diff options
author | Nat Goodspeed <nat@lindenlab.com> | 2019-07-17 18:49:31 +0200 |
---|---|---|
committer | Nat Goodspeed <nat@lindenlab.com> | 2020-03-25 18:44:04 -0400 |
commit | 7e2cc57d61d09ca106243d51494aef025c8729fa (patch) | |
tree | 5c5c7a5360c164a2ca94c8ba24f3e70348f99941 | |
parent | a3de18996f0c4aee37266c1a3d72c5cc9cadd6c1 (diff) |
DRTVWR-476: Review response: remove wait_until() methods and LLDate.
-rw-r--r-- | indra/llcommon/llcond.cpp | 111 | ||||
-rw-r--r-- | indra/llcommon/llcond.h | 165 |
2 files changed, 47 insertions, 229 deletions
diff --git a/indra/llcommon/llcond.cpp b/indra/llcommon/llcond.cpp deleted file mode 100644 index d5362a48fc..0000000000 --- a/indra/llcommon/llcond.cpp +++ /dev/null @@ -1,111 +0,0 @@ -/** - * @file llcond.cpp - * @author Nat Goodspeed - * @date 2019-07-17 - * @brief Implementation for llcond. - * - * $LicenseInfo:firstyear=2019&license=viewerlgpl$ - * Copyright (c) 2019, Linden Research, Inc. - * $/LicenseInfo$ - */ - -// Precompiled header -#include "linden_common.h" -// associated header -#include "llcond.h" -// STL headers -// std headers -// external library headers -// other Linden headers - -namespace // anonymous -{ - -// See comments in LLCond::convert(const LLDate&) below -std::time_t compute_lldate_epoch() -{ - LLDate lldate_epoch; - std::tm tm; - // It should be noted that calling LLDate::split() to write directly - // into a std::tm struct depends on S32 being a typedef for int in - // stdtypes.h: split() takes S32*, whereas tm fields are documented to - // be int. If you get compile errors here, somebody changed the - // definition of S32. You'll have to declare six S32 variables, - // split() into them, then assign them into the relevant tm fields. - if (! lldate_epoch.split(&tm.tm_year, &tm.tm_mon, &tm.tm_mday, - &tm.tm_hour, &tm.tm_min, &tm.tm_sec)) - { - // Theoretically split() could return false. In that case, we - // don't have valid data, so we can't compute offset, so skip the - // rest of this. - return 0; - } - - tm.tm_isdst = 0; - std::time_t lldate_epoch_time = std::mktime(&tm); - if (lldate_epoch_time == -1) - { - // Theoretically mktime() could return -1, meaning that the contents - // of the passed std::tm cannot be represented as a time_t. (Worrisome - // if LLDate's epoch happened to be exactly 1 tick before - // std::time_t's epoch...) - // In the error case, assume offset 0. - return 0; - } - - // But if we got this far, lldate_epoch_time is the time_t we want. - return lldate_epoch_time; -} - -} // anonymous namespace - -// convert LLDate to a chrono::time_point -std::chrono::system_clock::time_point LLCond::convert(const LLDate& lldate) -{ - // std::chrono::system_clock's epoch MAY be the Unix epoch, namely - // midnight UTC on 1970-01-01, in fact it probably is. But until C++20, - // system_clock does not guarantee that. Unfortunately time_t doesn't - // specify its epoch either, other than to note that it "almost always" is - // the Unix epoch (https://en.cppreference.com/w/cpp/chrono/c/time_t). - // LLDate, being based on apr_time_t, does guarantee 1970-01-01T00:00 UTC. - // http://apr.apache.org/docs/apr/1.5/group__apr__time.html#gadb4bde16055748190eae190c55aa02bb - - // The easy, efficient conversion would be - // std::chrono::system_clock::from_time_t(std::time_t(LLDate::secondsSinceEpoch())). - // But that assumes that both time_t and system_clock have the same epoch - // as LLDate -- an assumption that will work until it unexpectedly doesn't. - - // It would be more formally correct to break out the year, month, day, - // hour, minute, second (UTC) using LLDate::split() and recombine them - // into std::time_t using std::mktime(). However, both split() and - // mktime() have integer second granularity, whereas callers of - // wait_until() are very likely to be interested in sub-second precision. - // In that sense std::chrono::system_clock::from_time_t() is still - // preferred. - - // So use the split() / mktime() mechanism to determine the numeric value - // of the LLDate / apr_time_t epoch as expressed in time_t. (We assume - // that the epoch offset can be expressed as integer seconds, per split() - // and mktime(), which seems plausible.) - - // n.b. A function-static variable is initialized only once in a - // thread-safe way. - static std::time_t lldate_epoch_time = compute_lldate_epoch(); - - // LLDate::secondsSinceEpoch() gets us, of course, how long it has - // been since lldate_epoch_time. So adding lldate_epoch_time should - // give us the correct time_t representation of a given LLDate even if - // time_t's epoch differs from LLDate's. - // We don't have to worry about the relative epochs of time_t and - // system_clock because from_time_t() takes care of that! - return std::chrono::system_clock::from_time_t(lldate_epoch_time + - lldate.secondsSinceEpoch()); -} - -// convert F32Milliseconds to a chrono::duration -std::chrono::milliseconds LLCond::convert(F32Milliseconds) -{ - // extract the F32 milliseconds from F32Milliseconds, construct - // std::chrono::milliseconds from that value - return std::chrono::milliseconds(timeout_duration.value()); -} diff --git a/indra/llcommon/llcond.h b/indra/llcommon/llcond.h index 5ed9f10123..d18058cf62 100644 --- a/indra/llcommon/llcond.h +++ b/indra/llcommon/llcond.h @@ -15,7 +15,6 @@ #define LL_LLCOND_H #include "llunits.h" -#include "lldate.h" #include <boost/fiber/condition_variable.hpp> #include <mutex> #include <chrono> @@ -134,44 +133,6 @@ public: } /** - * Pass wait_until() a chrono::time_point, indicating the time at which we - * should stop waiting, and a predicate accepting (const DATA&), returning - * bool. The predicate returns true when the condition for which it is - * waiting has been satisfied, presumably determined by examining the - * referenced DATA. wait_until() locks the mutex and, until the predicate - * returns true, calls wait_until() on the condition_variable. - * wait_until() returns false if condition_variable::wait_until() timed - * out without the predicate returning true. - */ - template <typename Clock, typename Duration, typename Pred> - bool wait_until(const std::chrono::time_point<Clock, Duration>& timeout_time, Pred pred) - { - std::unique_lock<boost::fibers::mutex> lk(mMutex); - // see wait() for comments about this const_cast - while (! pred(const_cast<const value_type&>(mData))) - { - if (boost::fibers::cv_status::timeout == mCond.wait_until(lk, timeout_time)) - { - // It's possible that wait_until() timed out AND the predicate - // became true more or less simultaneously. Even though - // wait_until() timed out, check the predicate one more time. - return pred(const_cast<const value_type&>(mData)); - } - } - return true; - } - - /** - * This wait_until() overload accepts LLDate as the time_point. Its - * semantics are the same as the generic wait_until() method. - */ - template <typename Pred> - bool wait_until(const LLDate& timeout_time, Pred pred) - { - return wait_until(convert(timeout_time), pred); - } - - /** * Pass wait_for() a chrono::duration, indicating how long we're willing * to wait, and a predicate accepting (const DATA&), returning bool. The * predicate returns true when the condition for which it is waiting has @@ -207,10 +168,54 @@ public: } protected: - // convert LLDate to a chrono::time_point - std::chrono::system_clock::time_point convert(const LLDate&); // convert F32Milliseconds to a chrono::duration - std::chrono::milliseconds convert(F32Milliseconds); + std::chrono::milliseconds convert(F32Milliseconds) + { + // extract the F32 milliseconds from F32Milliseconds, construct + // std::chrono::milliseconds from that value + return { timeout_duration.value() }; + } + +private: + /** + * Pass wait_until() a chrono::time_point, indicating the time at which we + * should stop waiting, and a predicate accepting (const DATA&), returning + * bool. The predicate returns true when the condition for which it is + * waiting has been satisfied, presumably determined by examining the + * referenced DATA. wait_until() locks the mutex and, until the predicate + * returns true, calls wait_until() on the condition_variable. + * wait_until() returns false if condition_variable::wait_until() timed + * out without the predicate returning true. + * + * Originally this class and its subclasses published wait_until() methods + * corresponding to each wait_for() method. But that raised all sorts of + * fascinating questions about the time zone of the passed time_point: + * local time? server time? UTC? The bottom line is that for LLCond + * timeout purposes, we really shouldn't have to care -- timeout duration + * is all we need. This private method remains because it's the simplest + * way to support iteratively waiting across spurious wakeups while + * honoring a fixed timeout. + */ + template <typename Clock, typename Duration, typename Pred> + bool wait_until(const std::chrono::time_point<Clock, Duration>& timeout_time, Pred pred) + { + std::unique_lock<boost::fibers::mutex> lk(mMutex); + // We advise the caller to pass a predicate accepting (const DATA&). + // But what if they instead pass a predicate accepting non-const + // (DATA&)? Such a predicate could modify mData, which would be Bad. + // Forbid that. + while (! pred(const_cast<const value_type&>(mData))) + { + if (boost::fibers::cv_status::timeout == mCond.wait_until(lk, timeout_time)) + { + // It's possible that wait_until() timed out AND the predicate + // became true more or less simultaneously. Even though + // wait_until() timed out, check the predicate one more time. + return pred(const_cast<const value_type&>(mData)); + } + } + return true; + } }; template <typename DATA> @@ -222,7 +227,6 @@ public: using super::value_type; using super::get; using super::wait; - using super::wait_until; using super::wait_for; /// LLScalarCond can be explicitly initialized with a specific value for @@ -258,31 +262,6 @@ public: } /** - * Pass wait_until_equal() a chrono::time_point, indicating the time at - * which we should stop waiting, and a value for which to wait. - * wait_until_equal() locks the mutex and, until the stored DATA equals - * that value, calls wait_until() on the condition_variable. - * wait_until_equal() returns false if condition_variable::wait_until() - * timed out without the stored DATA being equal to the passed value. - */ - template <typename Clock, typename Duration> - bool wait_until_equal(const std::chrono::time_point<Clock, Duration>& timeout_time, - const value_type& value) - { - return super::wait_until(timeout_time, - [&value](const value_type& data){ return (data == value); }); - } - - /** - * This wait_until_equal() overload accepts LLDate as the time_point. Its - * semantics are the same as the generic wait_until_equal() method. - */ - bool wait_until_equal(const LLDate& timeout_time, const value_type& value) - { - return wait_until_equal(super::convert(timeout_time), value); - } - - /** * Pass wait_for_equal() a chrono::duration, indicating how long we're * willing to wait, and a value for which to wait. wait_for_equal() locks * the mutex and, until the stored DATA equals that value, calls @@ -320,31 +299,6 @@ public: } /** - * Pass wait_until_unequal() a chrono::time_point, indicating the time at - * which we should stop waiting, and a value from which to move away. - * wait_until_unequal() locks the mutex and, until the stored DATA no - * longer equals that value, calls wait_until() on the condition_variable. - * wait_until_unequal() returns false if condition_variable::wait_until() - * timed out with the stored DATA still being equal to the passed value. - */ - template <typename Clock, typename Duration> - bool wait_until_unequal(const std::chrono::time_point<Clock, Duration>& timeout_time, - const value_type& value) - { - return super::wait_until(timeout_time, - [&value](const value_type& data){ return (data != value); }); - } - - /** - * This wait_until_unequal() overload accepts LLDate as the time_point. - * Its semantics are the same as the generic wait_until_unequal() method. - */ - bool wait_until_unequal(const LLDate& timeout_time, const value_type& value) - { - return wait_until_unequal(super::convert(timeout_time), value); - } - - /** * Pass wait_for_unequal() a chrono::duration, indicating how long we're * willing to wait, and a value from which to move away. * wait_for_unequal() locks the mutex and, until the stored DATA no longer @@ -387,13 +341,10 @@ public: using super::value_type; using super::get; using super::wait; - using super::wait_until; using super::wait_for; using super::wait_equal; - using super::wait_until_equal; using super::wait_for_equal; using super::wait_unequal; - using super::wait_until_unequal; using super::wait_for_unequal; /// The bool stored in LLOneShotCond is initially false @@ -421,28 +372,6 @@ public: } /** - * Pass wait_until() a chrono::time_point, indicating the time at which we - * should stop waiting. wait_until() locks the mutex and, until the stored - * bool is true, calls wait_until() on the condition_variable. - * wait_until() returns false if condition_variable::wait_until() timed - * out without the stored bool being true. - */ - template <typename Clock, typename Duration> - bool wait_until(const std::chrono::time_point<Clock, Duration>& timeout_time) - { - return super::wait_until_unequal(timeout_time, false); - } - - /** - * This wait_until() overload accepts LLDate as the time_point. - * Its semantics are the same as the generic wait_until() method. - */ - bool wait_until(const LLDate& timeout_time) - { - return wait_until(super::convert(timeout_time)); - } - - /** * Pass wait_for() a chrono::duration, indicating how long we're willing * to wait. wait_for() locks the mutex and, until the stored bool is true, * calls wait_for() on the condition_variable. wait_for() returns false if |