diff options
author | Nat Goodspeed <nat@lindenlab.com> | 2017-05-04 17:36:53 -0400 |
---|---|---|
committer | Nat Goodspeed <nat@lindenlab.com> | 2017-05-04 17:36:53 -0400 |
commit | 16e9e87d925d145e7464cef24c089b3d2726d32d (patch) | |
tree | 3fc36ed95ff8b2ddc4b297162c9b90b150c06cd9 | |
parent | f62b5503285d828813d87779fa0658ee5f122ac5 (diff) | |
parent | 2fe4f6b9187d9153e335bf54ea43fc89a7987459 (diff) |
Automated merge with ssh://bitbucket.org/lindenlab/viewer-release
-rw-r--r-- | indra/llcommon/lleventfilter.cpp | 164 | ||||
-rw-r--r-- | indra/llcommon/lleventfilter.h | 118 |
2 files changed, 282 insertions, 0 deletions
diff --git a/indra/llcommon/lleventfilter.cpp b/indra/llcommon/lleventfilter.cpp index 64ab58adcd..87eb583cb6 100644 --- a/indra/llcommon/lleventfilter.cpp +++ b/indra/llcommon/lleventfilter.cpp @@ -148,6 +148,11 @@ bool LLEventTimeoutBase::tick(const LLSD&) return false; // show event to other listeners } +bool LLEventTimeoutBase::running() const +{ + return mMainloop.connected(); +} + LLEventTimeout::LLEventTimeout() {} LLEventTimeout::LLEventTimeout(LLEventPump& source): @@ -164,3 +169,162 @@ bool LLEventTimeout::countdownElapsed() const { return mTimer.hasExpired(); } + +LLEventBatch::LLEventBatch(std::size_t size): + LLEventFilter("batch"), + mBatchSize(size) +{} + +LLEventBatch::LLEventBatch(LLEventPump& source, std::size_t size): + LLEventFilter(source, "batch"), + mBatchSize(size) +{} + +void LLEventBatch::flush() +{ + // copy and clear mBatch BEFORE posting to avoid weird circularity effects + LLSD batch(mBatch); + mBatch.clear(); + LLEventStream::post(batch); +} + +bool LLEventBatch::post(const LLSD& event) +{ + mBatch.append(event); + if (mBatch.size() >= mBatchSize) + { + flush(); + } + return false; +} + +void LLEventBatch::setSize(std::size_t size) +{ + mBatchSize = size; + // changing the size might mean that we have to flush NOW + if (mBatch.size() >= mBatchSize) + { + flush(); + } +} + +LLEventThrottle::LLEventThrottle(F32 interval): + LLEventFilter("throttle"), + mInterval(interval), + mPosts(0) +{} + +LLEventThrottle::LLEventThrottle(LLEventPump& source, F32 interval): + LLEventFilter(source, "throttle"), + mInterval(interval), + mPosts(0) +{} + +void LLEventThrottle::flush() +{ + // flush() is a no-op unless there's something pending. + // Don't test mPending because there's no requirement that the consumer + // post() anything but an isUndefined(). This is what mPosts is for. + if (mPosts) + { + mPosts = 0; + mAlarm.cancel(); + // This is not to set our alarm; we are not yet requesting + // any notification. This is just to track whether subsequent post() + // calls fall within this mInterval or not. + mTimer.setTimerExpirySec(mInterval); + // copy and clear mPending BEFORE posting to avoid weird circularity + // effects + LLSD pending = mPending; + mPending.clear(); + LLEventStream::post(pending); + } +} + +LLSD LLEventThrottle::pending() const +{ + return mPending; +} + +bool LLEventThrottle::post(const LLSD& event) +{ + // Always capture most recent post() event data. If caller wants to + // aggregate multiple events, let them retrieve pending() and modify + // before calling post(). + mPending = event; + // Always increment mPosts. Unless we count this call, flush() does + // nothing. + ++mPosts; + // We reset mTimer on every flush() call to let us know if we're still + // within the same mInterval. So -- are we? + F32 timeRemaining = mTimer.getRemainingTimeF32(); + if (! timeRemaining) + { + // more than enough time has elapsed, immediately flush() + flush(); + } + else + { + // still within mInterval of the last flush() call: have to defer + if (! mAlarm.running()) + { + // timeRemaining tells us how much longer it will be until + // mInterval seconds since the last flush() call. At that time, + // flush() deferred events. + mAlarm.actionAfter(timeRemaining, boost::bind(&LLEventThrottle::flush, this)); + } + } + return false; +} + +void LLEventThrottle::setInterval(F32 interval) +{ + F32 oldInterval = mInterval; + mInterval = interval; + // If we are not now within oldInterval of the last flush(), we're done: + // this will only affect behavior starting with the next flush(). + F32 timeRemaining = mTimer.getRemainingTimeF32(); + if (timeRemaining) + { + // We are currently within oldInterval of the last flush(). Figure out + // how much time remains until (the new) mInterval of the last + // flush(). Bt we don't actually store a timestamp for the last + // flush(); it's implicit. There are timeRemaining seconds until what + // used to be the end of the interval. Move that endpoint by the + // difference between the new interval and the old. + timeRemaining += (mInterval - oldInterval); + // If we're called with a larger interval, the difference is positive + // and timeRemaining increases. + // If we're called with a smaller interval, the difference is negative + // and timeRemaining decreases. The interesting case is when it goes + // nonpositive: when the new interval means we can flush immediately. + if (timeRemaining <= 0.0f) + { + flush(); + } + else + { + // immediately reset mTimer + mTimer.setTimerExpirySec(timeRemaining); + // and if mAlarm is running, reset that too + if (mAlarm.running()) + { + mAlarm.actionAfter(timeRemaining, boost::bind(&LLEventThrottle::flush, this)); + } + } + } +} + +LLEventBatchThrottle::LLEventBatchThrottle(F32 interval): + LLEventThrottle(interval) +{} + +LLEventBatchThrottle::LLEventBatchThrottle(LLEventPump& source, F32 interval): + LLEventThrottle(source, interval) +{} + +bool LLEventBatchThrottle::post(const LLSD& event) +{ + // simply retrieve pending value and append the new event to it + return LLEventThrottle::post(pending().append(event)); +} diff --git a/indra/llcommon/lleventfilter.h b/indra/llcommon/lleventfilter.h index 66f3c14869..68890846a7 100644 --- a/indra/llcommon/lleventfilter.h +++ b/indra/llcommon/lleventfilter.h @@ -177,6 +177,9 @@ public: /// Cancel timer without event void cancel(); + /// Is this timer currently running? + bool running() const; + protected: virtual void setCountdown(F32 seconds) = 0; virtual bool countdownElapsed() const = 0; @@ -215,4 +218,119 @@ private: LLTimer mTimer; }; +/** + * LLEventBatch: accumulate post() events (LLSD blobs) into an LLSD Array + * until the array reaches a certain size, then call listeners with the Array + * and clear it back to empty. + */ +class LL_COMMON_API LLEventBatch: public LLEventFilter +{ +public: + // pass batch size + LLEventBatch(std::size_t size); + // construct and connect + LLEventBatch(LLEventPump& source, std::size_t size); + + // force out the pending batch + void flush(); + + // accumulate an event and flush() when big enough + virtual bool post(const LLSD& event); + + // query or reset batch size + std::size_t getSize() const { return mBatchSize; } + void setSize(std::size_t size); + +private: + LLSD mBatch; + std::size_t mBatchSize; +}; + +/** + * LLEventThrottle: construct with a time interval. Regardless of how + * frequently you call post(), LLEventThrottle will pass on an event to + * its listeners no more often than once per specified interval. + * + * A new event after more than the specified interval will immediately be + * passed along to listeners. But subsequent events will be delayed until at + * least one time interval since listeners were last called. Consider the + * sequence below. Suppose we have an LLEventThrottle constructed with an + * interval of 3 seconds. The numbers on the left are timestamps in seconds + * relative to an arbitrary reference point. + * + * 1: post(): event immediately passed to listeners, next no sooner than 4 + * 2: post(): deferred: waiting for 3 seconds to elapse + * 3: post(): deferred + * 4: no post() call, but event delivered to listeners; next no sooner than 7 + * 6: post(): deferred + * 7: no post() call, but event delivered; next no sooner than 10 + * 12: post(): immediately passed to listeners, next no sooner than 15 + * 17: post(): immediately passed to listeners, next no sooner than 20 + * + * For a deferred event, the LLSD blob delivered to listeners is from the most + * recent deferred post() call. However, you may obtain the previous event + * blob by calling pending(), modify it however you want and post() the new + * value. Each time an event is delivered to listeners, the pending() value is + * reset to isUndefined(). + * + * You may also call flush() to immediately pass along any deferred events to + * all listeners. + */ +class LL_COMMON_API LLEventThrottle: public LLEventFilter +{ +public: + // pass time interval + LLEventThrottle(F32 interval); + // construct and connect + LLEventThrottle(LLEventPump& source, F32 interval); + + // force out any deferred events + void flush(); + + // retrieve (aggregate) deferred event since last event sent to listeners + LLSD pending() const; + + // register an event, may be either passed through or deferred + virtual bool post(const LLSD& event); + + // query or reset interval + F32 getInterval() const { return mInterval; } + void setInterval(F32 interval); + + // deferred posts + std::size_t getPostCount() const { return mPosts; } + + // time until next event would be passed through, 0.0 if now + F32 getDelay() const { return mTimer.getRemainingTimeF32(); } + +private: + // remember throttle interval + F32 mInterval; + // count post() calls since last flush() + std::size_t mPosts; + // pending event data from most recent deferred event + LLSD mPending; + // use this to arrange a deferred flush() call + LLEventTimeout mAlarm; + // use this to track whether we're within mInterval of last flush() + LLTimer mTimer; +}; + +/** + * LLEventBatchThrottle: like LLEventThrottle, it refuses to pass events to + * listeners more often than once per specified time interval. + * Like LLEventBatch, it accumulates pending events into an LLSD Array. + */ +class LLEventBatchThrottle: public LLEventThrottle +{ +public: + // pass time interval + LLEventBatchThrottle(F32 interval); + // construct and connect + LLEventBatchThrottle(LLEventPump& source, F32 interval); + + // append a new event to current batch + virtual bool post(const LLSD& event); +}; + #endif /* ! defined(LL_LLEVENTFILTER_H) */ |