summaryrefslogtreecommitdiff
path: root/indra/llcommon/llsingleton.h
diff options
context:
space:
mode:
authorNat Goodspeed <nat@lindenlab.com>2015-06-30 14:50:37 -0400
committerNat Goodspeed <nat@lindenlab.com>2015-06-30 14:50:37 -0400
commit77da469d6f7901ee0cddf5fb351cd2a756b217f0 (patch)
treee0d7326fc438f7b579e3ddbcbb4772afa5402d23 /indra/llcommon/llsingleton.h
parent4aa64b99dbe6cafdccf0c25501feaef5ba3445c4 (diff)
parentd4fb82c217bccda536f7a7b2ca1809bb8c2dba40 (diff)
Automated merge with ssh://bitbucket.org/lindenlab/viewer-release
Diffstat (limited to 'indra/llcommon/llsingleton.h')
-rwxr-xr-xindra/llcommon/llsingleton.h532
1 files changed, 367 insertions, 165 deletions
diff --git a/indra/llcommon/llsingleton.h b/indra/llcommon/llsingleton.h
index 6e6291a165..6a7f27bed4 100755
--- a/indra/llcommon/llsingleton.h
+++ b/indra/llcommon/llsingleton.h
@@ -25,185 +25,387 @@
#ifndef LLSINGLETON_H
#define LLSINGLETON_H
-#include "llerror.h" // *TODO: eliminate this
-
-#include <typeinfo>
#include <boost/noncopyable.hpp>
+#include <boost/unordered_set.hpp>
+#include <boost/intrusive_ptr.hpp>
+#include <list>
+#include <vector>
+#include <typeinfo>
+
+class LLSingletonBase: private boost::noncopyable
+{
+public:
+ class MasterList;
+ class MasterRefcount;
+ typedef boost::intrusive_ptr<MasterRefcount> ref_ptr_t;
+
+private:
+ // All existing LLSingleton instances are tracked in this master list.
+ typedef std::list<LLSingletonBase*> list_t;
+ static list_t& get_master();
+ // This, on the other hand, is a stack whose top indicates the LLSingleton
+ // currently being initialized.
+ static list_t& get_initializing();
+ // Produce a vector<LLSingletonBase*> of master list, in dependency order.
+ typedef std::vector<LLSingletonBase*> vec_t;
+ static vec_t dep_sort();
+
+ bool mCleaned; // cleanupSingleton() has been called
+ // we directly depend on these other LLSingletons
+ typedef boost::unordered_set<LLSingletonBase*> set_t;
+ set_t mDepends;
+
+protected:
+ typedef enum e_init_state
+ {
+ UNINITIALIZED = 0, // must be default-initialized state
+ CONSTRUCTING,
+ INITIALIZING,
+ INITIALIZED,
+ DELETED
+ } EInitState;
+
+ // Base-class constructor should only be invoked by the DERIVED_TYPE
+ // constructor.
+ LLSingletonBase();
+ virtual ~LLSingletonBase();
+
+ // Every new LLSingleton should be added to/removed from the master list
+ void add_master();
+ void remove_master();
+ // with a little help from our friends.
+ template <class T> friend struct LLSingleton_manage_master;
+
+ // Maintain a stack of the LLSingleton subclass instance currently being
+ // initialized. We use this to notice direct dependencies: we want to know
+ // if A requires B. We deduce a dependency if while initializing A,
+ // control reaches B::getInstance().
+ // We want &A to be at the top of that stack during both A::A() and
+ // A::initSingleton(), since a call to B::getInstance() might occur during
+ // either.
+ // Unfortunately the desired timespan does not correspond neatly with a
+ // single C++ scope, else we'd use RAII to track it. But we do know that
+ // LLSingletonBase's constructor definitely runs just before
+ // LLSingleton's, which runs just before the specific subclass's.
+ void push_initializing();
+ // LLSingleton is, and must remain, the only caller to initSingleton().
+ // That being the case, we control exactly when it happens -- and we can
+ // pop the stack immediately thereafter.
+ void pop_initializing();
+ // If a given call to B::getInstance() happens during either A::A() or
+ // A::initSingleton(), record that A directly depends on B.
+ void capture_dependency(EInitState);
+
+ // delegate LL_ERRS() logging to llsingleton.cpp
+ static void logerrs(const char* p1, const char* p2="",
+ const char* p3="", const char* p4="");
+ // delegate LL_WARNS() logging to llsingleton.cpp
+ static void logwarns(const char* p1, const char* p2="",
+ const char* p3="", const char* p4="");
+ static std::string demangle(const char* mangled);
+
+ // obtain canonical ref_ptr_t
+ static ref_ptr_t get_master_refcount();
+
+ // Default methods in case subclass doesn't declare them.
+ virtual void initSingleton() {}
+ virtual void cleanupSingleton() {}
+
+ // deleteSingleton() isn't -- and shouldn't be -- a virtual method. It's a
+ // class static. However, given only Foo*, deleteAll() does need to be
+ // able to reach Foo::deleteSingleton(). Make LLSingleton (which declares
+ // deleteSingleton()) store a pointer here. Since we know it's a static
+ // class method, a classic-C function pointer will do.
+ void (*mDeleteSingleton)();
-// LLSingleton implements the getInstance() method part of the Singleton
-// pattern. It can't make the derived class constructors protected, though, so
-// you have to do that yourself.
-//
-// There are two ways to use LLSingleton. The first way is to inherit from it
-// while using the typename that you'd like to be static as the template
-// parameter, like so:
-//
-// class Foo: public LLSingleton<Foo>{};
-//
-// Foo& instance = Foo::instance();
-//
-// The second way is to use the singleton class directly, without inheritance:
-//
-// typedef LLSingleton<Foo> FooSingleton;
-//
-// Foo& instance = FooSingleton::instance();
-//
-// In this case, the class being managed as a singleton needs to provide an
-// initSingleton() method since the LLSingleton virtual method won't be
-// available
-//
-// As currently written, it is not thread-safe.
+public:
+ /**
+ * Call this to call the cleanupSingleton() method for every LLSingleton
+ * constructed since the start of the last cleanupAll() call. (Any
+ * LLSingleton constructed DURING a cleanupAll() call won't be cleaned up
+ * until the next cleanupAll() call.) cleanupSingleton() neither deletes
+ * nor destroys its LLSingleton; therefore it's safe to include logic that
+ * might take significant realtime or even throw an exception.
+ *
+ * The most important property of cleanupAll() is that cleanupSingleton()
+ * methods are called in dependency order, leaf classes last. Thus, given
+ * two LLSingleton subclasses A and B, if A's dependency on B is properly
+ * expressed as a B::getInstance() or B::instance() call during either
+ * A::A() or A::initSingleton(), B will be cleaned up after A.
+ *
+ * If a cleanupSingleton() method throws an exception, the exception is
+ * logged, but cleanupAll() attempts to continue calling the rest of the
+ * cleanupSingleton() methods.
+ */
+ static void cleanupAll();
+ /**
+ * Call this to call the deleteSingleton() method for every LLSingleton
+ * constructed since the start of the last deleteAll() call. (Any
+ * LLSingleton constructed DURING a deleteAll() call won't be cleaned up
+ * until the next deleteAll() call.) deleteSingleton() deletes and
+ * destroys its LLSingleton. Any cleanup logic that might take significant
+ * realtime -- or throw an exception -- must not be placed in your
+ * LLSingleton's destructor, but rather in its cleanupSingleton() method.
+ *
+ * The most important property of deleteAll() is that deleteSingleton()
+ * methods are called in dependency order, leaf classes last. Thus, given
+ * two LLSingleton subclasses A and B, if A's dependency on B is properly
+ * expressed as a B::getInstance() or B::instance() call during either
+ * A::A() or A::initSingleton(), B will be cleaned up after A.
+ *
+ * If a deleteSingleton() method throws an exception, the exception is
+ * logged, but deleteAll() attempts to continue calling the rest of the
+ * deleteSingleton() methods.
+ */
+ static void deleteAll();
+};
+
+// support ref_ptr_t
+void intrusive_ptr_add_ref(LLSingletonBase::MasterRefcount*);
+void intrusive_ptr_release(LLSingletonBase::MasterRefcount*);
+
+// Most of the time, we want LLSingleton_manage_master() to forward its
+// methods to LLSingletonBase::add_master() and remove_master().
+template <class T>
+struct LLSingleton_manage_master
+{
+ void add(LLSingletonBase* sb) { sb->add_master(); }
+ void remove(LLSingletonBase* sb) { sb->remove_master(); }
+};
+
+// But for the specific case of LLSingletonBase::MasterList, don't.
+template <>
+struct LLSingleton_manage_master<LLSingletonBase::MasterList>
+{
+ void add(LLSingletonBase*) {}
+ void remove(LLSingletonBase*) {}
+};
+/**
+ * LLSingleton implements the getInstance() method part of the Singleton
+ * pattern. It can't make the derived class constructors protected, though, so
+ * you have to do that yourself.
+ *
+ * Derive your class from LLSingleton, passing your subclass name as
+ * LLSingleton's template parameter, like so:
+ *
+ * class Foo: public LLSingleton<Foo>{};
+ *
+ * Foo& instance = Foo::instance();
+ *
+ * LLSingleton recognizes a couple special methods in your derived class.
+ *
+ * If you override LLSingleton<T>::initSingleton(), your method will be called
+ * immediately after the instance is constructed. This is useful for breaking
+ * circular dependencies: if you find that your LLSingleton subclass
+ * constructor references other LLSingleton subclass instances in a chain
+ * leading back to yours, move the instance reference from your constructor to
+ * your initSingleton() method.
+ *
+ * If you override LLSingleton<T>::cleanupSingleton(), your method will be
+ * called if someone calls LLSingletonBase::cleanupAll(). The significant part
+ * of this promise is that cleanupAll() will call individual
+ * cleanupSingleton() methods in reverse dependency order.
+ *
+ * That is, consider LLSingleton subclasses C, B and A. A depends on B, which
+ * in turn depends on C. These dependencies are expressed as calls to
+ * B::instance() or B::getInstance(), and C::instance() or C::getInstance().
+ * It shouldn't matter whether these calls appear in A::A() or
+ * A::initSingleton(), likewise B::B() or B::initSingleton().
+ *
+ * We promise that if you later call LLSingletonBase::cleanupAll():
+ * 1. A::cleanupSingleton() will be called before
+ * 2. B::cleanupSingleton(), which will be called before
+ * 3. C::cleanupSingleton().
+ * Put differently, if your LLSingleton subclass constructor or
+ * initSingleton() method explicitly depends on some other LLSingleton
+ * subclass, you may continue to rely on that other subclass in your
+ * cleanupSingleton() method.
+ *
+ * We introduce a special cleanupSingleton() method because cleanupSingleton()
+ * operations can involve nontrivial realtime, or might throw an exception. A
+ * destructor should do neither!
+ *
+ * If your cleanupSingleton() method throws an exception, we log that
+ * exception but proceed with the remaining cleanupSingleton() calls.
+ *
+ * Similarly, if at some point you call LLSingletonBase::deleteAll(), all
+ * remaining LLSingleton instances will be destroyed in dependency order. (Or
+ * call MySubclass::deleteSingleton() to specifically destroy the canonical
+ * MySubclass instance.)
+ *
+ * As currently written, LLSingleton is not thread-safe.
+ */
template <typename DERIVED_TYPE>
-class LLSingleton : private boost::noncopyable
+class LLSingleton : public LLSingletonBase
{
-
private:
- typedef enum e_init_state
- {
- UNINITIALIZED,
- CONSTRUCTING,
- INITIALIZING,
- INITIALIZED,
- DELETED
- } EInitState;
-
static DERIVED_TYPE* constructSingleton()
{
return new DERIVED_TYPE();
}
-
- // stores pointer to singleton instance
- struct SingletonLifetimeManager
- {
- SingletonLifetimeManager()
- {
- construct();
- }
-
- static void construct()
- {
- sData.mInitState = CONSTRUCTING;
- sData.mInstance = constructSingleton();
- sData.mInitState = INITIALIZING;
- }
-
- ~SingletonLifetimeManager()
- {
- if (sData.mInitState != DELETED)
- {
- deleteSingleton();
- }
- }
- };
-
+
+ // stores pointer to singleton instance
+ struct SingletonLifetimeManager
+ {
+ SingletonLifetimeManager():
+ mMasterRefcount(LLSingletonBase::get_master_refcount())
+ {
+ construct();
+ }
+
+ static void construct()
+ {
+ sData.mInitState = CONSTRUCTING;
+ sData.mInstance = constructSingleton();
+ sData.mInitState = INITIALIZING;
+ }
+
+ ~SingletonLifetimeManager()
+ {
+ // The dependencies between LLSingletons, and the arbitrary order
+ // of static-object destruction, mean that we DO NOT WANT this
+ // destructor to delete this LLSingleton. This destructor will run
+ // without regard to any other LLSingleton whose cleanup might
+ // depend on its existence. What we really want is to count the
+ // runtime's attempts to cleanup LLSingleton static data -- and on
+ // the very last one, call LLSingletonBase::deleteAll(). That
+ // method will properly honor cross-LLSingleton dependencies. This
+ // is why we store an intrusive_ptr to a MasterRefcount: our
+ // ref_ptr_t member counts SingletonLifetimeManager instances.
+ // Once the runtime destroys the last of these, THEN we can delete
+ // every remaining LLSingleton.
+ }
+
+ LLSingletonBase::ref_ptr_t mMasterRefcount;
+ };
+
+protected:
+ LLSingleton()
+ {
+ // populate base-class function pointer with the static
+ // deleteSingleton() function for this particular specialization
+ mDeleteSingleton = &deleteSingleton;
+
+ // add this new instance to the master list
+ LLSingleton_manage_master<DERIVED_TYPE>().add(this);
+ }
+
public:
- virtual ~LLSingleton()
- {
- sData.mInstance = NULL;
- sData.mInitState = DELETED;
- }
-
- /**
- * @brief Immediately delete the singleton.
- *
- * A subsequent call to LLProxy::getInstance() will construct a new
- * instance of the class.
- *
- * LLSingletons are normally destroyed after main() has exited and the C++
- * runtime is cleaning up statically-constructed objects. Some classes
- * derived from LLSingleton have objects that are part of a runtime system
- * that is terminated before main() exits. Calling the destructor of those
- * objects after the termination of their respective systems can cause
- * crashes and other problems during termination of the project. Using this
- * method to destroy the singleton early can prevent these crashes.
- *
- * An example where this is needed is for a LLSingleton that has an APR
- * object as a member that makes APR calls on destruction. The APR system is
- * shut down explicitly before main() exits. This causes a crash on exit.
- * Using this method before the call to apr_terminate() and NOT calling
- * getInstance() again will prevent the crash.
- */
- static void deleteSingleton()
- {
- delete sData.mInstance;
- sData.mInstance = NULL;
- sData.mInitState = DELETED;
- }
-
-
- static DERIVED_TYPE* getInstance()
- {
- static SingletonLifetimeManager sLifeTimeMgr;
-
- switch (sData.mInitState)
- {
- case UNINITIALIZED:
- // should never be uninitialized at this point
- llassert(false);
- return NULL;
- case CONSTRUCTING:
- LL_ERRS() << "Tried to access singleton " << typeid(DERIVED_TYPE).name() << " from singleton constructor!" << LL_ENDL;
- return NULL;
- case INITIALIZING:
- // go ahead and flag ourselves as initialized so we can be reentrant during initialization
- sData.mInitState = INITIALIZED;
- // initialize singleton after constructing it so that it can reference other singletons which in turn depend on it,
- // thus breaking cyclic dependencies
- sData.mInstance->initSingleton();
- return sData.mInstance;
- case INITIALIZED:
- return sData.mInstance;
- case DELETED:
- LL_WARNS() << "Trying to access deleted singleton " << typeid(DERIVED_TYPE).name() << " creating new instance" << LL_ENDL;
- SingletonLifetimeManager::construct();
- // same as first time construction
- sData.mInitState = INITIALIZED;
- sData.mInstance->initSingleton();
- return sData.mInstance;
- }
-
- return NULL;
- }
-
- static DERIVED_TYPE* getIfExists()
- {
- return sData.mInstance;
- }
-
- // Reference version of getInstance()
- // Preferred over getInstance() as it disallows checking for NULL
- static DERIVED_TYPE& instance()
- {
- return *getInstance();
- }
-
- // Has this singleton been created uet?
- // Use this to avoid accessing singletons before the can safely be constructed
- static bool instanceExists()
- {
- return sData.mInitState == INITIALIZED;
- }
-
- // Has this singleton already been deleted?
- // Use this to avoid accessing singletons from a static object's destructor
- static bool destroyed()
- {
- return sData.mInitState == DELETED;
- }
+ virtual ~LLSingleton()
+ {
+ // remove this instance from the master list
+ LLSingleton_manage_master<DERIVED_TYPE>().remove(this);
+ sData.mInstance = NULL;
+ sData.mInitState = DELETED;
+ }
-private:
+ /**
+ * @brief Immediately delete the singleton.
+ *
+ * A subsequent call to LLProxy::getInstance() will construct a new
+ * instance of the class.
+ *
+ * Without an explicit call to LLSingletonBase::deleteAll(), LLSingletons
+ * are implicitly destroyed after main() has exited and the C++ runtime is
+ * cleaning up statically-constructed objects. Some classes derived from
+ * LLSingleton have objects that are part of a runtime system that is
+ * terminated before main() exits. Calling the destructor of those objects
+ * after the termination of their respective systems can cause crashes and
+ * other problems during termination of the project. Using this method to
+ * destroy the singleton early can prevent these crashes.
+ *
+ * An example where this is needed is for a LLSingleton that has an APR
+ * object as a member that makes APR calls on destruction. The APR system is
+ * shut down explicitly before main() exits. This causes a crash on exit.
+ * Using this method before the call to apr_terminate() and NOT calling
+ * getInstance() again will prevent the crash.
+ */
+ static void deleteSingleton()
+ {
+ delete sData.mInstance;
+ sData.mInstance = NULL;
+ sData.mInitState = DELETED;
+ }
+
+ static DERIVED_TYPE* getInstance()
+ {
+ static SingletonLifetimeManager sLifeTimeMgr;
+
+ switch (sData.mInitState)
+ {
+ case UNINITIALIZED:
+ // should never be uninitialized at this point
+ logerrs("Uninitialized singleton ",
+ demangle(typeid(DERIVED_TYPE).name()).c_str());
+ return NULL;
+
+ case CONSTRUCTING:
+ logerrs("Tried to access singleton ",
+ demangle(typeid(DERIVED_TYPE).name()).c_str(),
+ " from singleton constructor!");
+ return NULL;
- virtual void initSingleton() {}
+ case INITIALIZING:
+ // go ahead and flag ourselves as initialized so we can be
+ // reentrant during initialization
+ sData.mInitState = INITIALIZED;
+ // initialize singleton after constructing it so that it can
+ // reference other singletons which in turn depend on it, thus
+ // breaking cyclic dependencies
+ sData.mInstance->initSingleton();
+ // pop this off stack of initializing singletons
+ sData.mInstance->pop_initializing();
+ break;
+
+ case INITIALIZED:
+ break;
+
+ case DELETED:
+ logwarns("Trying to access deleted singleton ",
+ demangle(typeid(DERIVED_TYPE).name()).c_str(),
+ " -- creating new instance");
+ SingletonLifetimeManager::construct();
+ // same as first time construction
+ sData.mInitState = INITIALIZED;
+ sData.mInstance->initSingleton();
+ // pop this off stack of initializing singletons
+ sData.mInstance->pop_initializing();
+ break;
+ }
+
+ // By this point, if DERIVED_TYPE was pushed onto the initializing
+ // stack, it has been popped off. So the top of that stack, if any, is
+ // an LLSingleton that directly depends on DERIVED_TYPE. If this call
+ // came from another LLSingleton, rather than from vanilla application
+ // code, record the dependency.
+ sData.mInstance->capture_dependency(sData.mInitState);
+ return sData.mInstance;
+ }
- struct SingletonData
- {
- // explicitly has a default constructor so that member variables are zero initialized in BSS
- // and only changed by singleton logic, not constructor running during startup
- EInitState mInitState;
- DERIVED_TYPE* mInstance;
- };
- static SingletonData sData;
+ // Reference version of getInstance()
+ // Preferred over getInstance() as it disallows checking for NULL
+ static DERIVED_TYPE& instance()
+ {
+ return *getInstance();
+ }
+
+ // Has this singleton been created yet?
+ // Use this to avoid accessing singletons before they can safely be constructed.
+ static bool instanceExists()
+ {
+ return sData.mInitState == INITIALIZED;
+ }
+
+private:
+ struct SingletonData
+ {
+ // explicitly has a default constructor so that member variables are zero initialized in BSS
+ // and only changed by singleton logic, not constructor running during startup
+ EInitState mInitState;
+ DERIVED_TYPE* mInstance;
+ };
+ static SingletonData sData;
};
template<typename T>