[0][2] = 2.f * ( xz - yw ); + mat.mMatrix[0][1] = 2.f * ( xy + zw ); + mat.mMatrix[0][2] = 2.f * ( xz - yw ); - mat.mMatrix[1][0] = 2.f * ( xy - zw ); + mat.mMatrix[1][0] = 2.f * ( xy - zw ); mat.mMatrix[1][1] = 1.f - 2.f * ( xx + zz ); - mat.mMatrix[1][2] = 2.f * ( yz + xw ); + mat.mMatrix[1][2] = 2.f * ( yz + xw ); - mat.mMatrix[2][0] = 2.f * ( xz + yw ); - mat.mMatrix[2][1] = 2.f * ( yz - xw ); + mat.mMatrix[2][0] = 2.f * ( xz + yw ); + mat.mMatrix[2][1] = 2.f * ( yz - xw ); mat.mMatrix[2][2] = 1.f - 2.f * ( xx + yy ); - // TODO -- should we set the translation portion to zero? + // TODO -- should we set the translation portion to zero? - return mat; + return mat; } @@ -452,110 +452,110 @@ LLMatrix4 LLQuaternion::getMatrix4(void) const // calculate the shortest rotation from a to b void LLQuaternion::shortestArc(const LLVector3 &a, const LLVector3 &b) { - F32 ab = a * b; // dotproduct - LLVector3 c = a % b; // crossproduct - F32 cc = c * c; // squared length of the crossproduct - if (ab * ab + cc) // test if the arguments have sufficient magnitude - { - if (cc > 0.0f) // test if the arguments are (anti)parallel - { - F32 s = sqrtf(ab * ab + cc) + ab; // note: don't try to optimize this line - F32 m = 1.0f / sqrtf(cc + s * s); // the inverted magnitude of the quaternion - mQ[VX] = c.mV[VX] * m; - mQ[VY] = c.mV[VY] * m; - mQ[VZ] = c.mV[VZ] * m; - mQ[VW] = s * m; - return; - } - if (ab < 0.0f) // test if the angle is bigger than PI/2 (anti parallel) - { - c = a - b; // the arguments are anti-parallel, we have to choose an axis - F32 m = sqrtf(c.mV[VX] * c.mV[VX] + c.mV[VY] * c.mV[VY]); // the length projected on the XY-plane - if (m > FP_MAG_THRESHOLD) - { - mQ[VX] = -c.mV[VY] / m; // return the quaternion with the axis in the XY-plane - mQ[VY] = c.mV[VX] / m; - mQ[VZ] = 0.0f; - mQ[VW] = 0.0f; - return; - } - else // the vectors are parallel to the Z-axis - { - mQ[VX] = 1.0f; // rotate around the X-axis - mQ[VY] = 0.0f; - mQ[VZ] = 0.0f; - mQ[VW] = 0.0f; - return; - } - } - } - loadIdentity(); + F32 ab = a * b; // dotproduct + LLVector3 c = a % b; // crossproduct + F32 cc = c * c; // squared length of the crossproduct + if (ab * ab + cc) // test if the arguments have sufficient magnitude + { + if (cc > 0.0f) // test if the arguments are (anti)parallel + { + F32 s = sqrtf(ab * ab + cc) + ab; // note: don't try to optimize this line + F32 m = 1.0f / sqrtf(cc + s * s); // the inverted magnitude of the quaternion + mQ[VX] = c.mV[VX] * m; + mQ[VY] = c.mV[VY] * m; + mQ[VZ] = c.mV[VZ] * m; + mQ[VW] = s * m; + return; + } + if (ab < 0.0f) // test if the angle is bigger than PI/2 (anti parallel) + { + c = a - b; // the arguments are anti-parallel, we have to choose an axis + F32 m = sqrtf(c.mV[VX] * c.mV[VX] + c.mV[VY] * c.mV[VY]); // the length projected on the XY-plane + if (m > FP_MAG_THRESHOLD) + { + mQ[VX] = -c.mV[VY] / m; // return the quaternion with the axis in the XY-plane + mQ[VY] = c.mV[VX] / m; + mQ[VZ] = 0.0f; + mQ[VW] = 0.0f; + return; + } + else // the vectors are parallel to the Z-axis + { + mQ[VX] = 1.0f; // rotate around the X-axis + mQ[VY] = 0.0f; + mQ[VZ] = 0.0f; + mQ[VW] = 0.0f; + return; + } + } + } + loadIdentity(); } // constrains rotation to a cone angle specified in radians const LLQuaternion &LLQuaternion::constrain(F32 radians) { - const F32 cos_angle_lim = cosf( radians/2 ); // mQ[VW] limit - const F32 sin_angle_lim = sinf( radians/2 ); // rotation axis length limit + const F32 cos_angle_lim = cosf( radians/2 ); // mQ[VW] limit + const F32 sin_angle_lim = sinf( radians/2 ); // rotation axis length limit - if (mQ[VW] < 0.f) - { - mQ[VX] *= -1.f; - mQ[VY] *= -1.f; - mQ[VZ] *= -1.f; - mQ[VW] *= -1.f; - } + if (mQ[VW] < 0.f) + { + mQ[VX] *= -1.f; + mQ[VY] *= -1.f; + mQ[VZ] *= -1.f; + mQ[VW] *= -1.f; + } - // if rotation angle is greater than limit (cos is less than limit) - if( mQ[VW] < cos_angle_lim ) - { - mQ[VW] = cos_angle_lim; - F32 axis_len = sqrtf( mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] ); // sin(theta/2) - F32 axis_mult_fact = sin_angle_lim / axis_len; - mQ[VX] *= axis_mult_fact; - mQ[VY] *= axis_mult_fact; - mQ[VZ] *= axis_mult_fact; - } + // if rotation angle is greater than limit (cos is less than limit) + if( mQ[VW] < cos_angle_lim ) + { + mQ[VW] = cos_angle_lim; + F32 axis_len = sqrtf( mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] ); // sin(theta/2) + F32 axis_mult_fact = sin_angle_lim / axis_len; + mQ[VX] *= axis_mult_fact; + mQ[VY] *= axis_mult_fact; + mQ[VZ] *= axis_mult_fact; + } - return *this; + return *this; } // Operators std::ostream& operator<<(std::ostream &s, const LLQuaternion &a) { - s << "{ " - << a.mQ[VX] << ", " << a.mQ[VY] << ", " << a.mQ[VZ] << ", " << a.mQ[VW] - << " }"; - return s; + s << "{ " + << a.mQ[VX] << ", " << a.mQ[VY] << ", " << a.mQ[VZ] << ", " << a.mQ[VW] + << " }"; + return s; } // Does NOT renormalize the result -LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b) +LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b) { -// LLQuaternion::mMultCount++; +// LLQuaternion::mMultCount++; - LLQuaternion q( - b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1], - b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2], - b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0], - b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2] - ); - return q; + LLQuaternion q( + b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1], + b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2], + b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0], + b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2] + ); + return q; } /* -LLMatrix4 operator*(const LLMatrix4 &m, const LLQuaternion &q) +LLMatrix4 operator*(const LLMatrix4 &m, const LLQuaternion &q) { - LLMatrix4 qmat(q); - return (m*qmat); + LLMatrix4 qmat(q); + return (m*qmat); } */ -LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot) +LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot) { F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ]; F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY]; @@ -569,7 +569,7 @@ LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot) return LLVector4(nx, ny, nz, a.mV[VW]); } -LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot) +LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot) { F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ]; F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY]; @@ -583,7 +583,7 @@ LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot) return LLVector3(nx, ny, nz); } -LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot) +LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot) { F64 rw = - rot.mQ[VX] * a.mdV[VX] - rot.mQ[VY] * a.mdV[VY] - rot.mQ[VZ] * a.mdV[VZ]; F64 rx = rot.mQ[VW] * a.mdV[VX] + rot.mQ[VY] * a.mdV[VZ] - rot.mQ[VZ] * a.mdV[VY]; @@ -599,10 +599,10 @@ LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot) F32 dot(const LLQuaternion &a, const LLQuaternion &b) { - return a.mQ[VX] * b.mQ[VX] + - a.mQ[VY] * b.mQ[VY] + - a.mQ[VZ] * b.mQ[VZ] + - a.mQ[VW] * b.mQ[VW]; + return a.mQ[VX] * b.mQ[VX] + + a.mQ[VY] * b.mQ[VY] + + a.mQ[VZ] * b.mQ[VZ] + + a.mQ[VW] * b.mQ[VW]; } // DEMO HACK: This lerp is probably inocrrect now due intermediate normalization @@ -611,258 +611,258 @@ F32 dot(const LLQuaternion &a, const LLQuaternion &b) // linear interpolation LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q) { - LLQuaternion r; - r = t * (q - p) + p; - r.normalize(); - return r; + LLQuaternion r; + r = t * (q - p) + p; + r.normalize(); + return r; } #endif // lerp from identity to q LLQuaternion lerp(F32 t, const LLQuaternion &q) { - LLQuaternion r; - r.mQ[VX] = t * q.mQ[VX]; - r.mQ[VY] = t * q.mQ[VY]; - r.mQ[VZ] = t * q.mQ[VZ]; - r.mQ[VW] = t * (q.mQ[VZ] - 1.f) + 1.f; - r.normalize(); - return r; + LLQuaternion r; + r.mQ[VX] = t * q.mQ[VX]; + r.mQ[VY] = t * q.mQ[VY]; + r.mQ[VZ] = t * q.mQ[VZ]; + r.mQ[VW] = t * (q.mQ[VZ] - 1.f) + 1.f; + r.normalize(); + return r; } LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q) { - LLQuaternion r; - F32 inv_t; + LLQuaternion r; + F32 inv_t; - inv_t = 1.f - t; + inv_t = 1.f - t; - r.mQ[VX] = t * q.mQ[VX] + (inv_t * p.mQ[VX]); - r.mQ[VY] = t * q.mQ[VY] + (inv_t * p.mQ[VY]); - r.mQ[VZ] = t * q.mQ[VZ] + (inv_t * p.mQ[VZ]); - r.mQ[VW] = t * q.mQ[VW] + (inv_t * p.mQ[VW]); - r.normalize(); - return r; + r.mQ[VX] = t * q.mQ[VX] + (inv_t * p.mQ[VX]); + r.mQ[VY] = t * q.mQ[VY] + (inv_t * p.mQ[VY]); + r.mQ[VZ] = t * q.mQ[VZ] + (inv_t * p.mQ[VZ]); + r.mQ[VW] = t * q.mQ[VW] + (inv_t * p.mQ[VW]); + r.normalize(); + return r; } // spherical linear interpolation LLQuaternion slerp( F32 u, const LLQuaternion &a, const LLQuaternion &b ) { - // cosine theta = dot product of a and b - F32 cos_t = a.mQ[0]*b.mQ[0] + a.mQ[1]*b.mQ[1] + a.mQ[2]*b.mQ[2] + a.mQ[3]*b.mQ[3]; - - // if b is on opposite hemisphere from a, use -a instead - int bflip; - if (cos_t < 0.0f) - { - cos_t = -cos_t; - bflip = TRUE; - } - else - bflip = FALSE; - - // if B is (within precision limits) the same as A, - // just linear interpolate between A and B. - F32 alpha; // interpolant - F32 beta; // 1 - interpolant - if (1.0f - cos_t < 0.00001f) - { - beta = 1.0f - u; - alpha = u; - } - else - { - F32 theta = acosf(cos_t); - F32 sin_t = sinf(theta); - beta = sinf(theta - u*theta) / sin_t; - alpha = sinf(u*theta) / sin_t; - } - - if (bflip) - beta = -beta; - - // interpolate - LLQuaternion ret; - ret.mQ[0] = beta*a.mQ[0] + alpha*b.mQ[0]; - ret.mQ[1] = beta*a.mQ[1] + alpha*b.mQ[1]; - ret.mQ[2] = beta*a.mQ[2] + alpha*b.mQ[2]; - ret.mQ[3] = beta*a.mQ[3] + alpha*b.mQ[3]; - - return ret; + // cosine theta = dot product of a and b + F32 cos_t = a.mQ[0]*b.mQ[0] + a.mQ[1]*b.mQ[1] + a.mQ[2]*b.mQ[2] + a.mQ[3]*b.mQ[3]; + + // if b is on opposite hemisphere from a, use -a instead + int bflip; + if (cos_t < 0.0f) + { + cos_t = -cos_t; + bflip = TRUE; + } + else + bflip = FALSE; + + // if B is (within precision limits) the same as A, + // just linear interpolate between A and B. + F32 alpha; // interpolant + F32 beta; // 1 - interpolant + if (1.0f - cos_t < 0.00001f) + { + beta = 1.0f - u; + alpha = u; + } + else + { + F32 theta = acosf(cos_t); + F32 sin_t = sinf(theta); + beta = sinf(theta - u*theta) / sin_t; + alpha = sinf(u*theta) / sin_t; + } + + if (bflip) + beta = -beta; + + // interpolate + LLQuaternion ret; + ret.mQ[0] = beta*a.mQ[0] + alpha*b.mQ[0]; + ret.mQ[1] = beta*a.mQ[1] + alpha*b.mQ[1]; + ret.mQ[2] = beta*a.mQ[2] + alpha*b.mQ[2]; + ret.mQ[3] = beta*a.mQ[3] + alpha*b.mQ[3]; + + return ret; } // lerp whenever possible LLQuaternion nlerp(F32 t, const LLQuaternion &a, const LLQuaternion &b) { - if (dot(a, b) < 0.f) - { - return slerp(t, a, b); - } - else - { - return lerp(t, a, b); - } + if (dot(a, b) < 0.f) + { + return slerp(t, a, b); + } + else + { + return lerp(t, a, b); + } } LLQuaternion nlerp(F32 t, const LLQuaternion &q) { - if (q.mQ[VW] < 0.f) - { - return slerp(t, q); - } - else - { - return lerp(t, q); - } + if (q.mQ[VW] < 0.f) + { + return slerp(t, q); + } + else + { + return lerp(t, q); + } } // slerp from identity quaternion to another quaternion LLQuaternion slerp(F32 t, const LLQuaternion &q) { - F32 c = q.mQ[VW]; - if (1.0f == t || 1.0f == c) - { - // the trivial cases - return q; - } + F32 c = q.mQ[VW]; + if (1.0f == t || 1.0f == c) + { + // the trivial cases + return q; + } - LLQuaternion r; - F32 s, angle, stq, stp; + LLQuaternion r; + F32 s, angle, stq, stp; - s = (F32) sqrt(1.f - c*c); + s = (F32) sqrt(1.f - c*c); if (c < 0.0f) { - // when c < 0.0 then theta > PI/2 - // since quat and -quat are the same rotation we invert one of + // when c < 0.0 then theta > PI/2 + // since quat and -quat are the same rotation we invert one of // p or q to reduce unecessary spins - // A equivalent way to do it is to convert acos(c) as if it had - // been negative, and to negate stp - angle = (F32) acos(-c); + // A equivalent way to do it is to convert acos(c) as if it had + // been negative, and to negate stp + angle = (F32) acos(-c); stp = -(F32) sin(angle * (1.f - t)); stq = (F32) sin(angle * t); - } + } else { - angle = (F32) acos(c); + angle = (F32) acos(c); stp = (F32) sin(angle * (1.f - t)); stq = (F32) sin(angle * t); } - r.mQ[VX] = (q.mQ[VX] * stq) / s; - r.mQ[VY] = (q.mQ[VY] * stq) / s; - r.mQ[VZ] = (q.mQ[VZ] * stq) / s; - r.mQ[VW] = (stp + q.mQ[VW] * stq) / s; + r.mQ[VX] = (q.mQ[VX] * stq) / s; + r.mQ[VY] = (q.mQ[VY] * stq) / s; + r.mQ[VZ] = (q.mQ[VZ] * stq) / s; + r.mQ[VW] = (stp + q.mQ[VW] * stq) / s; - return r; + return r; } LLQuaternion mayaQ(F32 xRot, F32 yRot, F32 zRot, LLQuaternion::Order order) { - LLQuaternion xQ( xRot*DEG_TO_RAD, LLVector3(1.0f, 0.0f, 0.0f) ); - LLQuaternion yQ( yRot*DEG_TO_RAD, LLVector3(0.0f, 1.0f, 0.0f) ); - LLQuaternion zQ( zRot*DEG_TO_RAD, LLVector3(0.0f, 0.0f, 1.0f) ); - LLQuaternion ret; - switch( order ) - { - case LLQuaternion::XYZ: - ret = xQ * yQ * zQ; - break; - case LLQuaternion::YZX: - ret = yQ * zQ * xQ; - break; - case LLQuaternion::ZXY: - ret = zQ * xQ * yQ; - break; - case LLQuaternion::XZY: - ret = xQ * zQ * yQ; - break; - case LLQuaternion::YXZ: - ret = yQ * xQ * zQ; - break; - case LLQuaternion::ZYX: - ret = zQ * yQ * xQ; - break; - } - return ret; + LLQuaternion xQ( xRot*DEG_TO_RAD, LLVector3(1.0f, 0.0f, 0.0f) ); + LLQuaternion yQ( yRot*DEG_TO_RAD, LLVector3(0.0f, 1.0f, 0.0f) ); + LLQuaternion zQ( zRot*DEG_TO_RAD, LLVector3(0.0f, 0.0f, 1.0f) ); + LLQuaternion ret; + switch( order ) + { + case LLQuaternion::XYZ: + ret = xQ * yQ * zQ; + break; + case LLQuaternion::YZX: + ret = yQ * zQ * xQ; + break; + case LLQuaternion::ZXY: + ret = zQ * xQ * yQ; + break; + case LLQuaternion::XZY: + ret = xQ * zQ * yQ; + break; + case LLQuaternion::YXZ: + ret = yQ * xQ * zQ; + break; + case LLQuaternion::ZYX: + ret = zQ * yQ * xQ; + break; + } + return ret; } const char *OrderToString( const LLQuaternion::Order order ) { - const char *p = NULL; - switch( order ) - { - default: - case LLQuaternion::XYZ: - p = "XYZ"; - break; - case LLQuaternion::YZX: - p = "YZX"; - break; - case LLQuaternion::ZXY: - p = "ZXY"; - break; - case LLQuaternion::XZY: - p = "XZY"; - break; - case LLQuaternion::YXZ: - p = "YXZ"; - break; - case LLQuaternion::ZYX: - p = "ZYX"; - break; - } - return p; + const char *p = NULL; + switch( order ) + { + default: + case LLQuaternion::XYZ: + p = "XYZ"; + break; + case LLQuaternion::YZX: + p = "YZX"; + break; + case LLQuaternion::ZXY: + p = "ZXY"; + break; + case LLQuaternion::XZY: + p = "XZY"; + break; + case LLQuaternion::YXZ: + p = "YXZ"; + break; + case LLQuaternion::ZYX: + p = "ZYX"; + break; + } + return p; } LLQuaternion::Order StringToOrder( const char *str ) { - if (strncmp(str, "XYZ", 3)==0 || strncmp(str, "xyz", 3)==0) - return LLQuaternion::XYZ; + if (strncmp(str, "XYZ", 3)==0 || strncmp(str, "xyz", 3)==0) + return LLQuaternion::XYZ; - if (strncmp(str, "YZX", 3)==0 || strncmp(str, "yzx", 3)==0) - return LLQuaternion::YZX; + if (strncmp(str, "YZX", 3)==0 || strncmp(str, "yzx", 3)==0) + return LLQuaternion::YZX; - if (strncmp(str, "ZXY", 3)==0 || strncmp(str, "zxy", 3)==0) - return LLQuaternion::ZXY; + if (strncmp(str, "ZXY", 3)==0 || strncmp(str, "zxy", 3)==0) + return LLQuaternion::ZXY; - if (strncmp(str, "XZY", 3)==0 || strncmp(str, "xzy", 3)==0) - return LLQuaternion::XZY; + if (strncmp(str, "XZY", 3)==0 || strncmp(str, "xzy", 3)==0) + return LLQuaternion::XZY; - if (strncmp(str, "YXZ", 3)==0 || strncmp(str, "yxz", 3)==0) - return LLQuaternion::YXZ; + if (strncmp(str, "YXZ", 3)==0 || strncmp(str, "yxz", 3)==0) + return LLQuaternion::YXZ; - if (strncmp(str, "ZYX", 3)==0 || strncmp(str, "zyx", 3)==0) - return LLQuaternion::ZYX; + if (strncmp(str, "ZYX", 3)==0 || strncmp(str, "zyx", 3)==0) + return LLQuaternion::ZYX; - return LLQuaternion::XYZ; + return LLQuaternion::XYZ; } void LLQuaternion::getAngleAxis(F32* angle, LLVector3 &vec) const { - F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component - if (v > FP_MAG_THRESHOLD) - { - F32 oomag = 1.0f / v; - F32 w = mQ[VW]; - if (mQ[VW] < 0.0f) - { - w = -w; // make VW positive - oomag = -oomag; // invert the axis - } - vec.mV[VX] = mQ[VX] * oomag; // normalize the axis - vec.mV[VY] = mQ[VY] * oomag; - vec.mV[VZ] = mQ[VZ] * oomag; - *angle = 2.0f * atan2f(v, w); // get the angle - } - else - { - *angle = 0.0f; // no rotation - vec.mV[VX] = 0.0f; // around some dummy axis - vec.mV[VY] = 0.0f; - vec.mV[VZ] = 1.0f; - } + F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component + if (v > FP_MAG_THRESHOLD) + { + F32 oomag = 1.0f / v; + F32 w = mQ[VW]; + if (mQ[VW] < 0.0f) + { + w = -w; // make VW positive + oomag = -oomag; // invert the axis + } + vec.mV[VX] = mQ[VX] * oomag; // normalize the axis + vec.mV[VY] = mQ[VY] * oomag; + vec.mV[VZ] = mQ[VZ] * oomag; + *angle = 2.0f * atan2f(v, w); // get the angle + } + else + { + *angle = 0.0f; // no rotation + vec.mV[VX] = 0.0f; // around some dummy axis + vec.mV[VY] = 0.0f; + vec.mV[VZ] = 1.0f; + } } const LLQuaternion& LLQuaternion::setFromAzimuthAndAltitude(F32 azimuthRadians, F32 altitudeRadians) @@ -888,93 +888,93 @@ void LLQuaternion::getAzimuthAndAltitude(F32 &azimuthRadians, F32 &altitudeRadia // quaternion does not need to be normalized void LLQuaternion::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const { - F32 sx = 2 * (mQ[VX] * mQ[VW] - mQ[VY] * mQ[VZ]); // sine of the roll - F32 sy = 2 * (mQ[VY] * mQ[VW] + mQ[VX] * mQ[VZ]); // sine of the pitch - F32 ys = mQ[VW] * mQ[VW] - mQ[VY] * mQ[VY]; // intermediate cosine 1 - F32 xz = mQ[VX] * mQ[VX] - mQ[VZ] * mQ[VZ]; // intermediate cosine 2 - F32 cx = ys - xz; // cosine of the roll - F32 cy = sqrtf(sx * sx + cx * cx); // cosine of the pitch - if (cy > GIMBAL_THRESHOLD) // no gimbal lock - { - *roll = atan2f(sx, cx); - *pitch = atan2f(sy, cy); - *yaw = atan2f(2 * (mQ[VZ] * mQ[VW] - mQ[VX] * mQ[VY]), ys + xz); - } - else // gimbal lock - { - if (sy > 0) - { - *pitch = F_PI_BY_TWO; - *yaw = 2 * atan2f(mQ[VZ] + mQ[VX], mQ[VW] + mQ[VY]); - } - else - { - *pitch = -F_PI_BY_TWO; - *yaw = 2 * atan2f(mQ[VZ] - mQ[VX], mQ[VW] - mQ[VY]); - } - *roll = 0; - } + F32 sx = 2 * (mQ[VX] * mQ[VW] - mQ[VY] * mQ[VZ]); // sine of the roll + F32 sy = 2 * (mQ[VY] * mQ[VW] + mQ[VX] * mQ[VZ]); // sine of the pitch + F32 ys = mQ[VW] * mQ[VW] - mQ[VY] * mQ[VY]; // intermediate cosine 1 + F32 xz = mQ[VX] * mQ[VX] - mQ[VZ] * mQ[VZ]; // intermediate cosine 2 + F32 cx = ys - xz; // cosine of the roll + F32 cy = sqrtf(sx * sx + cx * cx); // cosine of the pitch + if (cy > GIMBAL_THRESHOLD) // no gimbal lock + { + *roll = atan2f(sx, cx); + *pitch = atan2f(sy, cy); + *yaw = atan2f(2 * (mQ[VZ] * mQ[VW] - mQ[VX] * mQ[VY]), ys + xz); + } + else // gimbal lock + { + if (sy > 0) + { + *pitch = F_PI_BY_TWO; + *yaw = 2 * atan2f(mQ[VZ] + mQ[VX], mQ[VW] + mQ[VY]); + } + else + { + *pitch = -F_PI_BY_TWO; + *yaw = 2 * atan2f(mQ[VZ] - mQ[VX], mQ[VW] - mQ[VY]); + } + *roll = 0; + } } // Saves space by using the fact that our quaternions are normalized LLVector3 LLQuaternion::packToVector3() const { - F32 x = mQ[VX]; - F32 y = mQ[VY]; - F32 z = mQ[VZ]; - F32 w = mQ[VW]; - F32 mag = sqrtf(x * x + y * y + z * z + w * w); - if (mag > FP_MAG_THRESHOLD) - { - x /= mag; - y /= mag; - z /= mag; // no need to normalize w, it's not used - } - if( mQ[VW] >= 0 ) - { - return LLVector3( x, y , z ); - } - else - { - return LLVector3( -x, -y, -z ); - } + F32 x = mQ[VX]; + F32 y = mQ[VY]; + F32 z = mQ[VZ]; + F32 w = mQ[VW]; + F32 mag = sqrtf(x * x + y * y + z * z + w * w); + if (mag > FP_MAG_THRESHOLD) + { + x /= mag; + y /= mag; + z /= mag; // no need to normalize w, it's not used + } + if( mQ[VW] >= 0 ) + { + return LLVector3( x, y , z ); + } + else + { + return LLVector3( -x, -y, -z ); + } } // Saves space by using the fact that our quaternions are normalized void LLQuaternion::unpackFromVector3( const LLVector3& vec ) { - mQ[VX] = vec.mV[VX]; - mQ[VY] = vec.mV[VY]; - mQ[VZ] = vec.mV[VZ]; - F32 t = 1.f - vec.magVecSquared(); - if( t > 0 ) - { - mQ[VW] = sqrt( t ); - } - else - { - // Need this to avoid trying to find the square root of a negative number due - // to floating point error. - mQ[VW] = 0; - } + mQ[VX] = vec.mV[VX]; + mQ[VY] = vec.mV[VY]; + mQ[VZ] = vec.mV[VZ]; + F32 t = 1.f - vec.magVecSquared(); + if( t > 0 ) + { + mQ[VW] = sqrt( t ); + } + else + { + // Need this to avoid trying to find the square root of a negative number due + // to floating point error. + mQ[VW] = 0; + } } BOOL LLQuaternion::parseQuat(const std::string& buf, LLQuaternion* value) { - if( buf.empty() || value == NULL) - { - return FALSE; - } + if( buf.empty() || value == NULL) + { + return FALSE; + } - LLQuaternion quat; - S32 count = sscanf( buf.c_str(), "%f %f %f %f", quat.mQ + 0, quat.mQ + 1, quat.mQ + 2, quat.mQ + 3 ); - if( 4 == count ) - { - value->set( quat ); - return TRUE; - } + LLQuaternion quat; + S32 count = sscanf( buf.c_str(), "%f %f %f %f", quat.mQ + 0, quat.mQ + 1, quat.mQ + 2, quat.mQ + 3 ); + if( 4 == count ) + { + value->set( quat ); + return TRUE; + } - return FALSE; + return FALSE; } |