diff options
author | James Cook <james@lindenlab.com> | 2007-01-02 08:33:20 +0000 |
---|---|---|
committer | James Cook <james@lindenlab.com> | 2007-01-02 08:33:20 +0000 |
commit | 420b91db29485df39fd6e724e782c449158811cb (patch) | |
tree | b471a94563af914d3ed3edd3e856d21cb1b69945 /indra/llmath/llquaternion.cpp |
Print done when done.
Diffstat (limited to 'indra/llmath/llquaternion.cpp')
-rw-r--r-- | indra/llmath/llquaternion.cpp | 830 |
1 files changed, 830 insertions, 0 deletions
diff --git a/indra/llmath/llquaternion.cpp b/indra/llmath/llquaternion.cpp new file mode 100644 index 0000000000..56a3830bb3 --- /dev/null +++ b/indra/llmath/llquaternion.cpp @@ -0,0 +1,830 @@ +/** + * @file qmath.cpp + * @brief LLQuaternion class implementation. + * + * Copyright (c) 2000-$CurrentYear$, Linden Research, Inc. + * $License$ + */ + +#include "linden_common.h" + +#include "llquaternion.h" + +#include "llmath.h" // for F_PI +//#include "vmath.h" +#include "v3math.h" +#include "v3dmath.h" +#include "v4math.h" +#include "m4math.h" +#include "m3math.h" +#include "llquantize.h" + +// WARNING: Don't use this for global const definitions! using this +// at the top of a *.cpp file might not give you what you think. +const LLQuaternion LLQuaternion::DEFAULT; + +// Constructors + +LLQuaternion::LLQuaternion(const LLMatrix4 &mat) +{ + *this = mat.quaternion(); + normQuat(); +} + +LLQuaternion::LLQuaternion(const LLMatrix3 &mat) +{ + *this = mat.quaternion(); + normQuat(); +} + +LLQuaternion::LLQuaternion(F32 angle, const LLVector4 &vec) +{ + LLVector3 v(vec.mV[VX], vec.mV[VY], vec.mV[VZ]); + v.normVec(); + + F32 c, s; + c = cosf(angle*0.5f); + s = sinf(angle*0.5f); + + mQ[VX] = v.mV[VX] * s; + mQ[VY] = v.mV[VY] * s; + mQ[VZ] = v.mV[VZ] * s; + mQ[VW] = c; + normQuat(); +} + +LLQuaternion::LLQuaternion(F32 angle, const LLVector3 &vec) +{ + LLVector3 v(vec); + v.normVec(); + + F32 c, s; + c = cosf(angle*0.5f); + s = sinf(angle*0.5f); + + mQ[VX] = v.mV[VX] * s; + mQ[VY] = v.mV[VY] * s; + mQ[VZ] = v.mV[VZ] * s; + mQ[VW] = c; + normQuat(); +} + +LLQuaternion::LLQuaternion(const LLVector3 &x_axis, + const LLVector3 &y_axis, + const LLVector3 &z_axis) +{ + LLMatrix3 mat; + mat.setRows(x_axis, y_axis, z_axis); + *this = mat.quaternion(); + normQuat(); +} + +// Quatizations +void LLQuaternion::quantize16(F32 lower, F32 upper) +{ + F32 x = mQ[VX]; + F32 y = mQ[VY]; + F32 z = mQ[VZ]; + F32 s = mQ[VS]; + + x = U16_to_F32(F32_to_U16(x, lower, upper), lower, upper); + y = U16_to_F32(F32_to_U16(y, lower, upper), lower, upper); + z = U16_to_F32(F32_to_U16(z, lower, upper), lower, upper); + s = U16_to_F32(F32_to_U16(s, lower, upper), lower, upper); + + mQ[VX] = x; + mQ[VY] = y; + mQ[VZ] = z; + mQ[VS] = s; +} + +void LLQuaternion::quantize8(F32 lower, F32 upper) +{ + mQ[VX] = U8_to_F32(F32_to_U8(mQ[VX], lower, upper), lower, upper); + mQ[VY] = U8_to_F32(F32_to_U8(mQ[VY], lower, upper), lower, upper); + mQ[VZ] = U8_to_F32(F32_to_U8(mQ[VZ], lower, upper), lower, upper); + mQ[VS] = U8_to_F32(F32_to_U8(mQ[VS], lower, upper), lower, upper); +} + +// LLVector3 Magnitude and Normalization Functions + + +// Set LLQuaternion routines + +const LLQuaternion& LLQuaternion::setQuat(F32 angle, F32 x, F32 y, F32 z) +{ + LLVector3 vec(x, y, z); + vec.normVec(); + + angle *= 0.5f; + F32 c, s; + c = cosf(angle); + s = sinf(angle); + + mQ[VX] = vec.mV[VX]*s; + mQ[VY] = vec.mV[VY]*s; + mQ[VZ] = vec.mV[VZ]*s; + mQ[VW] = c; + + normQuat(); + return (*this); +} + +const LLQuaternion& LLQuaternion::setQuat(F32 angle, const LLVector3 &vec) +{ + LLVector3 v(vec); + v.normVec(); + + angle *= 0.5f; + F32 c, s; + c = cosf(angle); + s = sinf(angle); + + mQ[VX] = v.mV[VX]*s; + mQ[VY] = v.mV[VY]*s; + mQ[VZ] = v.mV[VZ]*s; + mQ[VW] = c; + + normQuat(); + return (*this); +} + +const LLQuaternion& LLQuaternion::setQuat(F32 angle, const LLVector4 &vec) +{ + LLVector3 v(vec.mV[VX], vec.mV[VY], vec.mV[VZ]); + v.normVec(); + + F32 c, s; + c = cosf(angle*0.5f); + s = sinf(angle*0.5f); + + mQ[VX] = v.mV[VX]*s; + mQ[VY] = v.mV[VY]*s; + mQ[VZ] = v.mV[VZ]*s; + mQ[VW] = c; + + normQuat(); + return (*this); +} + +const LLQuaternion& LLQuaternion::setQuat(F32 roll, F32 pitch, F32 yaw) +{ + LLMatrix3 rot_mat(roll, pitch, yaw); + rot_mat.orthogonalize(); + *this = rot_mat.quaternion(); + + normQuat(); + return (*this); +//#if 1 +// // NOTE: LLQuaternion's are actually inverted with respect to +// // the matrices, so this code also assumes inverted quaternions +// // (-x, -y, -z, w). The result is that roll,pitch,yaw are applied +// // in reverse order (yaw,pitch,roll). +// F64 cosX = cos(roll); +// F64 cosY = cos(pitch); +// F64 cosZ = cos(yaw); +// +// F64 sinX = sin(roll); +// F64 sinY = sin(pitch); +// F64 sinZ = sin(yaw); +// +// mQ[VW] = (F32)sqrt(cosY*cosZ - sinX*sinY*sinZ + cosX*cosZ + cosX*cosY + 1.0)*.5; +// if (fabs(mQ[VW]) < F_APPROXIMATELY_ZERO) +// { +// // null rotation, any axis will do +// mQ[VX] = 0.0f; +// mQ[VY] = 1.0f; +// mQ[VZ] = 0.0f; +// } +// else +// { +// F32 inv_s = 1.0f / (4.0f * mQ[VW]); +// mQ[VX] = (F32)-(-sinX*cosY - cosX*sinY*sinZ - sinX*cosZ) * inv_s; +// mQ[VY] = (F32)-(-cosX*sinY*cosZ + sinX*sinZ - sinY) * inv_s; +// mQ[VZ] = (F32)-(-cosY*sinZ - sinX*sinY*cosZ - cosX*sinZ) * inv_s; +// } +// +//#else // This only works on a certain subset of roll/pitch/yaw +// +// F64 cosX = cosf(roll/2.0); +// F64 cosY = cosf(pitch/2.0); +// F64 cosZ = cosf(yaw/2.0); +// +// F64 sinX = sinf(roll/2.0); +// F64 sinY = sinf(pitch/2.0); +// F64 sinZ = sinf(yaw/2.0); +// +// mQ[VW] = (F32)(cosX*cosY*cosZ + sinX*sinY*sinZ); +// mQ[VX] = (F32)(sinX*cosY*cosZ - cosX*sinY*sinZ); +// mQ[VY] = (F32)(cosX*sinY*cosZ + sinX*cosY*sinZ); +// mQ[VZ] = (F32)(cosX*cosY*sinZ - sinX*sinY*cosZ); +//#endif +// +// normQuat(); +// return (*this); +} + +// SJB: This code is correct for a logicly stored (non-transposed) matrix; +// Our matrices are stored transposed, OpenGL style, so this generates the +// INVERSE matrix, or the CORRECT matrix form an INVERSE quaternion. +// Because we use similar logic in LLMatrix3::quaternion(), +// we are internally consistant so everything works OK :) +LLMatrix3 LLQuaternion::getMatrix3(void) const +{ + LLMatrix3 mat; + F32 xx, xy, xz, xw, yy, yz, yw, zz, zw; + + xx = mQ[VX] * mQ[VX]; + xy = mQ[VX] * mQ[VY]; + xz = mQ[VX] * mQ[VZ]; + xw = mQ[VX] * mQ[VW]; + + yy = mQ[VY] * mQ[VY]; + yz = mQ[VY] * mQ[VZ]; + yw = mQ[VY] * mQ[VW]; + + zz = mQ[VZ] * mQ[VZ]; + zw = mQ[VZ] * mQ[VW]; + + mat.mMatrix[0][0] = 1.f - 2.f * ( yy + zz ); + mat.mMatrix[0][1] = 2.f * ( xy + zw ); + mat.mMatrix[0][2] = 2.f * ( xz - yw ); + + mat.mMatrix[1][0] = 2.f * ( xy - zw ); + mat.mMatrix[1][1] = 1.f - 2.f * ( xx + zz ); + mat.mMatrix[1][2] = 2.f * ( yz + xw ); + + mat.mMatrix[2][0] = 2.f * ( xz + yw ); + mat.mMatrix[2][1] = 2.f * ( yz - xw ); + mat.mMatrix[2][2] = 1.f - 2.f * ( xx + yy ); + + return mat; +} + +LLMatrix4 LLQuaternion::getMatrix4(void) const +{ + LLMatrix4 mat; + F32 xx, xy, xz, xw, yy, yz, yw, zz, zw; + + xx = mQ[VX] * mQ[VX]; + xy = mQ[VX] * mQ[VY]; + xz = mQ[VX] * mQ[VZ]; + xw = mQ[VX] * mQ[VW]; + + yy = mQ[VY] * mQ[VY]; + yz = mQ[VY] * mQ[VZ]; + yw = mQ[VY] * mQ[VW]; + + zz = mQ[VZ] * mQ[VZ]; + zw = mQ[VZ] * mQ[VW]; + + mat.mMatrix[0][0] = 1.f - 2.f * ( yy + zz ); + mat.mMatrix[0][1] = 2.f * ( xy + zw ); + mat.mMatrix[0][2] = 2.f * ( xz - yw ); + + mat.mMatrix[1][0] = 2.f * ( xy - zw ); + mat.mMatrix[1][1] = 1.f - 2.f * ( xx + zz ); + mat.mMatrix[1][2] = 2.f * ( yz + xw ); + + mat.mMatrix[2][0] = 2.f * ( xz + yw ); + mat.mMatrix[2][1] = 2.f * ( yz - xw ); + mat.mMatrix[2][2] = 1.f - 2.f * ( xx + yy ); + + // TODO -- should we set the translation portion to zero? + + return mat; +} + + + + +// Other useful methods + + +// calculate the shortest rotation from a to b +void LLQuaternion::shortestArc(const LLVector3 &a, const LLVector3 &b) +{ + // Make a local copy of both vectors. + LLVector3 vec_a = a; + LLVector3 vec_b = b; + + // Make sure neither vector is zero length. Also normalize + // the vectors while we are at it. + F32 vec_a_mag = vec_a.normVec(); + F32 vec_b_mag = vec_b.normVec(); + if (vec_a_mag < F_APPROXIMATELY_ZERO || + vec_b_mag < F_APPROXIMATELY_ZERO) + { + // Can't calculate a rotation from this. + // Just return ZERO_ROTATION instead. + loadIdentity(); + return; + } + + // Create an axis to rotate around, and the cos of the angle to rotate. + LLVector3 axis = vec_a % vec_b; + F32 cos_theta = vec_a * vec_b; + + // Check the angle between the vectors to see if they are parallel or anti-parallel. + if (cos_theta > 1.0 - F_APPROXIMATELY_ZERO) + { + // a and b are parallel. No rotation is necessary. + loadIdentity(); + } + else if (cos_theta < -1.0 + F_APPROXIMATELY_ZERO) + { + // a and b are anti-parallel. + // Rotate 180 degrees around some orthogonal axis. + // Find the projection of the x-axis onto a, and try + // using the vector between the projection and the x-axis + // as the orthogonal axis. + LLVector3 proj = vec_a.mV[VX] / (vec_a * vec_a) * vec_a; + LLVector3 ortho_axis(1.f, 0.f, 0.f); + ortho_axis -= proj; + + // Turn this into an orthonormal axis. + F32 ortho_length = ortho_axis.normVec(); + // If the axis' length is 0, then our guess at an orthogonal axis + // was wrong (a is parallel to the x-axis). + if (ortho_length < F_APPROXIMATELY_ZERO) + { + // Use the z-axis instead. + ortho_axis.setVec(0.f, 0.f, 1.f); + } + + // Construct a quaternion from this orthonormal axis. + mQ[VX] = ortho_axis.mV[VX]; + mQ[VY] = ortho_axis.mV[VY]; + mQ[VZ] = ortho_axis.mV[VZ]; + mQ[VW] = 0.f; + } + else + { + // a and b are NOT parallel or anti-parallel. + // Return the rotation between these vectors. + F32 theta = (F32)acos(cos_theta); + + setQuat(theta, axis); + } +} + +// constrains rotation to a cone angle specified in radians +const LLQuaternion &LLQuaternion::constrain(F32 radians) +{ + const F32 cos_angle_lim = cosf( radians/2 ); // mQ[VW] limit + const F32 sin_angle_lim = sinf( radians/2 ); // rotation axis length limit + + if (mQ[VW] < 0.f) + { + mQ[VX] *= -1.f; + mQ[VY] *= -1.f; + mQ[VZ] *= -1.f; + mQ[VW] *= -1.f; + } + + // if rotation angle is greater than limit (cos is less than limit) + if( mQ[VW] < cos_angle_lim ) + { + mQ[VW] = cos_angle_lim; + F32 axis_len = sqrtf( mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] ); // sin(theta/2) + F32 axis_mult_fact = sin_angle_lim / axis_len; + mQ[VX] *= axis_mult_fact; + mQ[VY] *= axis_mult_fact; + mQ[VZ] *= axis_mult_fact; + } + + return *this; +} + +// Operators + +std::ostream& operator<<(std::ostream &s, const LLQuaternion &a) +{ + s << "{ " + << a.mQ[VX] << ", " << a.mQ[VY] << ", " << a.mQ[VZ] << ", " << a.mQ[VW] + << " }"; + return s; +} + + +// Does NOT renormalize the result +LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b) +{ +// LLQuaternion::mMultCount++; + + LLQuaternion q( + b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1], + b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2], + b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0], + b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2] + ); + return q; +} + +/* +LLMatrix4 operator*(const LLMatrix4 &m, const LLQuaternion &q) +{ + LLMatrix4 qmat(q); + return (m*qmat); +} +*/ + + + +LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot) +{ + F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ]; + F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY]; + F32 ry = rot.mQ[VW] * a.mV[VY] + rot.mQ[VZ] * a.mV[VX] - rot.mQ[VX] * a.mV[VZ]; + F32 rz = rot.mQ[VW] * a.mV[VZ] + rot.mQ[VX] * a.mV[VY] - rot.mQ[VY] * a.mV[VX]; + + F32 nx = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY]; + F32 ny = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ]; + F32 nz = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX]; + + return LLVector4(nx, ny, nz, a.mV[VW]); +} + +LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot) +{ + F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ]; + F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY]; + F32 ry = rot.mQ[VW] * a.mV[VY] + rot.mQ[VZ] * a.mV[VX] - rot.mQ[VX] * a.mV[VZ]; + F32 rz = rot.mQ[VW] * a.mV[VZ] + rot.mQ[VX] * a.mV[VY] - rot.mQ[VY] * a.mV[VX]; + + F32 nx = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY]; + F32 ny = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ]; + F32 nz = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX]; + + return LLVector3(nx, ny, nz); +} + +LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot) +{ + F64 rw = - rot.mQ[VX] * a.mdV[VX] - rot.mQ[VY] * a.mdV[VY] - rot.mQ[VZ] * a.mdV[VZ]; + F64 rx = rot.mQ[VW] * a.mdV[VX] + rot.mQ[VY] * a.mdV[VZ] - rot.mQ[VZ] * a.mdV[VY]; + F64 ry = rot.mQ[VW] * a.mdV[VY] + rot.mQ[VZ] * a.mdV[VX] - rot.mQ[VX] * a.mdV[VZ]; + F64 rz = rot.mQ[VW] * a.mdV[VZ] + rot.mQ[VX] * a.mdV[VY] - rot.mQ[VY] * a.mdV[VX]; + + F64 nx = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY]; + F64 ny = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ]; + F64 nz = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX]; + + return LLVector3d(nx, ny, nz); +} + +F32 dot(const LLQuaternion &a, const LLQuaternion &b) +{ + return a.mQ[VX] * b.mQ[VX] + + a.mQ[VY] * b.mQ[VY] + + a.mQ[VZ] * b.mQ[VZ] + + a.mQ[VW] * b.mQ[VW]; +} + +// DEMO HACK: This lerp is probably inocrrect now due intermediate normalization +// it should look more like the lerp below +#if 0 +// linear interpolation +LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q) +{ + LLQuaternion r; + r = t * (q - p) + p; + r.normQuat(); + return r; +} +#endif + +// lerp from identity to q +LLQuaternion lerp(F32 t, const LLQuaternion &q) +{ + LLQuaternion r; + r.mQ[VX] = t * q.mQ[VX]; + r.mQ[VY] = t * q.mQ[VY]; + r.mQ[VZ] = t * q.mQ[VZ]; + r.mQ[VW] = t * (q.mQ[VZ] - 1.f) + 1.f; + r.normQuat(); + return r; +} + +LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q) +{ + LLQuaternion r; + F32 inv_t; + + inv_t = 1.f - t; + + r.mQ[VX] = t * q.mQ[VX] + (inv_t * p.mQ[VX]); + r.mQ[VY] = t * q.mQ[VY] + (inv_t * p.mQ[VY]); + r.mQ[VZ] = t * q.mQ[VZ] + (inv_t * p.mQ[VZ]); + r.mQ[VW] = t * q.mQ[VW] + (inv_t * p.mQ[VW]); + r.normQuat(); + return r; +} + + +// spherical linear interpolation +LLQuaternion slerp( F32 u, const LLQuaternion &a, const LLQuaternion &b ) +{ + // cosine theta = dot product of a and b + F32 cos_t = a.mQ[0]*b.mQ[0] + a.mQ[1]*b.mQ[1] + a.mQ[2]*b.mQ[2] + a.mQ[3]*b.mQ[3]; + + // if b is on opposite hemisphere from a, use -a instead + int bflip; + if (cos_t < 0.0f) + { + cos_t = -cos_t; + bflip = TRUE; + } + else + bflip = FALSE; + + // if B is (within precision limits) the same as A, + // just linear interpolate between A and B. + F32 alpha; // interpolant + F32 beta; // 1 - interpolant + if (1.0f - cos_t < 0.00001f) + { + beta = 1.0f - u; + alpha = u; + } + else + { + F32 theta = acosf(cos_t); + F32 sin_t = sinf(theta); + beta = sinf(theta - u*theta) / sin_t; + alpha = sinf(u*theta) / sin_t; + } + + if (bflip) + beta = -beta; + + // interpolate + LLQuaternion ret; + ret.mQ[0] = beta*a.mQ[0] + alpha*b.mQ[0]; + ret.mQ[1] = beta*a.mQ[1] + alpha*b.mQ[1]; + ret.mQ[2] = beta*a.mQ[2] + alpha*b.mQ[2]; + ret.mQ[3] = beta*a.mQ[3] + alpha*b.mQ[3]; + + return ret; +} + +// lerp whenever possible +LLQuaternion nlerp(F32 t, const LLQuaternion &a, const LLQuaternion &b) +{ + if (dot(a, b) < 0.f) + { + return slerp(t, a, b); + } + else + { + return lerp(t, a, b); + } +} + +LLQuaternion nlerp(F32 t, const LLQuaternion &q) +{ + if (q.mQ[VW] < 0.f) + { + return slerp(t, q); + } + else + { + return lerp(t, q); + } +} + +// slerp from identity quaternion to another quaternion +LLQuaternion slerp(F32 t, const LLQuaternion &q) +{ + F32 c = q.mQ[VW]; + if (1.0f == t || 1.0f == c) + { + // the trivial cases + return q; + } + + LLQuaternion r; + F32 s, angle, stq, stp; + + s = (F32) sqrt(1.f - c*c); + + if (c < 0.0f) + { + // when c < 0.0 then theta > PI/2 + // since quat and -quat are the same rotation we invert one of + // p or q to reduce unecessary spins + // A equivalent way to do it is to convert acos(c) as if it had been negative, + // and to negate stp + angle = (F32) acos(-c); + stp = -(F32) sin(angle * (1.f - t)); + stq = (F32) sin(angle * t); + } + else + { + angle = (F32) acos(c); + stp = (F32) sin(angle * (1.f - t)); + stq = (F32) sin(angle * t); + } + + r.mQ[VX] = (q.mQ[VX] * stq) / s; + r.mQ[VY] = (q.mQ[VY] * stq) / s; + r.mQ[VZ] = (q.mQ[VZ] * stq) / s; + r.mQ[VW] = (stp + q.mQ[VW] * stq) / s; + + return r; +} + +LLQuaternion mayaQ(F32 xRot, F32 yRot, F32 zRot, LLQuaternion::Order order) +{ + LLQuaternion xQ( xRot*DEG_TO_RAD, LLVector3(1.0f, 0.0f, 0.0f) ); + LLQuaternion yQ( yRot*DEG_TO_RAD, LLVector3(0.0f, 1.0f, 0.0f) ); + LLQuaternion zQ( zRot*DEG_TO_RAD, LLVector3(0.0f, 0.0f, 1.0f) ); + LLQuaternion ret; + switch( order ) + { + case LLQuaternion::XYZ: + ret = xQ * yQ * zQ; + break; + case LLQuaternion::YZX: + ret = yQ * zQ * xQ; + break; + case LLQuaternion::ZXY: + ret = zQ * xQ * yQ; + break; + case LLQuaternion::XZY: + ret = xQ * zQ * yQ; + break; + case LLQuaternion::YXZ: + ret = yQ * xQ * zQ; + break; + case LLQuaternion::ZYX: + ret = zQ * yQ * xQ; + break; + } + return ret; +} + +const char *OrderToString( const LLQuaternion::Order order ) +{ + char *p = NULL; + switch( order ) + { + default: + case LLQuaternion::XYZ: + p = "XYZ"; + break; + case LLQuaternion::YZX: + p = "YZX"; + break; + case LLQuaternion::ZXY: + p = "ZXY"; + break; + case LLQuaternion::XZY: + p = "XZY"; + break; + case LLQuaternion::YXZ: + p = "YXZ"; + break; + case LLQuaternion::ZYX: + p = "ZYX"; + break; + } + return p; +} + +LLQuaternion::Order StringToOrder( const char *str ) +{ + if (strncmp(str, "XYZ", 3)==0 || strncmp(str, "xyz", 3)==0) + return LLQuaternion::XYZ; + + if (strncmp(str, "YZX", 3)==0 || strncmp(str, "yzx", 3)==0) + return LLQuaternion::YZX; + + if (strncmp(str, "ZXY", 3)==0 || strncmp(str, "zxy", 3)==0) + return LLQuaternion::ZXY; + + if (strncmp(str, "XZY", 3)==0 || strncmp(str, "xzy", 3)==0) + return LLQuaternion::XZY; + + if (strncmp(str, "YXZ", 3)==0 || strncmp(str, "yxz", 3)==0) + return LLQuaternion::YXZ; + + if (strncmp(str, "ZYX", 3)==0 || strncmp(str, "zyx", 3)==0) + return LLQuaternion::ZYX; + + return LLQuaternion::XYZ; +} + +const LLQuaternion& LLQuaternion::setQuat(const LLMatrix3 &mat) +{ + *this = mat.quaternion(); + normQuat(); + return (*this); +} + +const LLQuaternion& LLQuaternion::setQuat(const LLMatrix4 &mat) +{ + *this = mat.quaternion(); + normQuat(); + return (*this); +} + +void LLQuaternion::getAngleAxis(F32* angle, LLVector3 &vec) const +{ + F32 cos_a = mQ[VW]; + if (cos_a > 1.0f) cos_a = 1.0f; + if (cos_a < -1.0f) cos_a = -1.0f; + + F32 sin_a = (F32) sqrt( 1.0f - cos_a * cos_a ); + + if ( fabs( sin_a ) < 0.0005f ) + sin_a = 1.0f; + else + sin_a = 1.f/sin_a; + + *angle = 2.0f * (F32) acos( cos_a ); + vec.mV[VX] = mQ[VX] * sin_a; + vec.mV[VY] = mQ[VY] * sin_a; + vec.mV[VZ] = mQ[VZ] * sin_a; +} + + +// quaternion does not need to be normalized +void LLQuaternion::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const +{ + LLMatrix3 rot_mat(*this); + rot_mat.orthogonalize(); + rot_mat.getEulerAngles(roll, pitch, yaw); + +// // NOTE: LLQuaternion's are actually inverted with respect to +// // the matrices, so this code also assumes inverted quaternions +// // (-x, -y, -z, w). The result is that roll,pitch,yaw are applied +// // in reverse order (yaw,pitch,roll). +// F32 x = -mQ[VX], y = -mQ[VY], z = -mQ[VZ], w = mQ[VW]; +// F64 m20 = 2.0*(x*z-y*w); +// if (1.0f - fabsf(m20) < F_APPROXIMATELY_ZERO) +// { +// *roll = 0.0f; +// *pitch = (F32)asin(m20); +// *yaw = (F32)atan2(2.0*(x*y-z*w), 1.0 - 2.0*(x*x+z*z)); +// } +// else +// { +// *roll = (F32)atan2(-2.0*(y*z+x*w), 1.0-2.0*(x*x+y*y)); +// *pitch = (F32)asin(m20); +// *yaw = (F32)atan2(-2.0*(x*y+z*w), 1.0-2.0*(y*y+z*z)); +// } +} + +// Saves space by using the fact that our quaternions are normalized +LLVector3 LLQuaternion::packToVector3() const +{ + if( mQ[VW] >= 0 ) + { + return LLVector3( mQ[VX], mQ[VY], mQ[VZ] ); + } + else + { + return LLVector3( -mQ[VX], -mQ[VY], -mQ[VZ] ); + } +} + +// Saves space by using the fact that our quaternions are normalized +void LLQuaternion::unpackFromVector3( const LLVector3& vec ) +{ + mQ[VX] = vec.mV[VX]; + mQ[VY] = vec.mV[VY]; + mQ[VZ] = vec.mV[VZ]; + F32 t = 1.f - vec.magVecSquared(); + if( t > 0 ) + { + mQ[VW] = sqrt( t ); + } + else + { + // Need this to avoid trying to find the square root of a negative number due + // to floating point error. + mQ[VW] = 0; + } +} + +BOOL LLQuaternion::parseQuat(const char* buf, LLQuaternion* value) +{ + if( buf == NULL || buf[0] == '\0' || value == NULL) + { + return FALSE; + } + + LLQuaternion quat; + S32 count = sscanf( buf, "%f %f %f %f", quat.mQ + 0, quat.mQ + 1, quat.mQ + 2, quat.mQ + 3 ); + if( 4 == count ) + { + value->setQuat( quat ); + return TRUE; + } + + return FALSE; +} + + +// End |